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This paper deals with the stability of the D. C. arc welding system in which the electrode 
wire is fed with a constant speed. The system under consideration is described by nonlinear 
differential equations. The solutions of the equations are studied for various values of 
system parameters. The stability of solutions is investigated by considering the behavior 
of small variations from the steady solutions. From the analytical results, it may be inferred 
that the arc length is readily held almost constant by making use of a constant voltage power 
source, even if the feeding speed varies. It is useful, to some extent, to utilize the phase 
-plane analysis in investigating the transient states of arc. The methods of analysis 

presented in this paper may also be applicable to other welding systems which are described 
by differential equations of a like form. 

1. Introduction 
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The problem of stability in the arc discharge is important in arc welding systems. 

It should first be noticed that the problems discussed in this paper are concerned with the 

welding arc in a constant feeding speed system. In arc welding, the melting speed of the 

electrode wire increases or decreases as the arc length decreases or increases. Thus, the 

welding arc has a self-regulating action by which the arc tends to keep its length constant 

in itself. Several papers have been published concerning experimental results in arc 

welding systems 1>~ 5>_ However, very few theoretical investigations have been reported 

on the self-regulating characteristic of the welding arc. 

The circuit equations take the form of simultaneous nonlinear differential equations. 

We find the steady solutions of the equations and consider the stability of the equi­

librium state of the system. It may be discussed by solving the variational equations 

which have small deviations from the equilibrium state. 

The transient states of the welding arc are treated, and then the phase-plane analysis 

is utilized for this purpose. The integral curves of the autonomous equations are studied 
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with the basic idea that singular points are correlated with steady states, and integral 

curves are correlated with transient states. Then, typical examples of a phase-plane 

diagram are illustrated and the illustrations provide a general view of arc discharges in 

both transient and steady state conditions. In this way, the relationship between 

initial conditions and resulting steady states is discussed. 

2. Fundamental Equations 

The fundamental connection diagram in Fig. 1 shows an arc welding system in 

which the electrode wire is fed with a constant speed v0 • In the figure, one of rollers is 

revolved by a motor, and another roller revolves freely. "L" is the internal inductance 

of the welder having the no-load voltage "E", and also "R" is a resistance inserted in 

series to the arc. The arc voltage being "V" in the case of the arc current "z"'', the 

following equation is established. 

'!ft = _i: (E-Ri-V)=X(l, i) (1) 

Since the melting speed of the electrode wire is proportional to the arc current when the 

arc current is not very large, we have the following equation with regard to the arc length: 

t1ft =ai-vo= Y(l, i), (2) 

where a is a proportionality coefficient. It is noted that the effect of the welding speed is 

neglected in Eqs. (1) and (2). 

The voltage-ampere characteristic of the welding arc may be approximated by the 

form; 

where a, b, ... ,fare constants* characterizing the welding arc. The characteristic ofEq. 

l 
- Electrode wire 

Roller 

R L 

Fig. 1. Welding system in which the electrode wire is fed with constant speed. 



Stability of D. C. Arc Welding System 217 

(3) shows a fairly good approximation to the arc in steady states<6>. As long as we deal 

with cases where the arc current and the arc length vary slowly, Eq. (3) may be considered 

to be legitimate 5>. 

Equations (1) and (2) play a significant role in our investigation, since they serve as 

the fundamental equations in studying the transient state as well as the steady state of 

welding arc. 

3. Steady Solutions and Their Stability 

We consider the steady state in which the current i(t) and the arc length l(t) are 

constant, that is, 

(4) 

By substituting these conditions into Eqs. (1) and (2), the steady current io and length lo 

of the arc are obtained. 

and 

. Vo to=--­
a 

lo= E-b-(R+d)i()~f/(o 
a+cio+e/io 

(5) 

The equilibrium states determined by Eqs. (5) are not always realized, but are actu­

aly able to exist only so long as those are stable. We investigate the stability of the equi­

librium states and find the solutions which are sustained in the stable state. For this end, 

we consider the small variations g and 'T/ respectively from the steady state values io and 

lo, and observe whether these variations approach zero or not, with an increase of the time 

t. From Eqs. (1), (2) and (3), we obtain 

Coefficients a1, etc. in Eqs. (6) are as follows: 

a1=[ 0;-]
0 
= i {(elo+f)/io 2-(clo+d-+R)), 

a2 =[ 0ff ]
0 
= - _i (a+cio+e/io), 

b1=[~fl=a, 
* These coefficients should be determined by experiments. 

(6) 

(6a) 
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J 
where (oX/oi)o, ... and (o Y/ol)o denote the values of oX/oi, ... and a Y/ol at i=io and 

l=lo respectively. The characteristic equation of the system defined by Eqs. (1), (2) 

and (3) is given by 

(7) 

The variations g and 71 approach zero with the time t, provided that the real part of 

,\ is negative. In this case, the corresponding steady solution is stable. The conditions 

of stability are given by the Routh-Hurwitz criterion, that is, 

Substituting Eqs. (6a) into (8), 

a(a+cio+e/io)>O 

and 

clo+d-(elo+J)/io2>-R l 

(8) 

(9) 

result, We shall consider what these conditions mean physically. From Eq. (3), we 

obtain 

and l 
Therefore, the conditions of stability (9) may be written as 

a[~VJ >0 ol o 

and 

[of:] >-R oz 0 l (11) 

Evidently, the first condition is fulfilled from the fact that the arc voltage becomes higher 

as the arc length increases. Fig. 2 shows the characteristic curve of Eq. (3), i.e., the 

relationship between i and Vin the case where the current i varies while the arc length l 

is held constant. Also, the dashed line in the figure shows the line obtained from 

(12) 
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l 

0 

Fig. 2. Arc characteristic curves and a welder characteristic line. 

The intersection S(z·1, Vi) of the line of Eq. (12) with the curve of Eq. (3) represents an 

equilibrium state, since the point S satisfies Eqs. ( 4). The condition of Eq. (11) shows 

that the equilibrium state is stable under such conditions that the slope of the arc char­

acteristic curve of Eq. (3) is larger than that of the line of Eq. (12) at the intersection. 

We consider the stability of the equilibrium state in the intersection S. In this case, 

suppose that the arc length decreases from li to /2. Then, the arc length tends to in­

crease spontaneously, since the melting speed of the electrode wire becomes larger as the 

arc current increases. Hence, the corresponding equilibrium state is stable. It is decid­

ed in the same manner as above that the equilibrium state represented by the intersec­

tion U is unstable. 

In the next step, we carry out a numerical analysis of the system Eqs. (1) and (2) for 

the parameters* as given by the following table: 

Table 1. System parameters in Eqs. (1), (2) and (3) 

I L 0.02 H 
I 

E 80.0 V 0.05 mm/A·sec I a 

I 

3.25 V/mm ' b 17.0 V 0.40 V/m·A a I C 
I 

d 0.0035 V/A 
i 

e 30.0 V·A/mm f 10.0 V·A 
-- -~-~--

The current and arc length are calculated from Eqs. (1), (2) and (3); and the iso­

length curves are plotted on the vo-R plane in Fig. 3. The stable region is hatched in 

Fig. 3. In the case where a value of R is small, the arc length is held almost constant 

even if the feeding speed vo changes. 

* The characteristic coefficients of arc a, b, ... , fare obtained by the experimental results in Ref. (5). 
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Fig. 3. !so-length curves and region in which the welding arc is sustained 
in the stable state. 

4. Analysis of The Welding Arc by Means of Integral Curves 

In the preceding section, we have concentrated our attention on steady solutions and 

discussed their stability. We shall next investigate the transient state concerned with 

the arc until it gets to the steady state. Then the relationship between the initial con­

ditions and the resulting steady states will become clear. To study the solution of Eqs. 

(1), (2) and (3), it is useful to investigate, with reference to the theories of Poincare7> and 

Hayashi8>, the integral curves of the following equation derived from Eqs. (1) and (2), 

that is, 

di X(l, i) 
----;u=·Y(l, 7)' (13) 

Since the time t does not appear explicitly in this equation, we can draw the integral 

curves on the l-i plane with the aid of isocline. A digital computer may be used for nu­

merical integration. Once the integral curves of Eq. (13) are obtained on the phase­

plane, it is not difficult to find the solutions l(t) and i(t) of Eqs. (1) and (2). Thus, the 

behavior of the system may be described by the movement of the representative point 
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(l(t), z"(t)) along the integral curves of Eq. (13). The point (lo, z"o) at which X(lo, z"o) = 
Y(lo, z"o)=O is called a singular point. Physically, a singular point represents an equi­

librium point, since both l(t) and z"(t) are constant under such a condition. We discuss 

the types of singular points of Eq. (13) which are correlated with the steady solutions of 

Eqs. (1) and (2). These singularities are classified according to the natures of the roots 

of the characteristic equation (7). 

We infer a singularity to be stable or unstable according as a representative point on 

any integral curve moves toward the singular point or not, with increasing t, that is, 

according as the real part of,\ is negative or positive. 

The numerical analysis used for the above is as follows. Let us consider an example 

in which the system parameters are given by Table 1. The current z"o and arc length lo 

are first calculated from Eqs. (5) for the various values of vo and R. We now distinguish 

these equilibrium states according to the types of singularity. By varying the values of 

vo and R, we can determine the regions for the different types of singularity. The ana­

lytical results are shown in Fig. 4. 

l 
Q:: 

0 2 4 6 8 10 
mm/sec 

2'o 

~: Stable focus E]· . Unstable focus 

~: Stable node [fil]. . Unstable node 

Fig. 4. Singularities which correlate with the steady solutions. 
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5. Phase-plane Analysis of The Weldin~ Arc 

In the preceding section, we have briefly referred to the transient solutions which are 

correlated with the integral curves of Eq. (13). It is useful to consider the integral curves 

for certain typical cases. The special cases considered are those stemming from use of 

the following values of vo and R in Eqs. (1) and (2), namely, 

and 

Case 1: vo=l.0 mm/sec, R=l.1 fJ 

Case 2: vo=0.5 mm/sec, R=l.1 fJ 

Case 3: vo=3.0 mm/sec, R=0.2 Q 

Case 4: vo=2.0 mm/sec, R=O 2 fJ. 

These parameters are located at the points A, B, C and Din Fig. 4, respectively. The 

integral curves for these cases are, respectively, shown in Figs. 5a--.,5d. The singularities 

are determined by Eqs. (5); the corresponding details are listed in Table 2. 

Table 2. Singular points in Fig. 5. 

Sing~lar 1, [mm] I 
pomt 0 z"o [A] 

I 
A1, A2 

I 
Classification 

a 8.50 20 -0. 548, -21.68 Stable node 

b 8.15 10 0.218, 71.68 Unstable node 

C 13.4 60 -2. 357±1. 969 £ Stable focus I 
d 13.6 ! 40 1.307±2.887£ Unstable focus 

I ! I 

The integral curves in Fig. 5 are drawn with aid of the isoclines represented by dotted 

lines, the numbers on which indicate the values of di/dl for the respective isoclines. As 

seen from Eqs. (1) and (2), a representative point (l(t), i(t)) moves, with the increase of 

time t, to the direction of the arrows along the integral curve. The singularities in Figs. 

5a and 5c are stable, and the corresponding equilibrium states are realized. From the 

integral curves of Figs. 5a and 5c, the relationship between the initial conditions and the 

resulting phenomena is apparent: an arc discharge started with any initial conditions in 

the shaded region tends to the singularity, resulting in the stable welding arc, whereas an 

arc discharge started from the unshaded region tends to the axis of abscissa on which the 

current becomes zero, resulting in no arc discharge. 

The current and the length of an arc disch~rge in the neighborhood of the stable 

state approach, with the increase of time, the final state of damped sinusoids when the 

corresponding singularity is a stable focus, whereas they approach the final state with 

damped exponentials when the singularity is a stable node. 

In Figs. 5b and 5d, we have an unstable node and an unstable focus, respectively. 

The corresponding equilibrium state cannot be sustained, since a representative point 
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Fig. 5. Integral curves of Eqs. (1) and (2) in the l-z' plane. 

moves away from the singularity with the increase of time. Therefore, we have no weld­

ing arc for any of the initial conditions prescribed. 

6. Concludin~ Remarks 

The essential aspect of the welding system has been described in this paper. The 

subject of investigation is limited to the field of a constant feeding speed system. The 

differential equations which govern the system take the form of simultaneous nonlinear 
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differential equations. The phase-plane analysis has been used for the investigation on 

the stability of the welding arc. The solutions in the steady state, which are correlated 

with singular points on the phase-plane, have been first sought for the various com­

binations of system parameters. The stability of solutions has been investigated accord­

ing to Routh-Hurwitz criterion. It is preferable to use the power supply of constant 

voltage rather than that of drooping characteristic in order to keep the arc length con­

stant, 

Particular attention has been directed to the relationship between the initial con­

ditions and the resulting arc responses, and examples illustrating this relationship have 

been given. The welding arc is sustained only when the initial condition is properly 

chosen. 

Acknowledgment 

The authors would like to acknowledge the helpful discussions with Mr. Tahara of 

Nippon Singo Company. All numerical computations were made by KDC II at the 

Kyoto University Computation Center. 

References 

1) I. Ukita and S. Nobuhara: 'Study on Phenomena oflnert Gas Metal Arc Welding by High Speed 
Motion Pictures (Report 4)', Journal of Japan Welding Society, Vol. 29, pp. 599 (1960). 

2) R. A. Wilson: 'A Selection Guide for Methods of Submerged Arc Welding', J. A. W. S., Vol. 
35, pp. 549 (1956). 

3) A. Muller, W. J. Greene and G. R. Rothschild: 'Characteristics of Inert-Gas-Shielded Metal-
Arcs', W. J. Vol. 30, pp. 717 (1951). 

4) K. Meller: 'Beitrag zur Beurteilung von Schweisselektroden', Elektroschwg., 5, S. 61 (1934). 
5) K. Andoh and M. Hasegawa: 'Welding Arc Phenomena', Sanhoh Co., Ltd., Tokyo, Japan, 1967. 
6) J. D. Cobine: 'Gaseous Conductors', McGraw Hill Book Company, New York, 1941. 
7) H. Poincare: Sur !es courbes definies par une equation differentielle', J. Math., Vol. 4-1, pp. 167 

(1885). 
8) C. Hayashi: 'Nonlinear Oscillations in Physical Systems', McGraw Hill Book Company, New 

York, 1964. 


