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Abstract 

This paper investigates the improvement of a transient performance of a synchronous 
generator in a one-machine system via the excitation control. First, in regard to the 
optimal control of the excitation, the effects of the weighting coefficients on the optimal 
response are examined. The optimal control is approximately realized by the feed
back from the state variables, and the obtained responses are compared with the optimal 
responses. Furthermore, the system responses, in a case of being installed with a fast 
acting excitation control system with a stabilizer, are calculated and compared with those 
by the optimal control system. 

1. Introduction 

In recent electric power systems, generating stations are inclined to be con

structed collectively in places remote from the load center due to the environmental 

problems etc. Also, the extension of transmission lines is getting difficult beca

use of lack of sites. Consequently, the transmission lines have become longer 

and of larger capacity, and accordingly, the problem of transient stability is that 

it has resulted in limiting the transmission capacity of the system. 

On the other hand, an application of the modern optimal control theory 

to the control of the power systems has been proposed for these several years in 

order to improve the transient stability. Many theoretical considerations have 

been made, for example, the optimal control of excitation voltage and mech

anical power input1l-3
\ the bang-bang control of line reactance and damping 

resistance•l etc. Optimal control of the excitation voltage or the mechanical 

power input is usually obtained by using the maximum principle, which mini

mizes the performance index of quadratic form of the deviations of state variables 

and control variables. The weighting coefficients in the performance index can 

be chosen freely. In this paper, the optimal excitation voltage control of a one-
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machine system is considered as an example. At first, the relationship between 

weighting coefficients and optimal solutions is numerically investigated, and 

a set of weighting coefficients which gives the best system performance is selected. 

Next, the obtained optimal control is approximately realized with the feedback con

trol using the method of [11 ], and its results are shown. 

The above mentioned optimal control is still at the stage of theoretical in

vestigation. Among the practical, effective and economical methods for im

proving transient stability, the applications of series condensers, damping re

sistances and a fast acting excitation control system are investigated in the real 

system5>. In the last part of this paper, the effect of a fast acting excitation system 

for improvement of stability is shown and is compared with the results of optimal 

control. 

2. System Equations 

In this paper the control of excitation for a single synchronous generator 

connected through a transmission line to an infinite busbar is considered. A 

synchronous machine is represented as a simple 3rd-order model, i.e., damper 

windings, armature resistances, time derivatives of stator flux linkages and speed 

deviation in the expressions of the stator voltages are neglected. Then Park's 

equations are written as follows :3> 

voltages ed = -w04' q 

eq = Wo'Pd 

efd = P'Ptd+r1difd 

flux linkages Wo'Pd = -(xmd+xa)id+xmdifd 

w0i/Jq = -(Xmq+xa)iq 

Wo'Pfd = -xmdid+(xmd+x1)ifd 

torque Te= Pe= edid+eqiq 

M~ = P,-P6 -DB 

( I ) 

Assuming that the transients in transmission lines are negligible, the equations 

relating the machine voltages to the i'nfinite-busbar voltage can be written as 

ed = E sin lJ -x6 iq 

eq = E cos lJ +xeid 

Eq. (I) and (2) can be rewritten as the following three equations, 

lJ = s 

s = B1-A1s-A2 ifl1 sin lJ-(B2/2) sin 2lJ 

ifJ 1 = u-C1 ifl 1 +C2 cos lJ 

( 2) 

( 3) 
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where 

A2 = E/M(x/+xe)T/0 B2 = E 2(x/-xq)(M(x/+xe)(xq+xe) 

C2 = (xd-x/)E/(x/ +xe) u = e fdxmd/r fd 

Eq. (3) forms a nonlinear 3rd-order system with lJ, s and "1 f as the state variables 

and u as the control variable. 

3. Optimal Control 

When the system is subjected to a transient disturbance, optimal control with 

respect to the chosen performance index is determined. Here we make use of 

the Pontryagin's maximum principle.3
)•

5> The form of the performance index 

is chosen as 

where lJ f' ip ff and u f are the final steady-state values of the variables, and A8, A
8

, 

Af and Au are the weighting coefficients, which must be determined depending 

upon the relative emphasis to be placed on each variable. Using a set of adjoint 

variables p1, p2 and p3, the Hamiltonian function H can be written as follows: 

H = -A6(lJ-lJ f)2-AaS2-Ai"1 f-"1 ff) 2-Au(u-uf)2 

+p1s+p2(B1 -A1s-A2cjJ f sin lJ- B2 sin 2lJ) +P3(u-C1cjJ f+C2 cos lJ) 
2 

The optimal control u* is determined from 

u*={ulH(u)= max H} 
Umin<.u<:umax 

and when u is between Umin and Umax• u* is given by the following equation, 

The optimal time variation of the variables can be obtained by solving the follow

ing differential equations: 

p1 = -8H/8lJ = 2Aa(l1-lJ f) +A2p2cp f cos ll+B2p2 cos 2ll+Cd3 sin lJ 

p2 = -8H/8s = 2A2s-Pi+A1p2 

Ps = -8H/8cp f = 2A f(Y' f-cp ff) +A2P2 sin lJ +c1Ps 

lJ = 8H/8Pi = s 

s = 8H/8 p2 = B1-A1s-A2cp f sin lJ- B2 sin 2lJ 
2 

if' f = fJH/8 Ps = u-C1cp f+C2 cos lJ 

=ii 
=./2 
=fa 
=f, ( 4) 

=ls 

=le 
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under the boundary conditions which are introduced from the transversality 

conditions. 

( 5) 

and the initial conditions of the system, 

<l(O) = <l;, s(O) = 0, ifJ f(O) = ifJ fi. ( 6) 

4. Quasi-linearisation 

In the preceding section, the optimisation problem was reduced to the 2-

point boundary value problem by the application of Pontryagin's maximum prin

ciple. In this paper, this 2-point boundary value problem is solved by the method 

of quasi-linearisation. 3
)•

7> This technique solves nonlinear differential equations 

by recursively solving a series of linear differential equations, and it can be said to 

be Newton-Raphson's method in a functional space. The principal advantage of 

this method is that it converges quadratically to the solution of the original equa

tions, if the procedure converges, and consequently has a rapid convergence. 

Eq. (4) can be written as 

dX/dt = F(X, u) ( 7) 

where X=(p1,p2,p3, D, s, if' f)', F=(fi.,J2,fa,f.,fr,,fr,,) 1
, and the boundary conditions 

are given by eq. (5) and (6). u can be expressed as a function of X in the range 

(umin, umax). Expanding the righthand side of eq. (7), and neglecting the terms 

of order higher than first, eq. (7) is approximated as follows: 

( 8) 

where each element of J(X0) can be written as 

];; = 8f;/8x;+(8J./8u)(8u/8x;), i,j = 1, 2, •··, 6 

and when u equals Umin or Umax• 

X 0 and u0 are functions of time t, and approximate solutions of eq. (7). Since 

eq. (8) is linear, the solution which satisfies eq. (8), (5) and (6) can be determined 

numerically by using the principle of superposition. 

If Xp(t) is a solution of the equation 

( 9) 

which satisfies eq. (6), and the vectors Xh;(t),j=l,2,3 are solutions of the homo-
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geneous equations given by 

which satisfies the conditions 

Xh;(0) = [ .:11;, .:12;, .:13;, 0, 0, 0] 

.:11;: Kronecker's delta 

(10) 

then, by the principle of superposition, the general solution of eq. (8), which 

satisfies the initial conditions of eqn. (6) is given as follows: 

(11) 

Eq. ( 11) contains three integration constants a;, j = 1,2,3, which can be determined 

by use of the three final conditions given by eq. (5). With a/s known, the com

plete solution of eq. (8) can be determined from eq. (11). Then using this X(t) 

as the new X0 (t), the above described procedure is continued until the following 

inequality is satisfied, 

where c is a predetermined value for the criterion of convergence. 

5. Preliminaries 

The system initially in the steady state is disturbed by a step change of power 

input P1, which is brought up to 1.0 p.u. from 0.725 p.u., and is again brought 

down to the original magnitude after the time lapse of 0.35 sec. 

The system parameters are as follows: 

synchronous machine xd = 1.25 x/ = 0.3 

transmission line 

infinite-bus bar 

Xq = 0. 7 T/0 = 9.0 sec. 

M = 0.0185 D = 0.005 

X 6 = 0.2 

E= 1.0 

Assuming the initial values of u and P1 to be 1. 1 p. u. and 0. 725 p. u. respectively, 

the initial and final steady-state values of the system variables are obtained as 

follows: 

81 = 0. 7461 rad., s1 = 0, ifJ /i = 7. 7438 

81 = 0.7461 rad., s1 = 0, ifllf= 7.7438. 

The first approximation X0 (t) described in the preceding section is assumed 
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as follows: 

P1o(t) = 0 P2o(t) = 0 P3o(t) = 0 

b0 (t) = 0.7461 s0 (t) = 0 'P fo(t) = 7.7438 

u0 (t) = 1.1 

and the convergence criterion c is 0.001. 

With the above parameters and conditions, the differential equations (9) 

and (10) are integrated by the R.K.G. method. The integration step length and 

the total time period are 0.01 sec. and 2.0 sec. respectively. 

6. Relationship between Weighting Coefficients and Optimal Solution 

In the formulation of the optimal control problem, the performance index is 

chosen as a quadratic form of the deviations of the state variables and the control 

variable from their final values as shown in Section 3. The optimal solution is 

optimal with respect to this particular performance index. Hence, if different 

performance index is chosen, i.e., the weighting coefficients in the performance 

index are varied, different optimal solutions result. 

Although some results are reported on the relationship between weighting 

coefficients and optimal system performance for linear systems,8>- 10> they are not 

applicable to nonlinear systems nor to the case of constrained control. The sys

tem considered in this paper is nonlinear. Hence, it is difficult to analytically 

clarify the influence that weighting coefficients have upon the optimal solution. 

In this paper, the motion of a synchronous machine is described by the 3rd

order differential equation, so the performance index includes four weighting 

coefficients A8, A., A f and Au, which correspond to three state variables and one 

control variable. Of course, the behavior of rotor angle rJ is most important 

for the stability of synchronous generator. Therefore, first of all, we investigate 

in 6-1 how the optimal solution is varied when A8 is varied and A,.=A f=0. In 

6-2 and 6---3 we examine the effects of A,. and A f respectively. 

6-1 Case 1 A= [A8, O, O, 1] 

In this case we investigate how the optimal solution is varied as A 8 is varied 

with A .. =0, A f=0 and Au= l. The results are shown in Fig. 1. Fig. 1 (a) shows 

the time variations of the rotor angle o taking A8 as a parameter. When A8= 1, 

the control hardly varies, and almost equals the case of noncontrol. In this case, 

o -o /= J{J oscillates about zero. J{J reaches its peak at t=0.35 sec., and after 

this time J{J damps down with the damping coefficient of the system. As seen 

from the figure, this damping is not very fast. As the magnitude of A8 gets larger, 
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Fig. I. Optimal responses for A=[Aa, 0, 0, I] with Aa as a parameter. 

the value of LlcJ at t=0.35 sec. gets smaller and the damping becomes faster. 

Thus, the optimal control acts so as to make the value of LlcJ small at time t=0.35 

sec. when the input disturbance is cleared off. 

Fig. 1 (b) shows the time variations of power output Pe of the synchronous 

machine. When A8= 1, its variation equals the noncontrol case. In this case, 

LIP=P8 -P, oscillates with an amplitude 0.275 p.u., because P, changes from 

0.725 p.u. to 1.0 p.u. in a stepwise manner at t=0. At t=0.35 sec., P, again 

changes from 1.0 p. u. to 0. 725 p. u., so LIP oscillates with the amplitude of 0.55 

p.u. thereafter. This variation is similar to that of LlcJ, which can be explained 

from the fact that P 8 is linearized to the form of LIP=aLlcJ +bLlcp f' and Llcp f 

nearly equals zero. Next, as A8 gets larger, the peak which was initially at t= 

0.35 sec. begins to appear at an earlier time, and its value gets smaller as a whole. 

The parts where LIP is positive or negative are more subdivided in the case of 

A8= 10' than in the case of A8= 1. In other words, the variation of P • becomes 

similar to that of P,. As P • is controlled in this manner, LlcJ is suppressed to the 

small value. Hence, the variation of LIP• is mainly caused by Llcp f' 

Fig. 1 (c) shows the variations of the field flux linkage cp f with A8 as a para

meter. When A8=1, cpf oscillates a little. This oscillation is caused by 8, and 

not by u, because u is constant. As the value of A8 gets larger, cp f is varied to 

have its peak between t=0.15 sec. and 0.2 sec., and its peak value gets larger. 

As mentioned above, when the value of A8 is small, the effects of Llcp f on LIP 
6 

are not large, but when A8 is large, especially A8 = 104, Llcp f and LIP• vary in a 

similar manner. Such variations are caused by Llip f~ u-u f' 

Fig. 1 (d) shows the variations of the control variable u with A8 as a parameter. 
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When Ag= I, u is the same as u f' and equals the noncontrol case. As the value of 

A 6 gets larger, the value of u at t=0 gets larger. u decreases with time to reach 

uf=l.l at t~0.15 sec., and further decreases to the minimum at t=0.3,-.,0.35 

sec. After this time, u continues to make a small oscillation about uf, and ap

proaches uf at t=2.0 sec. Therefore, large changes of u appears in the first time 

period of 1.0 sec. The large value of u at t=0 corresponds to the steep increase in 

tp f just after t=0. The smaller value of u than u f in the time interval t=0.15,-., 

0.55 sec. corresponds to the fact that tp f again decreases to tp ff after arriving at the 

peak. 

As considered above, the change of the rotor angle lJ becomes suppressed, as 

the value of As gets larger. It is concluded that the control u controls tp f which 

acts on the power output P 6 of the synchronous machine so as to make the varia

tion of lJ and lJ optimal. 

6-2 Case 2 A=[Ag, 1()2, O, l] 

Here the optimal solutions are obtained with As varied and As= 102
, Af=0 and 

Au= 1. The results are shown in Fig. 2. Fig. 2 (a) shows the time variations 

of the rotor angle lJ with Ag as a parameter. A,, acts so as to make the change 

of s small, and therefore the oscillation of lJ damps fast. In the cases of A6= 1, 10 

and 102
, however, lJ does not approach lJ f in two seconds, i.e. the change of s 

is regarded as more important than that of lJ. With a large value of As, lJ 

returns to lJ f in two seconds. Among these solutions, the case of As= 103, A.= 

102
, Af=0 and Au= I is noteworthy, i.e. lJ increases monotonously from lJ f to 

0.85 rad. in t=0,-.,0.2 sec., remains constant in t=0.4--0.6 sec., decreases again 

monotonously to lJ f in t=0.4,-.,0.6 sec., and makes only a small oscillation there-

"O 
C ... 

v1) 

l.5r-----------------~ 

1.0 

0.5 

t (sec) 2 
(a) 
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Fig. 2. Optimal responses for A= [ As, I 02, 0, I] with As as a parameter. 

after. It is thought that A 8 and As balance well to produce such a curve as this. 

Hence, it is concluded that it is possible to suppress the change of lJ not only by 

making the value of A8 large, but also by giving an appropriate value to A
8

• 

Fig. 2 (b) shows the time variations of the control variable u with A8 as a 

parameter. The curves of this figure are considerably different from those of 

Fig. I (d). The values ofu at t=O are larger as a whole in this case. The values 

of u only at the earlier time get larger as the value of A8 gets larger, and the change 

after t=0.15 sec. is almost invariable for any A8 • In the case of A3= I, u(O) already 

equals 17 p.u. and A8 changes only the values ofu in t=0,-,Q.15 sec. which deter

mine the peak value of ifJ f• 

6-3 Case 3 A=[A3, O, 102, 1] 

In this case, the optimal solutions are investigated with A8 varied and A8 =0, A f 

= 102 and Au= I. The results are shown in Fig. 3. Fig. 3 (a) shows the time 

variations of the rotor angle lJ. The changes of lJ with A8 are similar to those in 

Fig. I (a). Namely, lJ has its peak at t=0.35 sec., and its peak value is a little 

larger than that of case I, when the magnitude of A8 is large. This is because ifJ 1 

cannot change as freely as in case I due to the effect of A f· When A8 is small, 

the change of i/J f is small, so the influence of A f is also small. 

Fig. 3 (b) shows the time variations of the control variable u. When As 

is large, the value of u is smaller compared with case I. Due to the effect of A f, 

the change of i/J f is suppressed as described above, and accordingly u is influenced 

in this manner. 

From the above considerations we can conclude that the effect of A f does 
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Fig. 3. Optimal responses for A=[Aa, 0, 102, I] with Aa as a parameter. 

not have its own particular feature, but suppresses the change of u as a result of 

suppressing the change of ifJ f, and increases the magnitude of Au substantially. 

7. Feedback Control 

The optimal control u* which is obtained in Section 3, and so calculated 

hitherto, is expressed as a function of time instead of as a function of the state 

variables. Hence, even if the state variables are measurable, it will be difficult to 

realize the optimal control. In this section, a method for approximately con

stituting the optimal control by the feedback from the state variables is described, U) 

and the numerical results are given. 

It is usually desirable to generate the control u by the linear combination of 
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observable variables of the system, i.e., 

where l is the number of feedback variables and x;1 is the final steady state value of 

the variable. k;, i= },-,[ are determined, which minimize 

in order to make u as similar to u* as possible. Setting the partial derivatives 

8 J/8ku 8 JI 8kz, .. ·, 8 J/ok, equal to zero, the following linear equation is obtained: 

CK= D (12) 

where C, K and D are matrix or vectors as follows: 

C;; = C;; =r(x;*-x;,)(x;*-xjf)dt i,j =I, ... , l 

K = [ku k2, ... , k1]' 

D = [du dz, ... , d1]' 

d; = [<u*-u1 )(x;*-xu)dt 

The solution of eq. (12) yields the vector K. This method is simple and easy to 

apply to a practical case. 

By the above described method, the optimal control for the case A=[l03, 102
, 

0,1] was approximated by the feedback control. The control u is here restricted 

between umin= -10 p.u. and umax= 10 p.u., while it was not constrained in the 
last section. The results are shown in Fig. 4. Fig. 4 (a) shows the time variations 

of the rotor angle lJ. In this figure, the solutions for the unlimited and the limited 

I.5.------------------, 
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_g ~----=---=~ 

vn 

0.5--- optimal control without constraint 
----- optimal control with .constraint 
---·- optimal feedback control 
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Fig. 4. System responses for i) optimal control without constraint, 
ii) optimal control with constraint on control, and iii) op
timal feedback control system. 

optimal controls are also shown. Although the variation of /J in the limited 

case is larger than in the unlimited case, the aspect of change is similar. From 

eq. (12), the feedback coefficients of a, sand ,pf are determined to be k8 = -8.488, 

k,.=20.363 and kf= - l l.622, respectively. The change of a by feedback control 

is considerc:1bly similar to that by the optimal control. Therefore, it is concluded 

that the feedback control from the state variables is satisfactory. 

Fig. 4 (b) shows the time variations of the control u. When the control is 

not limited, it assumes a large value at the early time of control. When the control 

is restricted to 10 u.p., the change of the rotor angle in Fig. 4 (a) becomes larger. 

As the feedback control u is determined so as to approximate the optimal control 

with limits, their changes are similar to each other, especially for t=0,...__,Q.3 sec. 

8. Fast Acting Excitation Control System 

It was made clear in the preceding sections that the optimal control of the 

excitation of synchronous generator is very effective for the improvement of stabi

lity. However, some problems must be solved before the optimal control is ap

plied to real power systems, for example, how to solve the optimal solution in 

the on-line mode and how to realize the obtained control. One of the power system 

stabilizing methods, which are realistic and economic under the present state of 

arts, is the application of a fast acting excitation system. In this section a com

parison is made between the optimal excitation control and a fast acting excitation 
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control. 

8-1 Improvement of Transient Stability by Fast Acting Excitation System 

and Stabilizing Singal 

When some fault occurs m an electric power system, the electrical output 

power of the generator usually decreases, while the mechanical input power to 

the generator hardly changes. Consequently, the difference between input and 

output power makes the rotor of the generator accelerated. At the same time 

the terminal voltage of the generator decreases. By increasing the excitation, 

the decrease of the terminal voltage can be made small, the electrical power output 

increases and the acceleration of the rotor can be suppressed. If we control the 

excitation voltage by a fast acting excitation system, we can thus improve the 

transient stability. The faster the response of the ecxitation system, the more 

suppressed is the first swing of the rotor. A very fast acting excitor, however, 

makes the damping of the following swings slow and, in the worst case, makes 

the generator go out of step. This is because the terminal voltage changes later 

than the excitation voltage due to the time constant of the field circuit, and the ter

minal voltage increases even after the peak of the first swing, when the rotor de

celerates. The second and the following swings can damp rapidly by adding the 

supplementary signal (stabilizing signal) to the excitation system in order to com

pensate for the delay and strengthen the damping torque. The angular speed 

deviation of the rotor Lis, and the output power deviation of the generator LIP 

can be used as the supplementary signal. It is ascertained that both of them are 

effective for suppressing the changes of the electric power and the rotor angle, 

provided that appropriate gain and phase compensations are used,5
l•

12J 

8-2 Example and Comparison with the Optimal Control 

The excitation voltage of the previous model system is here controlled by 

the fast acting automatic voltage regulator (AVR), the block diagram of which is 

shown in Fig. 5. LIP is used as the supplementary signal. The system equations 

can be obtained by adding the following equation of AVR to eq. (3), 

Liu= -~- Kf Llet-KpKf LlP 
Tf Tf Tf 

A three phase short circuit is assumed to occur at the generator bus, to continue 

for 0.25 sec. and then to be cleared. The excitation voltage u is constrained 

between 10 p.u. and -10 p.u. as in Section 7, and the system equations are solved 

under the same initial condition as Section 6. Fig. 6 shows the change of the 

rotor angle lJ when the AVR does not have the stabilizing signal, i.e., Kp=0. 
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e,.,, T, • 0.06sec. 
Tp • 0.0sec. 
K, • 20 
Kp • 1.5 

Fig. 5. Block diagram of fast acting excitation control system with 
stabilizer. 

"O 
C 

..!:; 
VO 

-I 

0 t(sec) 

Fig. 6. System response for fast acting excitation control system 
without stabilizer. 

The system, which is unstable with a constant excitation voltage, becomes stable by 

using a fast acting excitation control system. It is shown, however, that a large 

oscillation continues. 

The changes of lJ and control u in the case of applying supplementary signals 

are shown in Fig. 7 (a) and (b), respectively. The magnitude of the first swing 

is slightly greater than Fig. 6, but the second and the following swings damp qui

ckly. The results of the feedback control obtained by approximating the optimal 

control as described in Section 7 are also shown in these figures. The weighting 
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Fig. 7. System responses for i) optimal feedback control system and 
ii) fast acting excitation control system with stabilizer. 

coefficients were chosen to be [103, 102
, 0, l] and the gains of the feedback control 

were k8=-8.9947, k8 =2.9166 and kf=-3.9996. The damping of the rotor 

angle 8 is of course a little more rapid in the case of the optimal feedback control. 

However, the difference is rather small. The changes of control u also show a 

similar tendency in the two cases. Consequently, it has become clear that a 

fast acting excitation control system is very effective for the stabilization of a power 

system. 
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9. Concluding Remarks 

In this paper, we first investigated the relationship between the weighting 

coefficients of the performance index and the corresponding optimal solutions in 

the optimal control of the excitation of a one-machine power system in response 

to a step change of the input power into the generator. The dynamic characteristic 

of the generator was represented by a 3-rd order model, and so the performance 

index includes four weighting coefficients A8, A8 , A f and Au. From the calculations 

of the optimal control for various values of weighting coefficients, the following 

results were obtained: 

I) When A8 =Af=0, the deviation of the rotor angle from its steady-state 

value becomes small, and its damping becomes rapid with the increasing value of 

Aa. 

2) When As= 102
, the oscillation of li damps quickly. 

3) When A f= 102, the same effect was seen as the case when Au is increased or 

equivalently when A8 is decreased. 

4) For this system and disturbance, the performance of the system seems 

to be best when A=[l03, 102
, 0, I]. 

When the control variable is constrained between the upper and the lower 

limits, the system performance becomes a little worse. However, the optimal 

solution has the same characteristics as the case without constraint. Moreover, 

we approximated the optimal control by feedback control, the results of which 

were quite satisfactory. 

When the disturbance is assumed to be a three phase short circuit on the 

transmission line, the optimal solution for the weighting coefficients [103, 102
, 0, I] 

also has the same feature as the case of input power disturbance where li decreases 

to the steady-state value montonously. Consequently, it can be said that the 

weighting coefficients determine the optimal performance of the system to some 

extent regardless of the kind of the disturbance. It should be noted, however, 

that the gains of the feedback control depend on the disturbance even if the wei

ghting coefficients are the same. 

Last of all, we examined the effect of a modern fast acting excitation control 

system on the improvement of the dynamic performance of the power system in 

order to compare with the optimal control of the excitation. JP, the deviation 

of the generator output power from its steady-state value, was used as the sup

plementary signal to suppress the oscillation. It was made clear from the results 

of the calculations that the change of the rotor angle in the case of using a fast 

acting excitor is considerably similar to that obtained from optimal control. There-
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fore, the fast acting excitation control system is sufficiently effective for the stabi

lization of power systems. 

General 

etJ, eq 

c/J,J, "'q 
i,J, iq 

et 

e ftl 

tftl 

cp ftl 

s 

Nomenclature 

=d- and q-axis voltages 

=d- and q-axis flux linkages 

=d- and q-axis currents 

=armature voltage 

=field voltage 

=field current 

=field flux linkage 

=synchronous speed 

=energy-conversion torque 

=power of energy conversion 

=mechanical power input 

= rotor angle (radians) 

=speed deviation, pb (rad/sec) 

=d/dt 

=a field flux linkage (see Fig. N-1) 

System parameters 

=field resistance 

=d- and q-axis magnetizing reactances 

=armature-leakage reactance 

=field-leakage reactance 

d-axls 

.----xdilf 

x11 id 
x';id 

Eq q-oxis 

<Pt=Tdo E~ 

P</>t•U-Eq 

Fig. N-1. Vector diagram of synchronous generator. 
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=d-axis synchronous reactance 

=d-axis transient reactance 

= q-axis synchronous reactance 

=inertia constant 

=damping coefficient 

=d-axis transient open-circuit time constant 

=d-axis transient short-circuit time constant 

=infinite-busbar voltage 

=transmission-line reactance 

Optimal control 

I = performance index 

H =Hamiltonian function 

Aa, As, A f, Au =weighting coefficients in performance index 

u 

PuP2,P3 
T 

Umax, Umin 

u* 

IJ;, S;, yJ fi 

lJ f• sf• "'f f 

=control variable 

=adjoint variables 

=final time 

=upper and lower limits of u 

=optimal control 

=initial steady-states of state variables 

=final steady-states of state variables 

Feedback control 

x* =optimal response of feedback variable 

=feedback gains (see eqn. (11)) 

K f• Kp, Tf, Tp =gains and time constants of A VR 

eref =excitor reference voltage 

=IJ-IJ f 

=if,f-Y'ff 

=s-sf 

=U-Uf 

=P.-P; 
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