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Abstract 

The behavior of the Stokes fluid in a space of any dimension is investigated. The 

linear approximation of the constitutive equations with respect to the stretching is ob
tained, and compressible and incompressible Navier-Stokes fluids are defined. In 

a space of more than one-dimension the former has two viscosity coefficients and the 

latter has one. In a space of one-dimension the former has a viscosity coefficient but 

the latter reduces to a rigid body. The general curvilinear flow is studied. In a space 

of dimension of more than two, the Stokes fluid has two viscometric functions, i.e., the 
shear-stress function and the normal-stress difference function. In a space of two

dimension the fluid has only the shear-stress function. It is proved that the curvi

linear flow in a space of any dimension is equivalent to a pure shearing flow, if the mo

tion is observed by an appropriately rotated coordinate system. The. simple shearing 
flow with a rate of shear is also analyzed. 

I. Introduction 

365 

This series concern the basic and simple concepts of continuum mechanics in 

a space of any dimension. In the first paper1l, three fundamental laws and three 

principles were depicted. There were presented the constitutive equations of the sim

ple material and some special materials, i.e., the incompressible material, the isotropic 

elastic material and Stokes fluid. In the second paper2l, we studied the basic charac

teristics of the isotropic elastic material. The Hookean solid was defined and it was 

shown that Young's modulus, Poisson's ratio and the bulk modulus depend not 

only upon the Lame elastic constants ,l. and µ but also upon the space dimension 

n. Also in the second paper, the wave propagation and the simple shear defor

mation were analyzed. 

In this paper, we study the behavior of the Stokes fluid. At first the Navier

Stokes fluid is defined. Next the curvilinear flow of the Stokes fluid is analyzed and 
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it is proved that the flow is equivalent to a pure shearing flow. Furthermore, the 

simple shearing flow with a rate of shear of an incompressible Stokes fluid is studied. 

2. Linear Viscosity 

The Stokes fluid has the constitutive equation1> 

T= K(D; p), (2.1) 

where Tis the stress tensor, Dis the stretching, which is the symmetric part of the 

velocity gradient, and p is the mass density. The principle of frame-indifference 

demands that 

(2.2) 

holds identically for all symmetric tensors D, all orthogonal tensors Q and all 

scalars p. Then we have its representation3> in the n-dimensional space 

(2.3) 

where the material functions ,fr0 , ,fr1, ,fr2, ... , ,fr n-i are scalar functions of the 

density and the invariants of the stretching, which are defined by the identity 

(2.4) 

The invariants I,,,(D) (a= 1, 2, •··, n) have the magnitudes of the a-th order with 

respect to the proper numbers of D. 

In the case of the incompressible Stokes fluid the density remains a constant value 

and the isochoric motion demands that 

(2.5) 

The constitutive equation is given by 

T = -pl+K(D) , (2.6) 

where p is the indeterminate pressure. Its representation in an n-dimensional 

space is 

(2.7) 

where the material functions ,fr1, ,fr2, ···, ifrn-i are scalar functions for I,,,(D) 

(a=2, 3, •··, n). 
Now we assume that the coefficients of (2.3) and (2.7) are analytic functions 

of the invariants and can be expanded by them. Then 
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where b,r,0, b,r,1, ••• (a=O, l, 2, ···) are material functions of the density for com

pressible fluid, and b,r,0, b,r,1, ... (a=I, 2, •··) are material constants for incom

pressible fluid. 

Let us consider the linear viscosity. If the second and higher order terms 

with respect to the proper numbers of the stretching are neglected, we have the 

linear viscosity. Substituting (2.8) into (2.3) and (2. 7), and neglecting the sec~nd 

and higher order terms, we have the constitutive equation of the compressible linear 

viscous fluid 

T= (-P(P)+((p)/1(D))l+21J(P)D, (2.9) 

Tr= -P(P)+((p)(D1+D2 +•··+Dn)+21J(P)Dr (I'= I, 2, ···, n), 

(2.10) 

and that of the incompressible linear viscous fluid 

T = -pl+2TJD, 

Tr= -p+2TJDr (I'= 1, 2, ···, n), 

(2.11) 

(2.12) 

where Tr and Dr (I'=l, 2, •··, n) are the proper numbers of the stress and the 

stretching, respectively, and we put 

1 
7J = -- bro • 

2 
(2.13) 

In general, the fluid having the linear viscosity is called the Newtonian fluid. 

The materials which have the constitutive equations (2.9) and (2.11) are called, 

respectively, the Navier-Stokes fluid and the incompressible Navier-Stokes fluid. In 

a space of more than one-dimension, the former has two viscosity coefficients ( 

and 7J which are functions of the density, and the latter has a constant viscosity co

efficient C. 

In one-dimensional space all of the quantities reduce to scalars. The material 

functions ,fr1, ,fr2, •··, ,fr n-I in (2.3) and (2. 7) disappear and the linear con

stitutive equations (2.10) and (2.12) reduce, respectively, to 

Tl= -P(P)+((p)D1, 

Ti= -p. 

(2.14) 

(2.15) 

Then the incompressible fluid in one-dimensional space reduces to a rigid body and 

its stress is completely indeterminate. 

3. Curvilinear Flow 

Let us consider an orthogonal curvilinear coordinate system in an n-dimensional 
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Euclidean space. A set (x1, x2, • • •, xn) corresponds to a point in the space and 

it is called the curvilinear coordinates. The line element is given by 

(3.1) 

where gk (k=l, 2, ···, n) are the magnitudes of the base vectors Yk· 

For an orthogonal curvilinear coordinate system the components of a tensor 

have no direct physical meaning. The components which are measured by a 

local orthogonal cartesian coordinate system are called the physical components. 

Those of a second-order tensor A, are given by 

A<kt) =~A\= JiLA/ (k, l = I, 2, ···, n; not summed). (3.2) 
gl gk 

If a material particle has the velocity components 

(i=2,3,···,n) (3.3) 

m an orthogonal curvilinear coordinate system with 

(k = I, 2, ···, n), (3.4) 

the motion is called the curvilinear .flow4" 5). For this flow, a particle moves within 

the (n-1 )-dimensional space and its velocity depends only on the x1-coordinate. 

The velocity gradient and the stretching are given, respectively, by 

[
O [O]] 

[L] = [w/Y [OJ ' 
1 [o [w/]] 

[D] = 2 [w/Y [O] ' 
(3.5) 

where w/-==dw;fdx; (i=2, 3, •··, n) and 

(3.6) 

1s a IX (n-1) matrix. From the formula (3.2) the physical components of the 

stretching are given by 

[D]=[D(kt)] = _!_[0 
[it;]] 

2 [it;]T [O] ' 

where [D] denotes the matrix with the physical components of D, 

,t.=lt.1-_w.' ,- ' 
gl 

(i = 2, 3, •··, n; not summed) 

(3.7) 

(3.8) 

(3.9) 

are called the rates ef shear. We must remark that the stretching (3. 7) is not 
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identical with the strain matrix in the simple shear deformation obtained in the 

preceding paper2>. 

According to the formula (2.4) we will obtain the invariants of the stretching 

(3. 7). By the routine process of determinant calculation, we have 

2). IC2 IC3 • • • /Cn 

det (Al +iJ) = J_ 
IC2 V 0 ... 0 2 = ,i_n-~,i_n-2 

2n IC3 0 2.l.··· 0 4 ' 
(3.10) 

/Cn 0 0 ···2.l. 

where 

1s called the total rate ef shear. Then we have the invariants 

(3.12) 

Therefore, the material functions ,fr0, ,fr1, ,fr2, ···, '?'n-I are even functions of 

the total rate of shear. 

We can easily obtain that 

(a= I, 2, ···), ) 
( a = 0, 1, 2, · · ·) , f 

(3.13) 

and 

[D2] = J_ [,c2 [OJ ] . 
4 [OY [IC;IC;] 

(3. I 4) 

Then the stress 'I' with the physical components of the stress Tis given by 

(3.15) 

(3.16) 

the stress is given by 

(3.17) 
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The material function ,(IC) is an odd function and a(IC) is an even function, i.e., 

(3.18) 

From (3.7), (3.14) and (3.17) the stress components are expressed by 

7\1 = ¢0+a(1C), 

(i,j=2,3,···,n), 
(3.19) 

(i=2,3,···,n). 

The shear stress components T;1 = Tli (i=2, 3, •·· ,n) are determined by ,(IC), and 

the difference of two normal stresses are given by 

(i = 2, 3, •··, n; not summed), (3.20) 

which are determined by a (IC). The two material functions are called the 

viscometric functions, and ,(IC) and a(IC) are called, respectively, the shear-stress 

function and the normal-stress dijference function. 

For a two-dimensional space there is no normal-stress difference function,.and 

the stress is given by 

(3.21) 

where the shear-stress function is given by 

(3.22) 

For three- and higher-dimensional spaces the stress is determined by ¢0(1C) 

and two viscometric functions , (IC) and a (IC). 

Now let us obtain the proper numbers and the principal axes of the stretching 

(3. 7). The proper numbers of D are given by the roots of the equation 

det (lJ-,ll) = 0. (3.23) 

Replacing ,l in (3.10) by -,l we have the proper numbers 

(I'= 3, 4, •··, n). (3.24) 

The principal aexs ar (I'=l, 2, •··, n) are determined by the relations 

(I'= 1, 2, •··, n). (3.25) 
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From (3.7) and (3.24), then, there are for I'=l, 2, 

=F li:ari + iJ IC;llr; = 0, . } 

IC;llr1 =F IC:::= 0 (i = 2, 3, ···, n)' 

and for I'=3, 4, •··, n 

n 

~ IC;llr; = 0 , 
i=l 

Then we have 

llp = (±IC, 1C2, IC3, •••, ICn) 

ar = (0, eri, er3, •.. ' ern) 

(I'= 1, 2), 

(I' = 3, 4, •··, n) , 
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(3.26) 

(3.27) 

(3.28) 

(3.29) 

where er (I'=3, 4, •··, n) are mutually orthogonal vectors and they lie on the hy

perplane 

(3.30) 

The n principal axes Ur (I'= 1, 2, ···, n) are clearly perpendicular to each other. 

When the principal axes are adopted as coordinate axes, the stertching has the 

matrix representation 

0 0 ... 0 

[DJ=_!___ 
0 -1 0 ... 0 

0 0 0 ... 0 ' (3.31) 2 

0 0 0 ... 0 

which indicates that the motion consists of an elongation along a1 and a contraction 

along Ui, here the two directions are perpendicular to each other. Their velocity 

gradients, being equal to proper numbers, are related by 

(3.32) 

which denotes an isochoric motion. 

If the two coordinate axes a1 and a2 are rotated into their two median lines, 

-I 0 ... 0 

- l 1 0 ... 0 
[QJ = v2. 0 0 I ··· 0 ' 

(3.33) 

0 0 0 ... I 
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while other axes are fixed, the stretching is expressed by the matrix 

0 1 0 ... 0 

[QDQT] = ~ 
1 0 0 ... 0 

0 0 0 ... 0 (3.34) 
2 

0 0 0 ... 0 

This shows a pure shearing flow. Then we can say that any curvilinear flow in a space 

ef any dimension is equivalent to a pure shearing flow, if the motion of a material particle is 

observed by an appropriately rotated coordinate system. 

4. Simple Shearing Flow with a Rate of Shear of Incompressible 

Stokes Fluid 

In this section we will analyze a special case of the curvilinear flow of an 

incompressible Stokes fluid. 

With respect to a rectangular cartesian coordinate system the velocity com

ponents of a fluid particle are assumed to be 

The rate of shear is given by 

and the stretching and its square are given, respectively, by 

0 

[D] =~ 
2 0 

0 

0 

0 ... 0 

0 ... 0 

0 ... 0 

0 0 0 ... 0 

1 0 

0 

0 0 

0 ... 0 

0 ... 0 

0 ... 0 

0 0 0 ... 0 

(4.1) 

(4.2) 

(4.3) 

This motion is called the simple shearing flow6>. The stretching is equivalent to 

that of a pure shearing flow (3.34). 

The stress is expressed by the constitutive equation (2. 7). Then, from the 

viscometric functions (3.16) and the stretching (4.3) we have 

T11 = T 22 = -p+a(K) , } 

T12 = T21 = r(K) , 

T;; = -po;; (i,j = 3, 4, ···, n), 

T;1 = Tli = T;2 = Tu= 0 (i = 3, 4, •··, n). 

(4.4) 
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In general, all of the continuum must satisfy Cauch's first law of motion 

div T+pb = px. (4.5) 

In this case we have no acceleration. Substituting the stress components (4.4) 

and the conservative body force 

b = -grad ,fr , (4.6) 

where ,fr is a potential function, to the equation (4.5), we have 

8-r -p 8¢> = O 8¢> , - = 0 (i = 3, 4, •··, n), (4.7) 
8X1 8Xz 8x; 

where we put 

(4.8) 

Then </> is independent of X; (i=3, 4, •··, n) and we can easily obtain the 

pressure 

(4.9) 

where a is a constant, called the specific drivingforce, and h(x1)and k(t) are arbitrary 

functions of x1 and t, respectively, which are determined by given boundary con

ditions. 

From the second equation of (4.7) we have 

( 4.10) 

where b is a constant. This equation can be regarded as a differential equation 

to determine the velocity distribution w(x1). 

For a two-dimensional space, there is no 11(11:) and the stress is given by 

( 4.11) 

and the equations ( 4. 7) reduce to 

(4.12) 

Then we can easily obtain 

P = -ax2+k(t)-p,fr (4.13) 

and the velocity distribution may be determined by the equation (4.10). 
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