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Abstract 

This paper is concerned with the state estimation of linear dynamical systems 
with state-dependent measurement noise. The minimum variance estimate of the 
state is obtained as the weighted mean of the outputs of Kalman filters parameterized 
by the state-dependent measurement noise sequences. The usual calculation for this 
estimate, however, becomes impractical since a very large amount of outputs of 
Kalman filters is required. Therefore, we regard the set of all the state-dependent 
measurement noise sequences as a population. Then, we evaluate the minimum 
variance estimate on the basis of a relatively small number of outputs of Kalman 
filters, parameterized by the state-dependent measurement noise sequences sampled 
at random from the population. The convergence of the algorithm is established. 
Then, by an approximation of a sampling procedure with a fast convergence 
property, a feasible sampling procedure is determined and a practical algorithm is 
designed. This policy of design leads to an efficient algorithm. , Digital simulation 
results show a good performance of the proposed algorithm. 

I Introduction 

The exact solution of the dynamical state estimation problem has been obtained 

by Kalman and Bucy [1], [2] for linear systems with additive white Gaussian 

noise. Since then, many papers have been written on state estimation problems. 

The present work considers the state estimation for linear systems with state­

dependent measurement noise (s. d. m. n. ). By "state-dependent noise", we mean 

not an additive noise but a multiplicative noise. Such state-dependent noises are 

often seen in aerospace and process control systems [3]. 

It is well known that if there exists a s. d. m. n., then the a posteriori 
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probability density function of the state becomes non-Gaussian, and therefore, the 

construction of the optimal estimator is very difficult. Hence, a suboptimal 

technique becomes necessary. 
McLane [3] has proposed a sub-optimal estimation algorithm by converting 

the state estimation problem into the problem of the Wiener-Hopf integral equation. 

His approach, however, is applicable only when the influence of the s. d. m. n. is 

relatively small. 

This paper presents a practical algorithm which gives an accurate estimate of 

the state even if the influence of the s. d. m. n. is relatively large. 

The optimal estimate of the state is first obtained as the weighted mean of 

the outputs of Kalman filters parameterized by the s. d. m. n. sequences. The usual 

computation for this estimate, however, is impractical since a large amount of 

outputs of Kalman filters is required as time progresses. 

In order to overcome this difficulty, the set of all the s. d. m. n. sequences is 

regarded as a population, and the optimal estimate is evaluated on the basis of a 

relatively small number of outputs of Kalman filters, parameterized by the s. d. 

m. n. sequences sampled at random from the population. The convergence is 

established. Then, by an approximation of sampling procedure with a fast 

convergence property, a feasible sampling procedure is determined and a practical 
algorithm is designed. This policy of design leads to an efficient algorithm. 

Finally, the digital simulation studies are carried out and performance of the 

proposed estimator is compared with the sub-optimal estimator by McLane. 

2. 1 Problem Formulation 
The system model is 

Xt+1=FtXt+Wt 

II Problem Statement 

(1) 

Yt=g'tXt+h'tXtVt+Ut ( 2) 

where Xt E R"' is the state and Yt E R1 is the measurement data. Here, we will 

consider the scalar case. Generalization to the vector case is not difficult, but it 

complicates the presentation and would unnecessarily detract from the basic idea. 

Ut, Vt E R1 and Wt E R" are Gaussian white noises, Ft is a known n x n matrix, and 

gt, ht E R"' are known vectors. The noise sequences Ut, Vt, Wt, and the initial state 

Xo are assumed to be mutually independent random variables with the following 

statistics. 

p(ut)~N{O, Qt}, 

p(wt)~N{O, St}, 

p(ve)~N{O, Rt} 

p(xo)~N{x0, l\} 
(3) 

The second term on the right-hand side of (2) represents the s. d. m. n. effect. 

The problem is, on the basis of the data sequence Y, ,4 {y0, ······, y,}, to find 
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the estimate Xe of Xe which minimizes the average risk 

][Ye] 4 E{[xe-xc]' W[xe-xc] I Ye} (4) 
where W is a symmetric and positive definite matrix. 

2. 2 Optimal Estimator 
It is well known that the optimal estimate Xe of the state Xe is given by the 

conditional mean 

Xc=E{xel Ye} 4 f XeP(xel Ye) dxc 

Equation (5) can be rewritten as 

(5) 

xe=f xtCVe)PCVe=Vel Ye)dVc 

where 

(6) 

V, J {Vo, ...... , Vt} (7) 

The symbol Ve 4 {il0, ······, ile} represents an arbitrary (t+l)-long sequence. Of 

course, Vt is not a random variable. It is readily apparent that Xe(Ve) can be 

determined recursively by the following Kalman filter equations: 

Xo(V-1)=xo, IoCV-1)=.Eo (8) 

qe(ile) 4 g'e+h'eilt (9) 

Ve=(Ve-1, ile) (10) 

K,(V c) = te(V e-1)q' iCih) [qt(i.it).Ec(V t-1)q' ,(ih) + Qe]-1 (11) 

Xe(Ve) = Xc(V t-1) + Kc(Ve) [Yc-Qe(ile)Xe(V t-1)] (12) 

Ie(Ve) =.Ei(Vc-1)-Ke(Ve)Qe(ile)Ic(Ve-1) (13) 

Xe+1(Ve)=F,x(Vc) (14) 

Ie-1CV,)=Fcic(Ve)F'c+Se (15) 

On the other hand, using Bayes' rule, we obtain the recursive relation 

p(Ve=Vcl Ye) P(Ycl Ve=Vc, Ye-1)P(ve=ilc)P(Vi-1=Ve-1I Yc-1) (l6) 
f[numerator]dVc 

where P(Yel Ve=Vc, Yc-1) is Gaussian with the statistic: 

N {qe(iJe)xtCVe-1), Qe(ilc).Ec(Ve-1)q' e(ile) + Qt} (17) 

Introducing (16) into (6) recursively, we obtain 

xc = fxe(Vc)/e(Ve)dVe (lS) 
ffc(Ve)dVt 

where 
t 

fc(Vc) 4 II p(y, IV,= V,, Y,-1)P(v,=v,)] (19) 
-r-o 

Equaton (18) shows that the optimal estimate Xe is obtained as the weighted 

mean of the outputs of Kalman filers parameterized by the s. d. m. n. sequences Ve. 

ThereJore, Xt can be evaluated in principle by calculating Xc(Vc) and /,(Ve) at 

the lattice points in the space Q, of all possible s. d. m. n. sequence Ve, and using 

a numerical integration technique such as the Gaussian quadrature formula. It 

should, however, be noted that since the denominator and the numerator in (18) 

involve (t + 1)-dimensional multiple integrals, the above algorithm requires a 
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growing amount of computation with the lapse of time, and hence, becomes 

impractical for a large value of t. To alleviate this difficulty, we propose an 

algorithm based on the Monte Carlo method in the next section. In the algorithm, 

the space !2t is regarded as a populaton and the optimal estimate Xt is evaluated 

by a relatively small number of sequences sampled at random from the population 

S2t. 

III Algorithm Based on the Monte Carlo Method 

Let a; and 0;, v=l, ······, N; '!"=0, 1, ······, be independent random numbers 

uniformly distributed in the interval [0, 1]. It is assumed that these random 

numbers are independent of {ut}, {vc}, {wt}, and x0• Let ®t denote the set of these 

uniform random numbers a; and 0;, v=l, •·····, N; '!"=0, •·····, t. Note that the set 

®t* is the sub-set of ®t if t* ::;: t. 

In the algorithm proposed here, the optimal estimate Xt is evaluated according 

to the following procedures. 

Step 1: Introduce the functions ¢,c,, (V,; Yt), '!"=l, •·····, t, which satisfy the 

following conditions. 

(Cl) For each '!", ¢,c,, (V,; Yt) is a function of V, E JJ,, the functional form of 

which is determined by Ye or a subsequence of Yt. 

(C2) ¢,e, , (V ,; Yt) > 0, and 

f ¢,t,, (V,; Yt)diJ,=l for all V,-1 f JJ,-1 
(20) 

(C3) The probability density (/)t on !Jc which is defined by 
t 

(!)t(Vt; Yt) 4 II </>e,, (V,; Yt) (21) 
-r-o 

differs from zero (see Fig. 1). 

Step 2: Let- ==e-1<eo<e1<······<ez-1<ez+1= + 00 • Suppose that the ?"-long sub­
sequence 

<I>o ~o; Yo) = c/>o,o (\io; Yo> 

cf>l(\71; Yl) = c/>1,0(\70; Yl)cJ>l,1(\71; Yl) . 

cf>t(\ft: Yt) ~ cJ>t,0(\fO; Yt)cJ>t,l (\71; Yt)x•••xcJ>t,t(\7t; Yt) 

. . 
. ('\, ) Fig. 1 The construction of ¢t Vt; Yt 
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Vt, ,-1 4 {vt, o, · · · · · ·, Vt, ,-1} 

has been sampled. Then, find e, that satisfies 

F(i-l) A t:1 ¢,, ,CVt,,-1, vc); Yt) dv, <a~ 

.s::t'
00 

</Jc, ,(Vt, ,-i. v,); Y,) dv, A F(i) 

Next, find p E [e,-1, e,) that satisfies 

1~ ¢,, ,(CV, ,-i. v,); Yc) dv, 
D (p) A ) 1-1 ' = 8~ 

)::_
1 

<Pt, ,(CVt, ,-i, v,); Yt) dv, 

and put 

(22) 

(23) 

(24) 

(25) 

By sequentially performing these operations for -r=O, ...... , t, and l'=l, ...... , N, a 

number of N of (t+l)-long sequences Vt, t, l'=l, ...... , N, can be sampled (see 

Fig. 2). In practical terms, (23) means the selection of an interval [e,-1, e,) with 

probability F(i)-F(i-l), while (24) means the selection of a point p from the 

interval [e,-1, e,) with a probability density D(p). 

Step 3 : Use the following #(N) for Xe of (18). 

(26) 

Now let us denote the average risk (4) associated with the proposed algorithm 

by ]*[Yt, NJ, i. e., 

]*[Yc, NJ 4 E{[xc-#(N)J'W [xc-#(N)J I Yt} (27) 

Since the values of the elements of ®, are determined by the random numbers, 

J*[Yt, NJ can be calculated by regarding ®c as a random variable besides {ut}, 

V V V : v=l, c,0 al at •••, N 

/3V 
0 

/3v 
1 

/3v 
t : v=·l, •••, N 

t j x0{N) "'V 
<1>o<Zio; Yo> + {vo,o} : v=l, •••, N + 

A '1,V "'V 'I, 
xt{N) + {vl,O' vl,l} : v=l, •••, N + <l>l (Vl; Yl) 

Fig. 2 Relation between uniform random numbers and sampled sequences. 
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{ve}, {we}, and x0• 

We first obtain the following lemma. 

Lemma 
N 

pcvl. t, • • • ---, vf. e I xt, Yt) = n <Dtcv;:, e; Yt) 
11=1 

Proof: Given in Appendix 1. 

(28) 

(29) 
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It is easily seen from (29) that, for given Yt, the numerator and the denomi­

nator of (26) are the unbiased estimators of the numerator and the denominator 

of (18), respectively. That is 

r N [xtCv;:, ,)JtCv;:, ,)] l r _ _ _ 
E lN-1 "Ei ~, _ Ye = )xtCVe)/c(Ve)dVe 

<De(V t, t , Ye) 

f N [ /t(V,, ,) l l ( ~ ~ ElN-l ~
1 

~, . Ye = )fe(Vc)dVt 
<De(V t, t , Ye) 

The following theorem provides the general expression for ]*[Ye, NJ. 

Theorem 1 

J*[Yt, NJ =l°[Yt] +AJ*[Yt, N] 

where 

}°[Ye] 4 E{xe-Xe]'W[xe-Xe] I Ye} 

A]*[Ye, N] 4 E{ [xt(N)-xe]'W[#(N)-xt] I Ye} 

Proof: Given in Appendix 2. 

(30) 

(31) 

(32) 

(33) 

Theorem 1 shows that ]*[Ye, NJ consists of two parts, one part being the 

optimal average risk ]°[Ye] and the other being the average risk A]*[Ye, N], 

associated with the scattering due to the Monte Carlo method. 

We observe that A]*[Ye, N] is the mean square loss associated with the ratio 

estimator of (26). Therefore, the direct application of Cramer's theorem on 

characteristics of sampling distributions to the loss of the ratio estimator [ 4] gives 

the following theorem. 

Theorem 2 

(34) 

Theorem 2 shows that ]*[Ye, N] converges to ]°[Ye] as N--oo regardless of 

the choice of </Jc,, (V,; Yt), -r=O, ······, t. 

Now, in the remainder of this section, we discuss the choice of </Jt, ,CV,; Yt) 

to ensure fast convergence of ]*[Ye, N] to }°[Ye]. The following theorem is 

useful in the determination of </Jt,, (V,; Yt). 

Theorem 3 If we choose 
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(35) 

then 

]*[Yr, N]'.:C[l + (1/ N)]]° [Yr] (36) 

where p(v,=v,IV,-1=V,-1, Yr)'s are the factors in the following expressions for 

p(Vc=Vc[ Ye): 
t 

P(Vt=Vcl Ye)= II p(v,=v,I V,-1=V,-1, Yr) (37) 
'1:'-0 

Proof: Given in Appendix 3. 

It follows from Theorem 3 that if we choose N=lOO, the average risk ]*[Yr, 

N = 100] increases less than one percent compared with the optimal average risk 

]°[Ye]. Thus, it is possible to obtain a desirable estimate #(N) by picking a 

substantially small number of sequences from the space .f2c. 

Unfortunately, the direct application of Theorem 3 will not be practical 

because of the following two disadvantages. 

(i) For instance, the calculation of </>e, 0(V0 ; Ye)=P(V0=V0 [Ye) involves (t+I) 

-and t-dimensional multiple integrals, i.e., 

~ ~ _ _ ffc(Vc)dili-·····dvr 
p(V0=V0 [ Ye)= f P(Vt= V,I Yc)dv1·"···dv,= fft(Vc)dVc (38) 

where the second equality is obtained by using (16) and (19). 

(ii) Since in general 

(39) 

every time a new measurement Jt is obtained, we must pick N x (t + 1) components 

il(" r=O, ...... , t; v=l, ...... , N. 

Nevertheless, Theorem 3 is useful in suggesting that in order to obtain a fast 

convergence with respect to N, </>t,, (V,; Ye) should be chosen to approximate 

p(v,=v,\ V,-1=V,-1, Yt) as close as possible. In this sense, Theorem 3 has the 

same role as the well known optimal "importance" in the area of the importance 

sampling [5] and gives valuable information on constructing an efficient algorithm. 

Now, let us consider determining </>,,, (V,; Y,) based on Y, so that </>,, ,(V,; Ye) 

approximates p (v,=v,I V,-1 = V,-1, Y,). The technique to be employed in this 

paper is to approximate in the minimum mean square sense p(V,=V,f Ye) and 

p ( V,-1 = V ,-1 I Yr) appearing in the expression 

( -1v ~ Y) p(V,=V,\Y,) 
P v,=v, ,-1=V,-1, e = p(V,-i=V,-i[Y,) (40) 

and to determine </>i, ,(V,; Ye) as a result of these approximations. 

It is easily seen that 11rncv,, Y,) which minimizes the mean squared error 

E{f[p(V,=V,\ Y,)-1f"(V,, Y,)] 2 dV,} 

=J{J[p(V,=V,f Yt)-1P'"(V,, Y,)] 2 dV,}p(Yc)dY, (41) 

is given by the conditional mean 
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P""(V,, Y,)=f p(V,=V,I Yt)P(Y,+1, --·-··, Ytl Y,)dY,+1·····•dyt 

=P(V, =V,I Y,) 

Similarly, P""(V,-1, Y,) which approximates p(V,-1=V,-1I Yt) is given by 

p-a(V,-1, Yr)=P(V,-1=V,-1I Y,) 

As a result of these approximations, we obtain 

( ~ y) p(V,=V,I Y,) 
<Pt, ' V' ; t ( V - I y ) P ,-1=Y,-1 , 

(42a) 

(42b) 

(43) 

as an approximation to p(v,=v, I V,-1 = V,-1, Yt). Using Bayes' rule, we obtain 

P( -v~ IV -v~ Y)- p(y,IV,=V,, Y,-1)P(v,=v,) ( 44) 
v, - ' ,-1 - ,-1, ' - cv~ ) r,. -.-1 

where r,CV,-1) is defined by 

r,(V,-1) 4 fp(y,I V,=V,, Y,-1)P(v,=v,)dv, (45) 
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We see from (44) that </Jt, ,(V,; Yt) given by (43) can be easily calculated 

from p(v,=v,) and p(y,jV,=V,, Y,-1)t- It is readily apparent that </Jt, ,(V,; Yt) 

determined in this way satisfies conditions (Cl), (CZ), and (C3). Further, from 

( 43), we have for each i-

</Jt, ,(V,; Yt)=</Jt-1,,(V,; Yt-1)=------=</J,,,(V,; Y,) (46) 

Using (46) and examining (23), (24), and (25), we obtain without difficulty 

u=l, --·--·, N (47) 

Therefore, the sequence V,-r,t-r which is used to calculate #-r (N) may again be 

used as the subsequence of V,, t, so that V,, t can be obtained by sampling only 

the (t + 1) th component v; t• It should be noted that since V,_1 t-1 is the subsequ-
, ' 

ence of V,, t, eqs. (8) to (15) can be used recursively in the proposed algorithm_ 

From (19), (43), and (44), it turns out that 

(48) 

Substituting ( 48) into the general epuation (26) of the Monte Carlo method and 

noting (47), we have 
N 

N-1 IJ [xtcv, t)Rt cv,-1 t-1)] 
#(N)= •-I N ' ' (49) 

N-1 IJ Rt(Vt-I t-1) 
11-1 , 

where Re (Ve-i,t-1) is defined by 

(50) 

The actual calculation may be carried out as follows. 

t As has been shown by (17), p(y,IV,=V,, Y,-1) is Gaussian with statistic N(q,(ii,)x,(V,-1), 
q,(v,).S,CV,-1)q/ (v,) + Q, l. 
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(1) Set R-1(V'.'...2,_2)=l for v=l, •·····, N, and start from t=0. 

(2) Obtain Jt. 

(3) Find e, that satisfies 

)~':1 p(vt=ihl Vt-1=Vt-1,t-1' Yt)dih<at 

~ )~'00 P(Vt=ih I Vi-1 = Vt-1,t-1, Yt)dih 

find PE [ e,-1, r:,) that satisfies 

\ ~ P(Vt=Vt I Vi-1 = Vt-1 t-1, Yt)diJc 
lt-1 . =~ 
1:' p(vi =iJtl Vt-1 = Vt-1 t-1, Yi)dih J ~,-1 . 

and put 

(51) 

(52) 

(53) 

By performing these operations for v=l, N, the sequence Vt t= fVe-1 t-1, Vt tl. . . ' 

v=l, •·····, N, can be sampled. The calculation of rt(Ve-i,t-i) of (45) and the se­

lection of Vt t can be easily carried out by replacing P(Ytl Vt=CVt-1 t-1, Vt), Yt-1) . . 
by the step function of Vt which is constant over every interval [,1-1, r:,) d {vtl •H 

:S:vc<e,}, but has in each •1 a step of the P(Yt I Vi= (Vt-l,t-1> i,), Yt-1). Note here 

that, as a result of this discretization, p(v,=vtl Vc-1 = Ve-i,t-1, Yt) in (51) and (52) 

can also be replaced by an appropriate step function (see 44)). 

(4) For each Ve, t, compute xc(Ve, t) and calculate RtCVt-i,t-1) from 

RtCVt-1,t-1) = rtCVt-1, t-1)Rt-1 (Vt-2, ,_2) 

Use #(N) of ( 49) for Xe. 

(5) Replace t with t + 1 and return to (2). 

IV NUMERICAL EXAMPLE 

Let us consider the scalar system 

Xt+1=Fxt+Wt, Jc=x,+xcv,+u, 

p(xo)~N{15, 100}, p(ut)~N{0, 400} 

p(vc)~N{0, 25}, 

(54) 

(55) 

(56) 

and compare the accuracy of the proposed estimator with that of the linear 

estimator by McLane [3]. The accuracy of the two estimators are compared on 

the basis of losses of 25 run averages 

{ 
1 26 } 1/2 

Jt[N] d 25 E1 [Xt-xt(N)H 
(57) 
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where Jt[N] and ff denote the average losses of the poposed algorithm and the 

algorithm due to McLane, respectively, and the subscript k denotes the number of 

simulation runs. The number of samples used for the calculation of ( 49) is only 

20 Ci. e., N=20). 

Figs. 3 and 4 show simulation results for the following cases: 

Case (a) Xo=l, F=O. 98 

Case (b) Xo=30, F=O. 98 

These cases correspond to the ones where the influence of the s. d. m. n. decreases 

with time. Examining Figs. 3 and 4, we observe that the convergence of the 

proposed algorithm is faster than McLane's algorithm. 

Figs. 5 and 6 show the simulation results for the following cases: 

Case (c) x0 =l, F=l.01 

Case (d) x0 =30, F=l. 01 

In these cases, the influence of the s. d. m. n. increses with time. We observe that 

the accuracy of linear estimator by McLane is not improved by the measurements 

at all, while the accuracy of the proposed estimator is well improved. 
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Fig. 3 Comparison of the filter performances (F=O. 98, x0=1; 25 run 
average). 
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Fig. 6 Comparison of the filter performances (F=l. 01, Xo=30; 25 run 
average). 

V DISCUSSION 
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Due to increased computing speed of the newer electronic digital computers, 

the cost of designing and coding an algorithm becomes more and more expensive 

relative to the cost of machine running time. In the ordinary theoretical approach, 

the higher order moments of the a posteriori probability density of the state are 

required for improvement of the accuracy of the sub-optimal estimator. However, 

the introduction of higher order moments will destroy the computer program of 

the old algorithm, will increase the time spent in designing the new algorithm, and 

will complicate its coding. 

From Theorem 2, the difference between ]*[Y,, N] and ]°[Ye] is of the order 

of N-1, so that we may reach a sufficiently accurate estimate by simply increasing 

the number N of sampled sequences without changing the computer program of 

the algorithm. Thus the proposed algorithm, like many Monte Carlo methods, is 

suitable for the use of electronic digital computers. 

Theorem 3 has the same role as the well known optimal "importance" in the 
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field of importance sampling [5], and gives valuable information on designing an 

efficient algorithm. As the result of the approximation of p(v,=v,I V,- 1=V,-i. Yt) 

with a fast convergence property, <Pt, ,(V,; Yt) is determined and the practical 

algorithm is designed. Such a policy of designing the algorithm is commonly used 

in the area of Monte Carlo method [5]. The simulation results also show that 

this policy produces a fast convergence, and hence, reduces the machine running 

time. If necessary, we may perform the computation for each Vt, t in parallel, 

further reducing the computing time. 

VI CONCLUSION 

The state estimation problem for linear dynamical systems with s. d. m. n. was 

discussed and an algorithm based on the Monte Carlo method was proposed. The 

average risk ]*[Yt, N] of the proopsed estimator is the sum of the optimal average 

risk ]° [Yt] and the risk J ]* [Yt, N] associated with the scattering due to the 

Monte Carlo method (Theorem 1). The average risk ]*[Ye, N] converges to the 

optimal average risk ]° [Yt] as the number N of randomly sampled s. d. m. n. 

sequences is increased (Theorem 2). As a result of the approximation of p(v,= 
v,I V,- 1=V,-i. Yt) with a fast convergence property (Theorem 3), </Jt,, (V,; Yt) is 

determined and the feasible algorithm is designed. This policy of determination 

of </Jt, ,(V,; Yt) enables us to design an efficient algorithm. The algorithm was 

simulated and it provided far better estimates than the algorithm by McLane [3]. 

APPENDIX 1 PROOF OF LEMMA 

Obviously, the pair (Xt, Yt) is uniquely determined by {ut}, {vt}, {wt}, and Xo. 

Further, by assumption, both at and 0t are independent of {ut}, {Vt}, {wt}, and Xo. 

Thus, under the condition that (Xt, Yt) is given, ®t is still a set of independent 

random variables each of which is uniformly distributed on the interval [O, 1]. 

Noting this and examining (23), (24), and (25), we have (28). We obtain (29) in 

a similar manner. 

APPENDIX 2 PROOF OF THEOREM 1 

Let us rewrite (27) as 

]*[Yt, N] =E{[xe-Xt]'W[xe-xe] I Yt} +E{[xt(N)~xe]'W 

X [xt(N)-Xe] I Ye} +2E{[xe-Xe]'W[xe-xt(N)] I Yt} 

From (28), we have 

(A. 1) 

(A. 2) 
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Therefore, we lead to 

E{[xe-ie]'W[xe-#(N) I Ye} =O•W•E{[it-#(N) I Yt} =0 (A. 3) 

yielding (32) by (A. 1). Q. E. D. 

APPENDIX 3 PROOF OF THEOREM 3 

From (21), (35), and (37), it follows that 

(l)t(Ve, t; Yt)=P(Vt=Vtl Yt) I evaluated with Vt=Ve, t (A. 4) 

On the other hand, from (16) and (19), after some manipulation we have 

ft(Ve, t) 

P(Vt=Vtl Yt) \ evaluated with Vt=Ve, t = fft(Vt)dVt 

From (A. 5) and (26) 

(A. 5) 

(A. 6) 

is obtained. Therefore, from (A. 4), (6), and (29), we have 

J* [Ye, NJ= 1HxtCxi(Ve)-xt]'W[itCVt)-it]P(Vi=Vtl Yi)dVt (A. 7) 

On the other hand, we have 

l°[Yt] =f {f[xe-it(Ve)]'W[xe-xt(Ve)]p(xel Ve=Vt, Yt)dx}p(Ve=Vtl Ye) dVe 

+ f [xtCVt)-xt]'W[xtCVt)-ie]P(Vi=Vel Ye) dVt (A. 8) 
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From (A. 7), (A. 8) and the positive definite nature of the matrix W, it follows 

]* [Yt, N] ~ tr [Yt] (A. 9) 

Inequality (36) can easily be obtained from (A. 9) and (32). Q. E. D. 
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