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Abstract 

A maximum likelihood (ML) method is applied to a boiler system identifica­

tion. The mathematical model used in this paper is a discrete-time, single­

input and single-output(SISO), constant, linear system excited by an "innovation" 

process. Since the ML identification is reduced to a nonlinear optimization prob­

lem with equality constraints, the Davidon's conjugate gradient method is employed 

for numerical solutions. By using the given input/output data, the dynamics of 

the governor/steam pressure and the governor/steam temperature relations are 

identified as an SISO system, respectively. AIC and a test based on the innovation 

process are also applied for selecting an appropriate order of the assumed model. 

1. Introduction 

A design of an optimal control system requires a complete state-space descrip­

tion of system dynamics. In practice, however, this is rarely the case for complex 

systems or processes. The construction of a dynamic model based on the observable 

input/output data is referred to as a system identification. Hence, the system iden­

tification is one of the most important problems in systems and control theory. To 

identify actual processes such as a chemical plant, flying object, or economic system, 

it may be very important to make use of a priori knowledge from chemisty, physics, 

economics, and so forth. The real processes are, however, so complex that the 

present status of engineering and science may not be sufficiently able to analyze the 

real systems in detail. Therefore, in this paper we wish to identify the unknown 

system dynamics based on the observable input/output data. 
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The identification problem is mainly characterized by the class of the assumed 

model, the criterion of parameter estimation, and the class of inputs to be appliedu. 

In this paper, we consider an ML identification method21 
•

31 with its application to a 

boiler system identification. The mathematical model used here is a discrete-time, 

SISO, constant, linear 

state Kalman filter41
• 

ML method yields a 

system called the "innovation" representation, or the steady 

Assuming that the innovation process is gaussian white, the 

state-space model suitable for the application of the modern 

control theory. Since the ML identification is reduced to a nonlinear optimization 

problem with equality constraints, the standard optimization techniques can be ap­

plied for the numerical solutions. Although there are other possible identification 

methods, such as the least square (LS) method, the instrumental variable method, or 

the stochastic approximation method, it has been shown that the ML method gives 

asymptotically unbiased and consistent estimates under certain conditions on the 

input signal21 • Thus, the ML method may have advantages over other methods, 

although it is computationally rather expensive. 

The organization of this paper is as follows. In section 2, we describe the math­

ematical model used and the assumptions on the system structure. In section 3, the 

identification based on the LS method is shown briefly. Section 4 is devoted to the 

development of the ML method of system identification. Possible approaches to the 

estimation of the order of the assumed model are examined in section 5, and the 

overall algorithm of identification is summarized in section 6. Finally, in section 7 

we will show the numerical results of the identification of the once-through type 

boiler system m the Kai nan electric power plant of the Kansai Electric Company61 
• 

61
• 

2. Mathematical Model 

Consider a discrete-time, SISO, constant, linear system described by 

x(t+ 1) =Fx(t) +Gu(t) +Lw(t) 

y(t) =Hx(t) +v(t) (2.1) 

where x (t) is an n X 1 state vector at sample time t, u (t) is a scalar input to the 

system, and y (t) is a scalar output. The F is an n X n state transition matrix, G is 

an n X 1 driving matrix, H is a 1 X n observation matrix, and L is an n X 1 matrix. 

The plant and observation noises w(t) and v(t) are zero mean, white gaussian 

sequences with finite variances. 

It is well known that only the innovation representation71 of system (2. 1) is 

identifiable. In other words, the above system (2. 1) has a redundancy in the noise 

model as well as in system parameters, so that not all the parameters are identifiable. 

In order to obtain an identifiable form, we define the one-step predicted estimate 

x(t) of the state x(t) based on the observations UH={u(O), ... , u(t-1)} and Y 1- 1 = 
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{y(O), ... ,y(t-1)} as 

x(t) =E{x(t) 1u1-1, yt-1} (2. 2) 

where E{ ·I·} denotes the conditional expectation. Then, by using the theory of 

the Kalman filter8>, we have the innovation representation of (2. 1) : 

x(t+ 1) =Fx(t) + Gu(t) + Ke(t) 

y(t) =Hx(t) +e(t) (2.3) 

where e(t) is a scalar white noise called the innovat1on that denotes the one-step 

prediction error for y (t), given the data up to t- 1 : 

e(t) =y(t)-Hx(t) =y(t)-j)(tlt-1) (2. 4) 

and K is an n X 1 matrix that denotes the steady state Kalman filter gain. It should 

be noted that in (2. 3), the state vector is the one-step predicted estimate of the 

original state vector of (2. 1), and that system (2. 3) is equivalent in the sense of 

quadratic mean to system (2. 1) as far as the input/output relation is concerned. In 

what follows, we consider system (2. 3) as our model of the process to be identified. 

It is well known that an SISO system has canonical representations9>. In this 

paper we use the following observable canonical form : 

F= 0 0 ... -a.

1 

G= bn K= kn 

I 1 ; ... -an_ 1 bn-1 kn-1 
(2.5) 

0 1 -a1 b1 k1 

H=[O ... O 1] 

The pair (H, F) is necessarily observable; however, the pairs (F, G) and (F, K) 

are not always controllable. Therefore, to obtain a minimal realization that contains 

the smallest possible number of parameters, we should delete the uncontrollable part 

of the state vector x (t). There exist several algorithms for the minimal realization10 >,11). 

From (2. 3) and (2. 5), we have the following input/output relation: 

. . . 
y(t) + I; a;y(t-i) = I; b;u(t-i) +e(t) + I; c;e(t-i) (2. 6) 

i•l i•l i•l 

where c;=a;+k;(i=l, ... , n), and it is assumed that the initial conditions 

y(O), y(-1), ... , y(-n+l) (2. 7) 

u(O), u(-1), ... , u(-n+l) 

are known. Equation (2. 6) is a version of the ARMA model that is popular in the 

field of time-series analysis121 • Taking z-transform of (2. 6) yields 

(2. 8) 

where 
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A(z- 1) =1 +a1z-1+ •·· + anz-n 

B(z-1) = b1z-1+ •··+ bnz-n 

C(z-1) =l+c1z- 1 + •·•+cnz-n 

(2. 9) 

and z-m is the shift operator defined as z-"'y (t) = y (t- m). From (2. 8), we can 

readily obtain the pulse transfer function representation of (2. 6). 

In the following we assume that 

(Al) All the roots of A (z- 1
) = 0 lie in the unit circle. 

(A2) All the roots of C (z- 1
) =0 lie in the unit circle. 

Assumption (Al) implies that the homogeneous equation corresponding to (2. 6) 1s 

asymptotically stable, and (A2) implies that C (z- 1
) is invertible. We define 

a= (a1az ... an)' 

b= (b 1bz ... bn)' 

c= (C1Cz •• ,Cn) 
1 

where the prime(') denotes the transposition of a matrix or vector. 

The problem of this paper is to determine the optimal order no of the system 

and to estimate the parameters a, b and c based on the available input/output data 

UN and Y6 . The determination of the optimal order is much more difficult than 

the parameter estimation for a fixed n. We will discuss this problem in section 5. 

3. Least Square Identification 

Before considering the ML identification method, we state the LS method. The 

estimated parameter values by the LS method will be used as the initial conditions 

for a parametric optimization algorithm in the ML identification. 

In general, there exist three assumptions that may be regarded as a priori 

knowledge in the parameter estimation or system identification 11 
: 

a) p (e) : probability density function (pdf) of the noise process e (t). From this 

we have the conditional pd£ p(yjfJ) of the output y(t) when the para­

meter value is fJ. 

b) p(6): a priori pdf of the parameter fJ. 

c) l (0, 0) : loss function when we take O as an estimate of fJ, 

If all the conditions a), b) and c) are available as a priori information, we can 

apply the Bayesian approach. If only a) is available, the ML method will be suitable, 

and if no a priori knowledge is given, the LS method will be applied. 

Assuming that c= 0, we apply the LS method to the estimation of a and b. 

From (2. 6) we have 

. . 
y(t) + ~ a;y(t-i) =~ b;u(t-i) +e(t) 

i-1 i-1 
(3. 1) 
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where t=-n+l, ... ,-1, 0, ... , N. For simplicity, we define 

y= [y(l)y(2)·••y(N)J ' 

e= [e(l)e(2) ···e(N)] ' 

A=[y(O) y(-1) ·••y(-n+l) u(O) 

y(l) y(O) ... y(-n+2) u(l) 

y\N-l) y\N-2) .. ,y\N-n) ~(N-1) 

Then (3. 1) becomes 

y=Aa+e 

u(-1) 

u(O) 

.. ,u(-n+l) 

.. ,u(-n+2) 

u(N-2), .. u(N-n) 

(3. 2) 

l 

Assuming that the noise term e is independent of the coefficients matrix, the LS 

estimate d of a is given by 

d= [A'A] -1A'y (3. 3) 

where it is assumed that A' A is nonsingular. Actually, in (3. 1) the serially corre-
• 

lated noise {e(t) + I: c;e(t- i), t = l, ... , N} was replaced by an uncorrelated noise 
l•I 

e(t), so that the LS estimate d will be biased. However, the LS estimation method 

requires fewer assumptions compared with other estimation methods, and also 

requires less computer time. Moreover, the LS method sometimes gives reasonable 

results from a practical point of view. 

4. Maximum Likelihood Identification 

4. 1 Maximum likelihood method 

Given the conditional pdf p (y I 8) of the outputs y (t) relative to O, we define the 

likelihood function of 8 as 

L(8) = p(y I 8) (4. 1) 

For a given sample value of y, L(O) is merely a function of the parameter. An ML 

estimate is the value of 0, which will be denoted by Dxx, that maximizes L(O). In 

other words, the ML estimate Dxx is determined so that the sample value of Y is 

most likely. 

It is well known that the MLE Dxx has some important statistical properties21
•

221
• 

a) Asymptotic normality, that is, the convergence of ✓N (O~L-8) in distribution to 

a random vector where O~i is the MLE of 8 from N observations. 

b) Asymptotic efficiency, that is, the covariance matrix of IJlfcx-8 attains the 

Cramer-Rao lower bound for N➔00 • 
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c) Consistency, that is, 8lfcL converges in probability to O for N➔00 , 

In the following, 0 denotes the aggregation of the unknown parameters a, b and 

c. In (2. 6), assume that {e(t), t=l, ... , N} are gaussian white noises with a mean 

zero and variance a 2• Then the conditional pdf of YN given UN- 1
, 0, a 2 and the 

initial conditions can be written as 

N 

p(YNIUN-1,0,aZ, ICs)= ITp(y(t)lu(i), y(i), i<t-1, 0, a 2
) ,-1 

= II 1 - exp {- 212 e2(t)} 
,-1 ,/2na2 a 

(4. 2) 

where ICs denotes the initial conditions (2. 7), and e(t) is defined by (2. 4). Thus 

the conditional log-likelihood function becomes 

LN(O, u2)=1ogp(YNIUN- 1, 0, o-2, ICs) 
N 1 N 

= --
2 

log (2na2) - -
2 2 I; e2(t) 

O' ,-1 (4.3) 

Since the logarithm is monotone increasing, the MLE's 8 and o-2 maximize (4. 3). 

Differentiating (4. 3) with respect to a 2 and setting the resulting equation at zero, 

we have 

(4. 4) 

Substituting (4. 4) into (4. 3) yields 

-LN(O, 8 2)=1 (l+log (2n))+1 log82 (4.5) 

Therefore, the MLE of O can be obtained by minimizing 

(4. 6) 

subject to equality constraints (2. 6). Hence, the ML identification is reduced to a 

parametric optimization problem with equality constraints that minimize the sample 

variance of the innovation process. This result appeals to our physical intuition, 

although the entire development is dependent on the assumption that the innovation 

is a gaussian white noise. 

4. 2 Optimization method 

In this section, we derive the algorithm to obtain the minimum point of L'J,(O) 

subject to equality constraints (2. 6). It should be noted that, since e (t), defined by 

(2. 6), is linear with respect to a and b, L'J,(0) is quadratic in a and b, but highly 

nonlinear in c. Thus, we use the Davidon's method 13>, 14> for numerical solutions. 

Application of the Newton's method is rather difficult, because it requires the com-
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putation of the Hessian matrix2>. 

First, we compute the gradients of L}(O) under constraints (2. 6). The follow­

ing method is based on the use of adjoint variables3>. Define the Hamiltonian 

1 N 1 N • 

H(e, A, 0)= N"'f/Ct)+ Nf
1
W)[e(t)+~/;e(t-i) 

. . 
+ I; b;u(t-i)-y(t)-I; a;y(t-i)] (4. 7) 
i•l i•l 

where V (t), t = 1, ... , N} are adjoint variables. The difference equations satisfied by 

the adjoint variables are obtained from 

a ae(t)H(e, l, 8) =0, (t=l, ... ,N) (4. 8) 

so that we have . 
J(t) + I; c;,!(t+ i) + 2e(t) =0 (4. 9) 

i=l 

with the terminal conditions 

W)=O, t=N+l, ... , N+n ( 4. 10) 

Then the constrained partial derivatives can be obtained as 

(4. 11) 

where i=l, ... , n. 

Therefore, the procedure of computing the gradients are summarized as follows. 

(1) Assuming values of the parameters 0, compute {e(t), t= 1, ... , N} according 

to the relation : . . . 
e(t) + I; c;e(t- i) =y(t) + I; a;y(t-i) - I; b;u(t- i) 

i-1 i-1 i=l 

where the initial conditions for e(t) are given by 

e(t) =y(t), t=0, -1, ... , -n+ 1 

(4. 12) 

(2) Integrate (4. 9) backward using the terminal conditions (4. 10) to obtain the 

adjoint variables {,<(t), t=l, ... ,N}. 

(3) Compute the gradients by (4. 11). 

It should be noted that assumption (A2) ensures the stability of the integrations 

m steps (1) and (2). 

Now we are in position to describe the Davidon's algorithm13>,w. Define a 
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3nX1 vector 

aL: (fJ) I 
g,= afJ \fJ=O, 

where the subscript l.J denotes the number of iterations. Then the algorithm can be 

summarized as follows, 

Step 1: Set 81 =[ ~ ] and d1 = -g,. 

Step 2: For 1.J= 1, 2, ... , find the values ).=)., such that <p,(}.) =L! (8,+ ).d,) is 

minimized. 

Step 3: Define 0,+1=8,+).,d and P,=g,+1-g, 

Step 4: Compute the 3n X3n matrix 

H,_ 1p,p:H:_, 
.Kfl,_,p, .. 

with H 0=13n, and set d,+1= -H,g,. 

Step 5: Repeat Steps 2-4 un ti! an appropriate convergence condition will be 

satisfied. 

It should be noted that the determination of )., in Step 2 is performed by using 

linear search techniques such as the golden section method, the Fibonaccian method, 

or the polynomial interpolation method. Here, we applied a quadratic interpolation 

method, which is computationally feasible. In fact, let <fa,(}.) be a function to be 

minimized, and find those three points a<b<c which yield <p,(a)><fi,(b)<<fi,(c) by 

a linear search. Then approximate <p, ().) by the quadratic polynomial passing three 

points: (a, <p,(a)), (b, <p,(b)) and (c, rp,(c)). Finally, we take )., as 

(b2-c2)<fi,(a) + (c 2-a2)<fi,(b) + (a2-b2)<fi,Cc) 
).,= (b-c) <fi,(a) + (c- a)<fi, (b) + (a- b) ¢:(cf- - (4. 13) 

5. Determination of Order of Assumed Model 

The problem of determining the system order has received much attention in 

recent years. For deterministic systems, the order determination problem has already 

been solved as the minimal realization algorithm 10 >, 1u. But for stochastic systems, 

the problem remains to be resolved and requires extensive studies and numerical 

evidence. 

Until now, several methods for determining the order of stochastic systems have 

been proposed (see references 15), 16), 17)). The algorithms in these papers have shown 

good results for computer simulation studies. However, for real processes such as 

power plants, chemical processes, or socio-economic systems, these algorithms do not 

necessarily give us reasonable results, because the real systems are subject to various 

nuisances and external disturbances. In other words, it is very difficult to uniquely 
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determine the system order from available input/output data, because the real data 

will be contaminated by measurement noises and external disturbances. Thus, when 

applied to actual data, all the methods to date may require, at least partly, trial and 

error coupled with a decision by a human being. Therefore, a possible and practical 

approach to a statistical identification with order determination will be the following. 

(1) Assuming the order of the assumed model, identify the unknown parameters, and 

(2) evaluate an appropriate error measure and compute the impulse and step re­

sponses. (3) Comparing the results for n=l, ... , nL, we take such n 0 as a possible 

order of the assumed model that yields the least value of error measure. If there is 

a priori information about the structure of the system, it should be also taken into 

account. 

In this paper, we use the following methods. 

(1) AIC criterion19 >, 19 > 

The idea that the optimal order of the assumed model is a parameter to 

be determined was introduced by Akaike who proposed an information theoretic 

criterion18 >, 19 >_ For any maximum likelihood situation, AJC(k) is defined as 

AIC(k) = -2log(maximum likelihood)+ 2k (5. 1) 

where k is the number of arbitrarily adjustable parameters contained in the assumed 

model. The order selected is the value of k for which AJC (k) is minimized. Some 

good results brought about by the use of AIC are presented for both artificial and 

real data19>. 

(2) Intuitive and experimental methods 

(a) polynomial test 

This testing method is mainly used for examining whether the polynomials 

A (z-1), B (z- 1) and C (z- 1) defined by (2. 9) have common roots or not. It is well 

known that a necessary and sufficient condition for (F, G) to be controllable is that 

A(z-1) and B(z- 1) have no common zeros, and that the identifiable transfer function 

represents only a controllable and observable part of the system. Therefore, if the 

order of the assumed model is too high, there will be an uncontrollable part in the 

state vector x(t) so that A(z-1) and B(z-1) will have common zeros. Eliminating the 

common zeros, we have a lower order model. It is reported that this method has 

shown good results for computer simulation studies20
> • 

2u. 

(b) test for independence of e(t) 

This method is to test the assumption that the innovation process {e(t), t=l, ... , 

N} is a white gaussian noise. The autocorrelation of the innovation process 

(5. 2) 
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must be zero for -r ci=0, if the assumed model is true. Actually, if e(t) is a gaussian 

white noise, then pee(-r) is asymptotically a normal distribution with a mean zero and 

variance l/Nzzi_ Thus, by computing (5. 2), we can apply a statistical test to evalu­

ate the accuracy of the assumed model. 

· (c) data checking 

A simple but effective method for testing the structure of a model is to use a 

part of the given data as checking data. First we divide the given data into two 

parts, D1 and Dz, where D1 is the training data, and D 2 is the checking data. Then, 

the model is identified by D1 and checked by Dz. In general, as the order of model 

n increases, the variance a; defined by (4. 4) for training data D 1 decreases. 

However, the variance of the prediction error y (.t) - j (t I t-1) for checking data D 2 

decreases first and then increases when n increases. The probable order of the 

model is the value of n, for which the variance of the prediction error for D2 is 

minimized. In a sense, AIC (k) is a theoretical estimate of the logarithm of the 

variance of the prediction error for checking data D 2• 

6. Overall Identification Algorithm 

We summarize the overall algorithm for the ML identification method. 

Step 1: Normalize the given data and compute the correlation functions of the 

input and output. 

Step 2: Divide the data into D 1 ={u(t);y(t),t=1, ... , N 1} and D 2 =c:{u(t),y(t); t= 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

N1+l, ... ,N}. 

Set n=l, and then go to Step 4. 

Let c=O, and find the LSE's a and b by using the method in section 3. 

Based on Davidon's algorithm in section 4. 2, find the MLE's I} and a;. 
Using the MLE I} obtained in Step 5, compute a step response from (2. 

6) and the zeros of A (z- 1) and B (z- 1). 

Compute AIC(3n) by 

AIC(3n)=N1 log (a;)+2(3n), dim(O)=3n (6. 1) 

where N1 is the number of data in D 1 • It may be noted that under the 

gaussian assumption, (5. 1) is equivalent to (6. 1) up to constant. 

Step 8: By using (4. 12), compute the prediction error and its variance for 

checking data Dz. 

Step 9: If n<nL, set n➔n +I, and go to Step 4; if n = nL, go to the next step. 

Step 10 : Based on the methods in section 5, we estimate the optimal order of the 

assumed model. 
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7. Identification of Boiler System 

In this section, we show some numerical results of an identification of a once­

through type boiler system at the Kainan thermoelectric power plant of the Kansai 

Electric Companys>,a>. A block diagram of the boiler system is depicted in Fig. 1, 

where the rated steam generation is 1380 t/hr. The steam pressure is rated at 255 

kg/cm2 and the steam temperature at 568 °C. The steam is supplied to a turbin 

generator, rated at 450 Mw of electricity. The amount of the steam flow is controlled 

by a governor valve, and the quality of the steam is mainly characterized by the 

steam pressure and temperature. For a large scale thermoelectric power plant like 

this, the deviations of the steam pressure and temperature should be less than one to 

two percent of the desired values. To meet the stringent requirements under various 

load variations and disturbances, a design of the control system with a desired 

performance is needed, based on the modern control theory. Therefore, the identifi­

cation of the boiler system is very important for obtaining a state-space model of the 

system on which the modern control theory is based. Here, the object to be identi­

fied is the whole boiler system rather than the boiler itself, because analog type 

controllers have already been supplied. 

FUEL 

WATER 

r-------1 AUTOMATIC 
BOILER 
CONTROL 
.SYSTEM 

ONCE­
THROJ 

TYPE 
.----~ BOILER 

STEAM TEMPERATURE 
STEAM PRESSURE 
STEAM FLOW 

GOVERNOR 
VALVE 

STEAM 
TURBIN 

AUTOMATIC 
FREQUENCY 
CONTROL 
SYSTEM 

GENERATED 
ELECTRICITY 

POWER 
SYSTEM 

Fig. 1 Block diagram of once-through type boiler system 

A part of the logging data of the governor valve position, the steam pressure 

and the steam temperature is shown in Fig. 2. These data were obtained by 

intentionally changing the valve position under the normal operating condition, so 

that the input is the governor valve position and the outputs are the steam pressure 

and temperature. The total number of the sampling is 1410 and the sampling inter­

val is 5 sec. The normalized correlation functions of the input/output data are shown 

in Fig, 3, where u (t) is the relative position of the governor valve, and y 1 (t) and 
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=j 246 
244 : 770 

760 

STEAM TEMPERATURE (°C) 
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2

) 
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Fig. 2 Input and output data 

JJu=767. 78 a2u=l.434xl<Y 

JJy
1
=247.10 o\=1.5131 

J.Jy
2
=534.47 ok 1.4225 

Fig. 3 Normalized correlation functions of input and output data 
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Yz (t) denote the steam pressure and temperature, respectively. From Figs. 2 and 3, 

we see that inverse reaction processes exist between input u (t) and outputs Yi (t) 

and y 2 (t), respectively. By opening the valve, the steam pressure goes down, so that 

a drop of the steam temperature follows, due to the adiabatic expansion. Then the 

feedback loops work so that both fuel and water are supplied. Hence, the pressure 

and, then, the temperature will increase again. But the response of the pressure is 

faster and simpler than that of the temperature. Here, we wish to identify these 

mechanisms by using the given input/output data. The identification was carried 

out by using the first 1000 data, and the remainder was used for the data checking 

or prediction. We will show the results for the governor/ pressure relation in section 

7. 1, and the governor/ temperature relation in section 7. 2. 

7.1 Governor/steam pressure 

The numerical results are shown m Table 1 and m Fig. 4, where 11! denotes 

the minimum value of the variance of the innovation process (or residual) defined 

by (4. 6). We observe that a! does not indicate a significant decrease as n in-

x162 
6.5 X 

6.0 

~c '5.5 

5.0 

0 1---'-__j__J....__L___j__J....__.__~-~~ 

2 4 6 8 10 
DIMENSION n 

-2.84 

-2.86 

-2.88 

-2.90 

-2.92 
AIC(3n) 

-2.94 

Fig. 4 Numerical result for the steam pressure: 
Variance of innovation and AIC vs. n 
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Table 1 Numerical results for the steam pressure 

I 

LS ML 
n ·-· ---- ----------· ·---·-

A2 I FPE •2 

I 
AIC <In <In 

! 
-· -----

1 6. 44623 X 10-2 6. 47209X 10-2 5. 80444 X 10-2 -2. 84054 
2 5.33308 5.37600 5.29345 
3 5.31096 5.37517 5.25217 
4 5.24415 5.32907* 5.23922 
5 5.23406 I 5.34033 5.20326 
6 5.21605 5.34352 5. 19629 
7 5.21048 5.35950 5.20195 
8 5.21306 5.38396 5.20566 
9 5.20412 5.39665 5. 15~07* 

10 5. 17329* 5.38660 5. 16004 

Identification period: t=l to 1000. 
Prediction period : t = 1001 to 1410. 
* denotes the minimum values for n<l0. 
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Fig. 5 Autocorrelation functions of e(t) for the steam pressure 

creases. The AIC and FPE criteria are also computed 191
, and the respective minima 

are obtained for n=3 and n=4 as indicated by the asterisk in Table 1. The normal­

ized autocorrelation functions of the innovation process are depicted in Fig. 5. 

Numerical studies show that the "whiteness" is improved for the larger value of n, 
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Fig. 6 Step responses of the steam pressure 
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and that for n~3 the autocorrelation functions are within the 95% confidence inter­

vals. Thus, the innovation processes are practically whitened for n > 3. Fig. 6 shows 

the step responses computed from the MLE's of the system parameters. The step 

responses for n=4 to 10 are all between the curves for n=5 and n=9. The inverse 

reaction process is clearly identified for n>2. The models thus obtained are applied 

to the one-step ahead p·rediction of the steam pressure for t = 1001 to 1410. The 

result is shown in Table 1, where the best MSE performance was obtained for n=6. 

Based on the above numerical studies, we conclude that low order models with n=2 

or 3 will be sufficient for the description of the governor /pressure relation. Table 2 

shows the estimated values of the parameters and zeros of A (z- 1), B (z-1) and C (z-1) 

for n=2 and 3. 

Table 2 Result of parameter identification for the steam pressure for n=2 and 3 

n 

2 

31 
i 

a 

a1= -1. 266 

a 2= 0. 275 

a1= -1. 096 

a2 = 0. 0109 

a3= 0. 108 

B(z- 1) 

---i---- ------
' zeros b 

0.975 b, = -0. 0396 

0. 282 b, = 0. 0423 

0. 969 I b, = -0. 043 

0. 4041 b2= 0. 048 

-0. 277 I __ b3= o. 002 

C zeros 

c,= -0. 215 0.281 

Cz=-0.184 -0. 658 

1.07 c, = -0. 0887 -0. 469 

0.044 Cz= -0. 0888 0.278 

C3= 0.0808 ±0. 308j 
-- - --- -------
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7. 2 Governor/steam temperature 

Since, as is seen from the correlation functions in Fig. 3, the governor/ steam 

temperature relation is very complex, the identification of the dynamics of the steam 

temperature is much more difficult. The results of the identification are shown in 

Table 3 and in Fig. 7. We observe that both the minima of AIC and the MSE 

performance of prediction are attained at n= 11, where nL= 12. The normalized 

autocorrelation functions of the innovation process are depicted in Fig. 8. The 

numerical results show that for n>8, the normalized autocorrelation functions are 

within the 95% confidence intervals and that for n>4, the violations of the 95% 

confidence intervals are less than 10%. Therefore, the innovation processes are prac­

tically whitened for n=4. The step responses computed from the MLE's are shown 

in Fig. 9. We observe that the pattern of the step responses drastically changes 

between n=9 and 10, although all the MSE performances of identification do not 

change significantly for n<:12. For n>IO, the step responses do not come back to 

the zero level. However, the step responses obtained for n>IO correspond, rather 

well to the results given by Suzuki51 ' 61 , who estimated the impulse and step responses 

directly from the given data by using the LS method. Incidentally, AIC and the 

MSE performance of prediction support the choice n = 11 as the optimal order of the 

model. We also made other numerical studies by dividing the given data into two 

parts: D 1={u(2t-l), y(2t-1); t=l, ... , 705} and D 2 ={u(2t), y(2t); t=l, ... , 705}. 

Table 3 Numerical results for the steam temperature 
--·--··---~--- ·- ~----------- -

LS ML 
n -------- PREDICTION 

'2 FPE ,2 AIC <ln <Jn 
---- ----------------------------

1 2. 73635 X 10-2 2. 74733X 10-2 2. 73177X 10-2 -3. 59421 2. 59302 X 10-2 

2 2,68722 2. 70885 2,53516 -3. 66289 2.35316 
3 2,59455 2.62597 2,22038 -3. 78944 2.04682 
4 2,40103 2,43992 2. 15131 -3. 81500 2,07865 
5 2.25369 2.29945 2. 15167 -3. 80878 2.06956 
6 2. 19478 2,24942 2. 12956 -3. 81304 2,06747 
7 2. 15181 2.21335 2. 12634 -3. 80847 2,07415 
8 2. 13208 2.20198 2. 10152 -3. 81412 2.07142 
9 2. 12901 2,20777 2,09801 -3. 80969 2,05617 

10 2. 10076 2,18738 2,05685 -3. 82339 2.04407 
11 2.09099 2. 18612 2,04032* -3. 82533* 2,01844* 

I 
12 2,08018* 2.18374* 2,04204 -3. 81835 2.02977 

--~--

Identification period: t=l to 1000. 
Prediction period: t=l00l to 1410. 
* denotes the minimum values for n<)2. 
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For Case 1, D1 is used for training and D2 for checking. For Case 2, it is vice 

versa. The results again suggest that the optimal choice of the order is n = 10 or 11. 

Indeed, AIC(3n) was minimized at n=ll for Case 1 and at n=8 for Case 2, respec­

tively. The MSE performance of checking data was minimized at n = 10 for both 

cases. Hence, we may conclude that the higher order models with n = 10 or 11 are 

superior to the low order models. Besides, the choice of the higher order model 

agrees with the results by Suzuki.51 • 61 But it should be noted that the accuracy of 

the individual 'parameters will be reduced as n increases, because the amount of 

available data is limited. In other words, the larger the n we assume, the greater is 

the amount of data required to estimate the parameters in the same accuracy. 

Therefore, the simpler models with n=3 or 4 might be better for deriving the state­

space representation, which will be used for the design of optimal controls. 

8. Conclusions 

We have applied the ML method to a boiler system identification. For the 

governor/steam pressure relation, the identification has been made very successfully. 

Numerical results show that low order models with n=2 or 3 will be enough for use 

as the prediction and control. For the governor/steam temperature relation, however, 

the order of the fitted model is very high compared with that of the model for the 

pressure. This is due to the fact that the dynamics of the governor/ steam tempera­

ture relation is quite complex. Further studies will be needed for deriving a simpli­

fied state-space representation on which the design of optimal control is based. 

All the numerical computations were carried out by using FACOM 230-75 at the 

Data Processing Center of Kyoto University, Kyoto. 

Authors would like to express their thanks to Prof. Y. Suzuki, The University 

of Osaka, for providing us the data used in this paper, 
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