"Walzentemperaturänderungen beim Warmwalzen von Grobblech in einer vollkontinuierlichen Vorstraße"

von

Jun-ichi KOKADO,* Natsuo HATTA,* Paul FUNKE** und Christoph PAVLIDIS***

(Received May 27, 1977)

Inhaltsangabe

Bericht über ein realistisches Rechenbeispiel der Temperaturänderung der Walzen einer vollkontinuierlichen Vorstraße für das Warmwalzen von Grobblech. Auf der Grundlage einer früher aufgestellten Formel wurde die Walzentemperaturerhöhung beim Auswalzen eines 230 mm dicken Warmbleches in einer fünfgerüstigen Vorstraße berechnet. Die Ergebnisse können wie folgt zusammengefaßt werden.

1) Die Temperatur auf der Walzenoberfläche und in der Nähe derselben steigt im Bereich des Walzspaltes steil an und fällt durch die Wasserabkühlung rasch ab. Im Walzeninnern ist eine stetige Zunahme errechnet worden.

2) Die Walzentemperatur jedes Gerüstes nähert sich mit zunehmender Anzahl der Umdrehungen dem thermischen Gleichgewicht. Nach etwa der 20. bis 30. Umdrehung wird die Walzentemperatur gleichbleibend.

3) Die Umformwärme des Walzgutes hat keinen nennenswerten Einfluß auf die Temperaturerhöhung der Walze und kann bei Berechnungen vernachlässigt werden.

Verwendete Zeichen und ihre Bedeutung

$a_1(m^2/h)$:	Temperaturleitfähigkeit des Walzenwerkstoffes
$a_2(m^2/h)$:	Temperaturleitfähigkeit des Walzgutes
A(kgm/kcal) :	Mechanisches Wärmeäquivalent
$A_1 \sim A_5(-)$:	Konstante (S. Gl. (9. 1))
$B_1 \sim B_5(-)$:	Konstante (S. Gl. (9. 2))
$c_1(\text{kcal/kg}^\circ\text{C})$:	Spezifische Wärme des Walzenwerkstoffes

^{*} Institut für Wissenschaft und Technologie von Mineralien.

^{**} Institut für Verformungskunde und Walzwerkswesen der Tech. Univ. Clausthal, Clausthal/ Deutschland.

^{***} Amtliche Materialprüfanstalt für Verformungskunde und Walzwerkswesen, Clausthal/ Deutschland.

$c_2(\text{kcal/kg}^\circ\text{C})$:	Spezifische Wärme des Walzgutes
$H_1(\mathbf{m})$:	Banddicke vor dem Gerüst
$H_{2}(m)$:	Banddicke hinter dem Gerüst
$h_k(\mathbf{m})$:	Banddicke im Walzspalt nach der Zeit k·∆t
$k_f(kg/m^2)$:	Formänderungsfestigkeit
$p_{h}(kg/m^2)$:	Walzendruck
$R(\mathbf{m})$:	Walzenradius
<i>t</i> (h) :	Zeit
$\Delta t(h)$:	Zeitintervall
$V_{k}(m/h)$:	Relative Geschwindigkeit
x(m):	Ortsveränderliche in radialer Richtung
$\Delta x(m)$:	Intervallbreite in radialer Richtung
$\alpha(\text{kcal/m}^{2}\text{h}^{\circ}\text{C})$:	Wärmeübergangszahl
$\alpha_{\mathbf{L}}(\text{kcal/m}^{2}\text{h}^{\circ}\text{C})$:	Wärmeübergangszahl für Luft
$\alpha_{W}(kcal/m^{2}h^{\circ}C)$:	Wärmeübergangszahl für Wasser
$\gamma_1(kg/m^3)$:	Spezifisches Gewicht des Walzenwerkstoffes
$\gamma_2(\mathrm{kg}/m^3)$:	Spezifisches Gewicht des Walzgutes
$\varepsilon_{k}(-)$:	Stichabnahme
$\lambda_1(kcal/mh^\circ C)$:	Wärmeleitfähigkeit des Walzenwerkstoffes
$\lambda_2(\text{kcal/mh}^\circ\text{C})$:	Wärmeleitfähigkeit des Walzgutes
$\theta(^{\circ}C)$:	Orts-und zeitabhängige Temperatur
$\theta_{p,k}(^{\circ}C)$:	Walzentemperatur des in der Entfernung $p \cdot \Delta x$ von der Oberfläche
	liegenden p-und k-ten Elementes
$\theta_{1,k}(^{\circ}C)$:	Walzenoberflächentemperatur
$\theta_{01}(^{\circ}C)$:	Anfangstemperatur der Walze
$\theta_{02}(^{\circ}C)$:	Anfangstemperatur des Walzgutes
$\Delta \theta_{k}(^{\circ}C)$:	Temperaturerhöhung durch die Umformwärme des Walzgutes
$\theta_{W}(^{\circ}C)$:	Wassertemperatur
$\theta_{I}(^{\circ}C)$:	Lufttemperatur
$\phi_f(-)$:	Winkel zwischen Austrittspunkt und Fließscheidepunkt im Walzspalt
	(S. Bild 1)
$\phi_h(-)$:	Winkel zwischen dem Austrittspunkt und dem k-ten Element im
	Walzspalt (S. Bild 1)
$\phi_0(-)$:	Winkel zwischen dem Eintritts- und Austrittspunkt (S. Bild 1)
$\omega(1/h)$:	Winkelgeschwindigkeit der Walze
$\mu()$:	Reibungskoeffizient zwischen Walze und Walzgut

1. Einleitung

Die thermischen Belastungen der Walzen in Kalt-und Warmwalzwerken rufen instationäre Spannungszustände hervor, die die Lebensdauer der Walzen entscheidend beeinflussen können. Die Kenntnis des Temperaturverlaufs der Walzen beim Walzen von Grobblechen und Warmband ist eine wichtige Voraussetzung für die vollautomatische Steuerung der Grobblech-und Warmbandgerüste, im Hinblick auf die Optimierung der Betriebsbedingungen und die zu erwartenden Eigenschaften der Walzerzeugnisse.

Uber die Berechnung des Temperaturfeldes unter vereinfachenden Voraussetzungen ist im Schrifttum berichtet worden.^{1) b185)}

Im vorliegenden Beitrag wird über ein realistisches Rechenbeispiel berichtet. Die Temperaturverläufe in jeder Walze einer fünfgersütigen vollkontinuierlichen Vorstraße werden berechnet.

Ausgegangen wird von einem 230 mm dicken Warmblech, das an 25 mm ausgewalzt werden soll. Die Berechnung erfolgt auf der Grundlage der bereits veröffentlichten Formel.⁶

2. Verwendete Gleichungen

Bei dieser Berechnung wird angenommen, daß die Wärmeleitung nur in radialer Richtung der Walze stattfindet. Die Differentialgleichung für die eindimensionale Wärmeleitung lautet:

Der Walzenquerschnitt sei in endlich große Flächenelemente mit dem Abstand Δx in radialer Richtung unterteilt gedacht. Jedes Element der als Rasternetz gedachten Querschnittsfläche wird mit 1, 2, ... $p, p+1, \dots$ in der radialen Richtung gekennzeichnet. Zur Temperaturberechnung im Zeitintervall Δt , d. h. in der Zeit zwischen $k \cdot \Delta t$ und $(k+1) \Delta t$ wird jedes Element mit 1, 2, ... $k, k+1, \dots$ auch in der Drehrichtung der Walze gekennzeichnet.

Wenn die Zeit von $k \cdot \Delta t$ bis zu $(k+1)\Delta t$ vergeht, so wird die Temperatur des im Abstand $p \cdot \Delta x$ von der Walzenoberfläche liegenden p- und k-ten Elementes von $\theta_{p,k}$ zu $\theta_{p,k+1}$ geändert, worin $\theta_{1,k}$ die Walzenoberflächentemperatur und $\theta_{1,1}$ diejenige im Anfangspunkt der Berührung zwischen Walze und Walzgut bedeuten. Daher wird

$$\theta_{\mathbf{p},\mathbf{k}+1} = \frac{a_1 \Delta t}{\Delta x^2} (\theta_{\mathbf{p}+1,\mathbf{k}} - 2\theta_{\mathbf{p},\mathbf{k}} + \theta_{\mathbf{p}-1,\mathbf{k}}) + \theta_{\mathbf{p},\mathbf{k}} . \qquad \cdots \cdots \cdots \cdots (2)$$

Wenn $\theta_{p+1,k}$, $\theta_{p,k}$ und $\theta_{p-1,k}$

bekannt sind, so läßt sich daraus die Temperatur $\theta_{p,k+1}$ berechnen.

Als Randbedingung kann die Walzenoberflächentemperatur $\theta_{1,h}$ wie folgt dargestellt werden.

Während der Berührung mit dem Walzgut, also im Walzspalt, a)

wobei $w_{\mathbf{k}} = |\mu p_{\mathbf{k}} V_{\mathbf{k}} / A|$

und b) außerhalb des Walzspaltes

Für die Formänderungsfestigkeit kf des Walzgutes gilt:

wobei

Die für die Berechnung der zwischen Walze und Walzgut entstehenden Reibungswärme zugrundeliegende Walzendruckverteilung wurde nach der Gleichung von Th. v. Karman rechnerisch erfaßt und mit dem biquadratischen Polynom wie folgt angenähert, und zwar für den Bereich der Nacheilzone

bzw. der Voreilzone

Die relative Geschwindigkeit Va zwischen Walzen und Walzgut errechnet sich aus

$$V_{\mathbf{h}} = \omega R \left(1 - \frac{h_f}{h_{\mathbf{h}}} \frac{\cos \phi_f}{\cos \phi_{\mathbf{h}}} \right) \tag{10}$$

wobei h_f die Dicke des Walzgutes an der Fließscheide und ϕ_f den Winkel zwischen Austrittspunkt und Fließseheidepunkt bedeuten. Die durch Umformwärme entstehende Temperaturerhöhung $\mathcal{A}\theta_{k}$ des Walzgutes wurde nach der folgenden Beziehung berechnet :

3. Vorgabedaten für die Berechnung der Walzentemperatur

Die Temperatur der Walzen einer fünfgerüstigen Straße soll für das Beispiel des Stichplanes nach **Tafel 1** berechnet werden. Strahlweg, Konvektion und Preßwasserentzunderung bewirken im allgemeinen auf der Vorstraße einen Temperaturabfall in

Gerüst Nr.	Dicke o Walzgu Anfang- (H ₁)	les tes (m) End-(H ₂)	Stich- abnahme (%)	Walzen- durchmes. (m)	Walzenwin- kelgeschwin. (1/h)	Anfangswal- zentemp. θ_{01} (°C)	Bandtemp. θ_{02} am Gerüst (°C)
1	0, 230	0, 172	25, 20	1, 160	7776, 0	50, 0	1267, 0
2	0, 172	0, 121	29, 65	1, 160	7776, 0	50, 0	1252, 0
3	0, 121	0, 083	31, 40	0, 800	11268, 0	50, 0	1228, 0
4	0, 083	0, 049	40, 96	0, 800	15336, 0	50, 0	1193, 0
5	0, 049	0, 025	48, 99	0, 800	22500, 0	50, 0	1132, 0

Tafel 1. Vorgabedaten für die Berechnung der Walzentemperatur.

Tafel 2. Berechnungsergebnisse von A_1 bis A_5 und B_1 bis B_5 (S. Gl. (9, 1) und Gl. (9, 2))

	Gerüst Nr.	A ₁	A ₂	A ₃	A ₄	A ₅
Ъе	1	6, 7752 • 10 ⁶	-3, 2871 • 10 ⁶	-2, 3884 • 103	1, 5826 • 109	-3, 0513•10 ⁹
ilzo	2	8, 1180 • 105	-1, 3563•10 ⁷	-2, 4801 • 10 ⁸	1, 9416•10 ⁹	-4, 0715•10 ⁹
che	3	8, 2792 • 10 ⁶	-1, 4861 • 107	-2, 2283 • 10 ³	1, 7260 • 109	-3, 5035•10 ⁹
Na	4	1, 2347 • 107	-5, 7448 • 107	-7, 8250-107	1, 7563•10°	-4, 2821 • 10 ⁹
	5	2, 5501 • 10 7	-2, 6867 • 10 ³	1, 1951•10°	-1, 1340•10º	-3, 5710•10 ⁹
	Gerüst Nr.	B ₁	B ₂	B ₃	B ₄	B ₅
	1	4, 5914 • 10 ⁶	3, 3385 • 10 7	-3, 3317 · 10 ⁸	2, 1442 • 10 ⁹	-4, 0729 • 10 ⁹
l uo	2	4, 7435 • 10 6	4,0747•10 ⁷	-3, 7134•10 ⁸	2, 7061 • 10°	-5, 4837 • 10 ⁹
reils	3	4,7971•106	4, 0569 • 10 ⁷	-3, 4464 • 10 ³	2, 4576 • 10 ⁹	-4, 7908•10 ⁹
-o N	4	5, 7448•10 ⁶	5, 6518•10 ⁷	-3, 3408 • 10 ⁸	3, 2503 • 10 ⁹	−6, 6281 • 10°
	5	5, 2390 • 106	9, 4553 • 107	-2, 8107 • 10 ³	7, 4406 • 10 ⁹	-1,6354·10 ¹⁰

jedem Gerüst. Der Abstand bei einer kontinuierlichen Warmbandstraße wird von Gerüst zu Gerüst größer. Hieraus ergibt sich eine Bandtemperatur entsprechend Tafel 1. Der Walzendruck auf der Walze der einzelnen Gerüste wird mit Gl. (9. 1) und (9. 2) beschrieben. Dabei wurden A_1 bis A_5 und B_1 bis B_5 mit Hilfe des elektronischen Rechners rechnerisch erfaßt (**Tafel 2**). Für den Reibungskoeffizienten μ zwischen Walze und Walzgut wurde der Wert 0, 35 angenommen.

Die verschiedenen Wärmekonstanten für die Berechnung der Walzentemperatur wurden wie folgt festgelegt:

Thermische Daten der Walze und des Walzgutes

422

$\lambda_1 = 35, 3 \text{ kcal/mh}^\circ \text{C}$	$\lambda_2 = 25, 0 \text{ kcal/mh}^\circ \text{C}$
$c_1 = 0,158 \text{ kcal/kg}^{\circ}\text{C}$	$c_2 = 0,158 \text{ kcal/kg}^{\circ}\text{C}$
$a_1 = 0,0286 \text{ m}^2/\text{h}$	$a_2 = 0$, 0203 m ² /h
$\gamma_1 = 7800, 0 \text{ kg/m}^3$	$\gamma_2 = 7800, 0 \mathrm{kg/m^3}$
Sonstige Werte:	
$\alpha_{W} = 3000 \text{ kcal/m}^2 \text{h}^{\circ} \text{C}$	$\alpha_{I} = 150 \text{ kcal/m}^{2} \text{h}^{\circ} \text{C}$
$\theta_{w} = 50^{\circ} C$	$\theta_{I} = 50^{\circ} C$

Der Walzenmantel wird zur Hälfte durch Wasser und der restliche Mantelteil

Bild 1: Walzenmantelbereich der Wasser- und Luftkühlung beim Warmwalzen

Gerüst Nr.	Zeit einer Um- drehung (h)	Wasserabkühl- ungszeit (h)	Luftabkühl- ungszeit (h)	Berührungszeit (h)
1	0,0008080	0, 0004040	0, 0003630	0, 0000406
2	0, 0008080	0, 0004040	0, 0003659	0, 0000381
3	0, 0005576	0, 0002788	0, 0002515	0, 0000273
4	0, 0004096	0, 0002048	0, 0001858	0, 0000190
. 5	0, 0002792	0, 0001396	0,0001288	0, 0000108

Tafel 3. Die Zeit für eine Walzenumdrehung sowie die Wasserabkührungs-, Luftabkühlungs- und Berührungszeiten während einer Umdrehung.

"Walzentemperaturänderungen beim Warmwalzen von Grobblech in einer vollkontinuierlichen Vorstraße"

Gerüst Nr.	1	2	3	4	5
<i>∆t</i> (h)	4,06•10-6	3, 81•10-6	2,73•10-6	1, 90 • 10 ⁻⁶	1,08•10-6
<i>∆x</i> (m)	6, 75•10 ⁻⁴	6, 60·10 ⁻⁴	5, 60•10-4	4,66•10-4	3, 52 • 10 - 4

Tafel 4. Werte für Δt und Δx bei dieser Temperaturberechnung

anschließend durch Luft, bis zum Wiedereintritt im Walzspalt, abgekühlt (Bild 1).

Die Zeiten für eine Umdrehung, die Wasserabkühlungszeit, die Luftabkühlungszeit der Walze und die Berührungszeit im Walzspalt sind in **Tafel 3** wiedergegeben.

Tafel 4 enthält Angaben über den Zeitintervall Δt und die Intervallbreite Δx der Walze jedes einzelnen Gerüstes.

4. Darstellung und Diskussion der Rechenergebnisse

Die Temperaturberechnung im Walzeninnern in Abständen von etwa 1 mm, 3 mm, 5 mm, 10 mm und 20 mm und auf der Walzenoberfläche wurde mit einem elektronischen Rechner durchgeführt. Die Ergebnisse wurden mittels eines XY-Rekorders aufgezeichnet. Für die Temperaturänderung in Abhängigkeit von der Anzahl der Walzenumdrehungen erhält man die in **Bild 2-6** für jedes Gerüst dargestellten Ergebnisse. Danach liegt für den Temperaturenverlauf jeder Walze eine ähnliche Tendenz vor.

Die Temperatur der Oberfläche und in der Nähe der Oberfläche im Walzeninnern steigt stark im Bereich des Walzspaltes an. Der Abfall der Walzentemperatur wird lediglich durch die Wasserabkühlung bewirkt.

Im Bereich der Luftkühlung ist geringfügiger Anstieg zu verzeichnen. Die Temperatur in Walzenoberflächennähe während einer Walzenumdrehung schwankt wegen des starken Einflusses der Erwärmung und Abkühlung in hohem Maße. Im Walzeninnern liegen solche Schwankungen nicht vor. Hier steigt die Temperatur von Umdrehung zu Umdrehung langsam an.

Der Temperaturverauf der Walzen jedes Gerüstes nähert sich dem thermischen Gleichgewicht mit zunehmender Anzahl der Umdrehung.

Die Temperatur erreicht einen konstanten Wert nach etwa der 20. bis 30. Umdrehungen. Je größer der Abstand von der Walzenoberfläche, desto schwächer ist der Temperaturanstieg mit zunehmender Umdrehungszahl.

Aus den Ergebnissen in den Bildern 2 bis 6 geht ferner hervor, daß die Tendenz des Walzentemperaturverlaufs ziemlich ähnlich zueinander ist. Die Walzentemperatur jedes Gerüsts fällt allgemein mit zunehmender Geräst-Nummer ab, weil die

- (2): 1,0125 mm,
- (3): 3,0375 mm,
- (4): 5,0625 mm,
- (5): 9,7875 mm,
- (6): 19,9125 mm,

(7): Durchschnittliche Temperatur im Abstand von 9,7875 mm.

"Walzentemperatnrånderungen beim Warmwalzen von Grobblech in einer vollkontinuierlichen Vorstraße"

(7): 9,5700 mm.

Walzenumdrehung

- (6): 19,8800 mm,
- (7): 8, 1200 mm.

Walzenumdrehung

(7): 5, 1040 mm.

Walzenumdrehung

"Walzentemperaturänderungen beim Warmwalzen von Grobblech in einer vollkontinuierlichen Vorstraße"

Bandtemperatur mit der Zeit abfällt. Lediglich die Walzentemperatur der Gerüste 1, 2 und 3 ist nahezu gleich. Vermutlich liegt der Grund darin, daß die die Walzentemperatur beeinflussenden Faktoren, d. h. Bandtemperatur θ_{02} und das Verhältnis aus Berührungszeit im Walzspalt zur Wasserabkühlungszeit ungefähr gleich ist. Die Temperatur im Innern der Walzen des 4. und 5. Gerüstes liegt offensichtlich niedriger als diejenige des 1., 2. und 3. Gerüstes. Andererseits liegt die Oberflächentemperatur der Walzen des 4. und 5. Gerüstes erheblich höher. Der Grund dafür liegt in der im Walzspalt entstehenden hohen Reibungswärme beim vierten und fünften Gerüst, weil dabei der Walzendruck wegen der hohen Stichabnahme verhältnismäßig groß ist und auch die relative Geschwindigkeit zwischen Walzen- und Bandoberfläche deutlich groß ist, wie aus **Bild 7** hervorgeht.

Bild 7: Rerative Geschwindigkeit zwischen Walzen- und Walzgutoberfläche im Walzspalt in Abhängigkeit von ϕ_h/ϕ_o

Die Temperatur von Walze sowie Walzgut erhöht sich durch die im Walzgut entstehende Umformwärme. Das Berechnungsergebnis beweist, daß die Temperatur des Walzgutes in der Zeit vom Anfang bis zum Ende Umformung im Walzspalt geringfügig ist. Deshalb hat die Umformwärme des Walzgutes fast keinen nennenswerten Einfluß auf die Temperaturerhöhung der Walze. **Tafel 5** stellt die Tempera0 Jun-ichi KOKADO, Natsuo HATTA, Paul FUNKE und Christoph PAVLIDIS

turerhöhung des Walzgutes durch die Umformwärme während der Verweilzeit im Walzspalt jedes Gerüstes dar.

Gerüst Nr.	1 .	2	3	4	5
Temperaturerhöhung des Walzgutes (°C)	2, 66	3, 33	3, 61	5, 32	7, 04

Tafel 5. Temperaturerhöhung des Walzgutes durch die Umformwärme während der Verweilzeit im Walzspalt.

5. Zusammenfassung

Am Beispiel einer vollkontinuierlichen Vorstraße wurden die Temperaturverhältnisse auf der Walzenoberfläche und im Walzeninnern berechnet.

Die Temperatur auf der Walzenoberfläche und in der Nähe derselben steigt im Bereich des Walzspaltes steil an und fällt durch die Wasserabkühlung rasch ab. Im Walzeninnern ist eine stetige Zunahme errechnet worden.

Die Walzentemperatur jedes Gerüstes nähert sich mit zunehmender Anzahl der Umdrehungen dem thermischen Gleichgewicht. Nach etwa der 20. bis 30. Umdrehung wird die Walzentemperatur gleichbleibend. Die Reibungswärme hat fast keinen Einfluß auf die Temperaturerhöhung der Walzenoberfläche des 1., 2. und 3. Gerüstes, jedoch einen verhältnismäßig starken Einfluß auf diejenige des 4. und 5. Gerüstes.

Die Umformwärme des Walzgutes hat keinen nennenswerten Einfluß auf die Temperaturerhöhung der Walze und kann bei Berechnungen vernachlässigt werden.

Schrifttum

- 1) Peck jr. F., M. Bonetti und F. T. Mawis: Iron Steel Engr. 31 (1954) Nr. 6, S. 45/58.
- 2) Baumann H. G. und G. Schäfer: Arch. Eisenhüttenwes., 41 (1970), S. 789/95.
- 3) Pawelski O.: Arch. Eisenhüttenwes., 42 (1971), S. 713/20.
- 4) Weber K. H.: Neue Hütte, 8 (1973), S. 285/95.
- 5) Baumann H. G. und G. Schäfer: Stahl u. Eisen, 91 (1971) S. 678/89.
- Funke P., J. Kokado, N. Hatta und Ch. Pavlidis: Arch. Eisenhüttenwes., 46 (1975), S. 495 /502.