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Abstract 

The behavior of isotropic elastic materials in a space of any dimension is investi
gated. The linear approximations of the constitutive equation with respect to the strain 
and to the principal stretches are presented, and the Hookean solid is defined. In the 
case of space having more than one dimension, the material has two elastic constants. 
In one-dimensional space the material has an elastic constant. Young's modulus, Poisson's 
ratio and the bulk modulus of the Hookean solid depend not only on the elastic con
stants but also on the dimension of space. The wave propagation is analyzed and there 
are a longitudinal wave and (n-1) transverse waves inn-dimensional space. Simple shear 
deformation is investigated and there occurs a normal stress effect. It is proved that 
simple shear deformation is equivalent to a pure shear deformation and the principal 
stretches are determined by the total amount of shear. 

I. Introduction 

In the preceding paper1>, the basic concepts of continuum mechanics in a space of 

a,ry dimension were presented. Three fundamental laws, i.e., the conservations of 

mass, of linear momentum and of moment of momentum were assumed, and 

except for the case of one-dimensional space, the existence of the symmetric stress 

tensor was proved. From the three principles, i.e., the determinism, the local 

action and the frame-indifference, the constitutive equation of continuum was 

represented, and the simple material was defined. 

Also, there was presented the constitutive equation of the isotropic elastic 

material, that is, 

T= K(B), (l.l) 

where Tis the stress tensor, B=FFT is the left Cauchy-Green tensor, which repre

sents a measure of deformation, and the response function must satisfy identically 

* Department of Aeronautical Engineering 



Continuum Mechanics in a Space <if A,ry Dimension II. Isotropic Elastic Materials 355 

(1,.2) 

for all symmetric tensors B and all orthogonal tensors Q. 

In this paper, the isotropic elastic materials in a space of any dimension are 

investigated theoretically. The linear approximation of the constitutive equation 

is proposed and the Hookean solid is defined. The wave propagation in a Hookean 

solid is analyzed. The simple shear deformation of the non-linear materials is 

investigated. 

2. Isotropic Linear Elasticity 

Now we define the strain tensor 

E = ~ (B-1), (2.1) 

which has the vector O in the reference state. The constitutive equation (1.1), 

then, is expressed as 

T= K(1+2E) = L(E) (2.2) 

and the identity (1.2) reduces to 

(2.3) 

From the representation theorem of the isotropic function2l we can obtain 

the expression 

(2.4) 

where the coefficients ¢ 0, ¢ 1, ¢2, • • •, <Pn-I are scalar functions of the invariants of E, 

which are given by 

(2.5) 

If the principal axes of E are taken as the coordinate axes, we have 

,1+£1 0 

det (,1l+E) -1+E2 

0 -1+E. 

= (A+E1)P+E2)··•(,1+E.) • (2.6) 

Then we can obtain that 
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(2.7) 

where Er (I'=l, 2, ···, n) are the proper numbers of strain. 

We assume that the coefficients of (2.4) are analytic functions of the invariants 

and can be expanded by them. Then 

(2.8) 

where µ is the elastic constant with stress dimension and aa,0, aa,1, aa,2, •·· are 

non-dimensional material constants. 

Let us consider the linear elasticity. If the second and higher orders with 

respect to the proper numbers of strain are neglected, we have the linear elasticity. 

Substituting (2.8) into (2.4), neglecting E 2
, •··, l 1(E)2, l 2(E), •··, we have the 

constitutive equation of the isotropic linear elastic material 

(2.9) 

If the stress vanishes at the reference state, i.e., the natural state, we have 

a00=0. According to the definition of the elastic constants, a constant can take 

any value, then we choose a10=2 and take a01 =J./µ. We have 

T= J.(tr E)l+2µE, 

Tr= J.(E1+E2+•··+En)+2µEr (I'= 1, 2, ···, n), 

(2.10) 

(2.11) 

where Tr (I'=l, 2, ···, n) are the proper numbers of stress, and ). andµ are 

called Lame's elastic constants. In a space of one-dimension we have 

T=µ(a 00 +a0/ 1(E)), then 

where ). is a single elastic constant. Then we can say that the isotropic linear 

elastic material in a space having more than one-dimension has two elastic con

stants, while the linear elastic material in a space of one-dimension has one elastic 

constant. 

The proper numbers of B are vr2 (I'=l, 2, •··, n) and Vr are the principal 

stretches. The relation (2.1) gives 

(2.13) 
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then the equation (2.10) is the linear approximation with respect to (vr2-l). 
Let us now consider the linear approximation with respect to (vr-1). The 

displacement gradient is given by 

H = F-1 (2.14) 

and 

(2. 15) 

where 

(2. 16) 

is called the infinitesimal strain. From the relation B= V2, where Vis the left stretch 

tensor, we have 

V= l+E (2.17) 

in the first order approximation of the displacement. Then the proper numbers 

of E are given by 

Thus, in the first order approximation with respect to (vr-1), we can replace E in 

(2.10) by E, and Er in (2.11) by Er. Then we have 

T = 11(tr E)l+2µE, 
Tr= 11(E1+E2+···+En)+2µEr (I'= I, 2, ···, n). 

(2.19) 

(2.20) 

The material, which has (2.19) as the constitutive equation, 1s called the 

Hookean solid. 

3. Special Deformations of Hookean Solid 

Now we consider some special deformations. 

Uniaxial Tension 

Let us consider the elongation of a uniform bar by a force along it. When 

the x1-axis is chosen along the bar we can put 

T 2 = T 3 = ··· = Tn = 0, 

E2 = E3 = ... = En ' 

Then we have 

(3.1) 

(3.2) 



358 Tatsuo TOKUOKA 

T 1 = (A+2µ).E1+(n-l)A.E2, 

0 = AE1+{(n-l)A+2µ}.E2, 

which yield the relations 

where 

E = 2µ(nA+2µ) , 
(n-l)A+2µ 

A 
a=-----

(n-l)A+2µ 

are called, respectively, Young's modulus and Poisson's ratio. 

Simple Extension 

(3.3) 

(3.4) 

In the elongation of a uniform bar, if the lateral deformation is prevented, 

the deformation is called the simple extension. In this case we can put 

E2 = E3 = ··· = En = o, (3.5) 

T 2 = T 3 = ··· = Tn . (3.6) 

Then we have 

(3.7) 

which can be written by 

(3.8) 

where 

I - A a=~~ 
A+2µ 

(3.9) 

are called, respectively, pseudo Young's modulus and pseudo Poisson's ratio, and they 

are independent of the dimension of space. 

Uniform Expansion 

In the linear approximation, the jacobian is given as 

Then 

J = v'In(B) = v'(l+2E1)(1+2E2)···(1+2En) 

= l+I1(E)+···~l+Ii(.E). 

indicates the volume change per unit volume. In this case we can put 

(3.10) 
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Tl = T2 = .. · = T,. = -p , 

- - - .:JV 
E1 = E2 = ... = En = nV , 

where p denotes the pressure. Therefore, we have 

where 

is called the bulk modulus. 

Simple Shear 

In this case a component of shear stress does not vanish and 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Then µ denotes the modulus of transverse elasticity or the modulus of rigidity. In 

section 5, we will investigate the simple shear deformation of general non-linear 

elastic material. 

One-Dimensional Space 

In a space of one-dimension from (2.12) we have 

E = E' = K= J, (3.17) 

which, by the condition µ-0, coincides with (3.4), (3.9) and (3.15), where a, 

a' and µ lose their meanings. 

4. Wave Propagation in Hookean Solid 

In general, a continuum must satisfy Cauchy's first law of motion1> 

(4.1) 

where p is the mass density, b is the body force per unit mass and x is the 

acceleration vector. 

The displacement vector is given by 

u=x-X, (4.2) 

where x and X are, respectively, the position vectors of a particle in the current 

and reference state. Then, the displacement tensor (2.14) is 
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au au H=-=-+···, (4.3) ax ax 

where dots mean the second and higher order terms with respect to the displacement 

gradient. In the first order approximation we can express the infinitesimal strain 

(2.16) as 

E = J_(au +(au)r), 
2 ax ax (4.4) 

(k, l = I, 2, ···, n), (4.5) 

where a cartesian coordinate system is assumed. 

By substituting the Hookean equation (2.19) and the displacement vector 

(4.2) into the equation of motion (4.1), and by referring to (4.5) and neglecting the 

body force, we have 

( '+ ) a2u1 + f:J2uk _ azuk 
A µ -- µ--P-

axkaxl ax/ at2 (k, l = I, 2, ···, n). 

Now let us consider the plane wave propagating along the x1-axis, 

(k = I, 2, ···, n). 

Then we have 

(k = 2, 3, ···, n) . 

The wave equation (4.8) gives a longitudinal wave with the wave velocity 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

and the wave equations (4.9) give (n-1) transverse waves with a wave velocity 

( 4.11) 

In a space of one-dimension there is a longitudinal wave and no transverse 

wave. 

5. Simple Shear Deformation 

Here, we will analyze the simple shear deformation of the isotropic elastic 
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material with the constitutive equation (2.4). 

The deformation is given by, in a cartesian coordinate system, 

xk = xk (k = 1, 2, ···, n-1), 

Xn = xn+K1X1+K2X2+··· +Kn-1Xn-l • 
} (5.1) 

This deformation is homogeneous and accelerationless. Then, the equation of 

motion (4.1) is satisfied in the case where there is no body force. 

The deformation gradient, the strain tensor, and the left Cauchy-Green 

tensor are given by the matrices 

0 ... 0 0 

0 1 ... 0 0 
[F] = ' 

(5.2) 
0 0 ... 1 0 

(5.3) 

respectively, where 

(5.4) 

IS a 1 X (n-1) matrix, K; (i=l, 2, •··, n-1) are called the amounts of shear and 

(5.5) 

is called the total amount of shear. 

By the routine process of determinant calculation, we have 

2A 0 ... 0 K1 

0 2A ··· 0 K2 
det (.U+E) 

2n 
0 0 ... 2i Kn-I 

K1 K2•••Kn-l 2i+K2 

(5.6) 

Then by (2.5) we have the invariants 



362 Tatsuo TOKUOKA 

K2 K2 
l 1(E) = - , li(E) = -- , I.,(E) = 0 (a= 3, 4, ···, n). (5.7) 

2 4 

Ifwe assume 

I [[C-.(°')] [C,.(°')]T] 
[E°'] = [E]°' = - '' 

2°' [C;<"'>] C<°'> 
(a= 2, 3, ···), (5.8) 

where [C;;'°'l] is an (n-1) X (n-1) symmetric matrix, [C;<"'>] is a I X (n-1) matrix, 

we have 

which give 

C;/°'l = K;K;C~"'-2>, C;<°'l = K;C<°'- 1>, } 
C(°') = K2(C(°'- 1l+C<"'-2>). 

From (5.3) we have 

c<- 1> = o, c<0> = 1, c<1> = K2 , 

which satisfy the last relation of (5.11), so that 

Then we obtain 

(a= I, 2, ···) . 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Substituting (5.14) into the constitutive equation (2.5) we have the stress 

tensor 

(5.15) 
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The components of the stress are given by 

•-1 1 
T.. = ¢00-.+K-K. °"-¢ cc,.-2> 

,, ., ' J ~ 2,. ,. 

T - T - K ~1 1 cc,.-1> 
in - ni - i .C..., -¢,. , 1»=1 2,. 

•-1 1 (t») r •• = ¢0+ LJ-¢,.C . 
1»=12,. 

(i,j = 1, 2, ... , n-1). l 
Then there are the differences between the normal stresses 

T _ r.. = ~ _!_<p {K2C(t»-I)+(K2-K-2)C(t»-2)} 
nn u t»=l 2(0 at i 

(i = 1, 2, •··, n-1; not summed), 

which show the normal stress effect. 

(5.16) 

(5.17) 

When the shear directions are inversed, that is, K;~-K;, from (5.5) and 

(5.7), the values of ¢,. (a=O, 1, 2, •··, n-1) do not change. Then from (5.16) 

we can say that by the inversion of the shear directions the normal stresses do not 

change and the shear stresses change their signs. 

In a special case when (n-2) amounts of shear vanish and an amount of 

shear K; has non-vanishing value, we have K=K; and the universal relation 

(i = 1, 2, •··, n-1; not summed) (5.18) 

holds. 

Let us consider the principal stretches and the principal axes of V, which 

concide with those of B, of the simple shear deformation (5.1). 

The proper numbers of E are the roots of the equation 

det (E-itl) = 0. (5.19) 

From (5.6) we have 

E 1, E 2 = _!_(K2±Kv4+K2), Er= 0 
4 

(I' = 3, 4, •··, n) . (5.20) 

Thus by the relation (2.13) we get 

Vr = 1 (I'= 3, 4, •··, n) , (5.21) 

which are determined completely by the total amount of shear. 

The principal axes are determined by the relations 

(I'= 1, 2, •··,n). (5.22) 

From (5.3) and (5.21), then, there are for I'=l and 2 
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(k ~ I, 2, ···, n-1) } 

and for I'=3, 4, •··, n 

(k = 1, 2, ···,n-1), } 

Then we have 

(I' = 1, 2) , 

(I' = 3, 4, •··, n) , 

where the vectors er lie on the hyperplane 

and they are perpendicular with each other. 

Clearly, we have 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

and all of the principal axes br (I'= 1, 2, ... , n) are perpendicular to each other. 

The proper numbers (5.21) and the perpendicular property of the two prin

cipal axes b1 and b2 show that the simple shear deformation (5.1) is equivalent 

to a pure shear deformation except for a pure rotation. A pure shear deformation 

means that an elongation along a direction and a contraction along another direc

tion perpendicular to the former direction and their stretches have a reciprocal 

relation (5.28). 
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