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Abstract 

Inelastic steel beams are analyzed with emphasis on their transient flexural 
behavior and lateral buckling under cyclic loads. The constraint and load conditions 
are chosen so that they simulate inelastic beamJ of a frame structure subjected to a 
horizontal seismic motion. 

An analytical model of inelastic beams is proposed that accounts for basic 
transient behaviors of mild steel. On this basis, a detailed discussion is made on 
the mechanism of transient behaviors including those of the plasic hinge, load­
deflection relation, lateral buckling load, etc. A physical interpretation is given as 
regards the transient flexural behavior and the deformation capacity for the lateral 
buckling of steel beams under monotonic and cyclic loadings. 

1. Introduction 

In a structural design for severe seismic loads, the post yielding deformation 

capacity of structures and structural elements is of great importance. It has been 

recognized that the mechanism of absorbing dynamic energy imparted to structures 

during strong earthquakes primarily relies upon the hysteretic energy dissipation by 

structural elements. Such an energy dissipation capacity has become at least implicitly 

a basic requirement in the design philosophy of modern structures to withstand 

seismic loads. 

To provide an adequate energy dissipation capacity, the structure must possess 

stable elastoplastic force-deflection properties under cyclic loads. Structural steel is 

an excellent material to meet this requirement. Because of its great ductility and 

stable hysteresis loops under repeated large deformations, structural steel is considered 
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as one of the most reliable structural materials for earthquake resistant designs. 

Unstable hysteretic behavior of steel structures occurs more for structural reasons 

than being caused by material properties. The desired hysteretic capacity may be 

violated through the gravity effect on columns and the lateral buckling of beams. 

Such instability, including lateral buckling of beams under cyclic loads, has been 

studied experimentally by several authors2>, 5>,B>,rn. All of them arrived at a similar 

conclusion, namely that once lateral buckling takes place in a steel beam the hyste­

resis curves can no longer withstand further load reversals, and furthermore the 

resistance of the beam is reduced successively under repeated deformation with a 

constant amplitude. It was also pointed out that the deformation capacity of flexural 

beams for lateral buckling is much smaller for cyclic deformation than would be 

expected from monotonic loading. 

Tanaka, Takanashi, and Udagawa8>, and Takanashi6> obtained the rotation capac­

ity for cyclic and monotonic loadings for beams with various slenderness ratios. Goto, 

Kameda, Koike, et. aJ.2> made a detailed discussion of the time dependent behavior 

of steel beams under cyclic loads, with and without lateral buckling. It was pointed 

out that the number of load cycles up to lateral buckling depends on the amplitude 

of cyclic deformation, implying a step-by-step effect of strain hardening. Time 

variation of stiffness and hysteretic energy per cycle, and total hysteretic energy 

capacity were also discussed. 

Thus the typical behavior of lateral buckling of steel beams under cyclic loads 

may be summarized as a low deformation capacity compared to monotonic loading, 

and a possible effect of step-by-step strain hardening on initiation of buckling. This 

implies the importance of the transient behavior of inelastic beams. Most of the 

earlier studies on the cyclic behavior of inelastic beams were focused primarily on 

their steady state, and analytical models have been proposed also for steady-state 

hysteresis loops. Precise discussion of the transient flexural process is required as 

to the properties of plastic hinges and the variation of tangent rigidities as well as 

conventional load-deformation relations. 

The objective of this study is to provide a physical basis for a rational interpre­

tation of the foregoing experimental results, using an analytical model of elastoplastic 

beams. First, steel beams are modeled with laminated elements having an elasto­

plastic stress-strain relation with a strain-hardening effect. Then, the transient post 

yielding flexural behavior of the model is analyzed for monotonic and cyclic loadings 

with primary attention given to the behavior of the mid-span plastic hinge. In the 

analysis of inelastic lateral buckling, the results for the flexural behavior are combined 

with the strain-energy method using the tangent rigidities. On the basis of these 

results, a physical interpretation is presented in regard to the difference in the 
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deformation capacity of inelastic steel beams for monotonic and cyclic deformation. 

This study should provide useful information for establishing design criteria for steel 

beams subjected to a strong seismic load. 

2. Analytical Model 

2. 1. Load conditions 
The analytical model dealt with herein is intended to explain behaviors of tested 

steel beams whose loading and support conditions are such as those illustrated in 

Fig. 1 (a). For the strong axis, they constitute simply supported beams subjected to 

a cyclic deformation at mid-span. The plastic region is concentrated in the mid-span 

p co~mn beam coJurn 
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inelastic region__!_fi r::::::::J 
--=------=-- (bending) i:_:::::;:> 
~ moment ~x 
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~ (curvature) 

Inelastic 

( lateral ) c{~ buckling ~ 
% ~~nelastic region - --

( a ) Test specimen ( b) Structure 

Fig. I. Constraint Conditions of Steel Beams; Test-Structure Analogy. 

region as shown in this figure, which also illustrates the distribution of the bending 

moment and the curvature for elastic and inelastic states. For the weak axis, these 

steel beams are double span continuous beams. They may undergo lateral buckling 

of the second mode. The conditions described above were realized in the test 

procedures2>, 3> which results are compared with the analytical results in this study. 

Such test conditions will be an analogy to steel beams in practical structures with 

strong columns which are subjected to large deformation in response to earthquake 

excitation. Such a situation is illustrated schematically in Fig. 1 (b). Half length of 

the practical beams may be realized in that of the tested beams. 

2. 2. Geometrical conditions 
Size parameters and location parameters of the steel beams analyzed herein are 

shown in Fig. 2. The beam is subjected to a cyclic load P acting at z=O in y­

direction. The displacement of the shear center of a beam section is illustrated in 
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Fig. 2. Tested Beams. Fig. 3. Description of Beam Deformation. 
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Fig. 4. Description of Moments. 
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Fig. 3. The vertical displacement v arises from the cyclic load P, and the horizontal 

displacement u and rotation <jJ are induced by lateral buckling. 

The boundary conditions consistent with the constraints shown m Fig. 2 are as 

follows. 

Constraints on flexure : 

z=±l; v=O and d2v 

l 
-=0 
dz2 

z=O; i!!_=O 
dz 

............ ( 1) 

Constraints on lateral buckling : 

z= ±land O; ............ ( 2) 

Positive directions of the bending moment and the torque are shown in Fig. 4. 

2. 3. Stress-strain relations 
The analytical model for the stress-strain relation used in this study is shown 

in Fig. 5. It accounts for the typical inelastic cyclic behaviors of mild steel which 

have been demonstrated through laboratory testsll • 11 • 12l, 

the yield zone and a successive hardening by 

repeated cyclic loading. In Fig. 5, the path 

O➔A➔B➔C in the initial loading undergoes 

the yield zone at the constant yield stress /Jy 

which is followed by the strain hardening. 

The unloading path C➔D is elastic until the 

stress reaches -11y, and the strain hardening 

starts immediately after D. Further stress 

reversals result in the path E➔F➔G and so 

on without a constant-stress yield zone m 

any further hysteresis loops. Since the yield 

points are fixed at ±11y, the peak stress in-

including the vanishing of 

G 
F 

£ 

creases with increasing strain amplitude. This Fig. 5. Stress-Strain Relation Model. 

is the general behavior observed in experi-

mental data11 • The specific value of the yield level ±11y, except the initial yielding, 

has no physical significance : it is for the sake of bilinear modeling. Actual hysteretic 

paths are smoother lines such as shown by the dashed line in Fig. 5 because of the 

Bauschinger effect. 

To determine the parameter values for the stress-strain relation described above, 
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ten test specimens (No. 7 standard) were cut out from the flanges of an SS41 H­

sectioned (100 X 100 X 6 X 8 mm) steel bar, and were tested in monotonic tensile stress. 

A typical test result is shown in Fig. 6. The required values obtained from these 

test results are as follows : 

(5 

l.30"y-------------

Fig. 6. Typical Stress-Strain Curve. 

yield stress; ay=2 799 kg/cm2 

yield strain ; ey=0. 1429 % 

elasitc modulus; E=ay/ey=l. 959Xl06 kg/cm2 

strain range of yield zone; ep=l. 77 % 

strain hardening modulus; Eh=3. 119X 101 kg/cm2 

strain hardening factor; h=E!Eh=62. 8 

Using the above notaitons, the relation between the stress increment Lla and the 

strain increment Js is given by 

Lla=E' Je: ............ ( 3) 

in which 

j
E : elastic region 

E' = 0 : yield zone 

lE,.=E/h: strain-hardening region 

............ ( 4) 

In the subsequent analysis, the following non-dimensional notations are used. 

an=a/ay 

en=e/cy 

€pn=tp/ey= 11. 4 

for which Eq. (3) yields 

............ ( 5) 
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............ ( 6) 

where 

t1an=t1a /ay l 
t1sn=t1s/oy 

e=E'/E 

............ ( 7) 

Stress amplitude <la for a steady state hysteresis loop with a strain amplitude of 

•a is represented by 

............ ( 8) 

Eq. (8) also gives the "skeleton curve" connecting the peaks of hysteresis loops. 

Tanabashi et. al.7
> represented the skeleton curve for the tension-compression test 

on SS41 steel specimens by the Ramberg-Osgood model given by 

............ ( 9) 

with rs=O. 644, and n=3. 8. Eq. (8) and (9) are compared in Fig. 7 for h=62. 8. 

Agreement between the two formulas is satisfactory in the practical range. 

1.5 

1.0 -~------------------,/ 

--Eq.(8) 
0.5 ---Eq.(9) 

--- monotonic loading 
00:::-------=5------=-,'=-o-------L,s ___ __j__ 

20 fa, En 

Fig. 7. Relation between Stress Amplitude and Strain Amplitude. 

In addition to the above properties related to the normal stress and strain the 

shear modulus G is assumed to have the following value. 

G =8. 1 X 105 kg/ cm2 

2. 4. Basic assumptions for analysis 
The inelastic cyclic behavior of steel beams as modeled previously is analyzed 

m the subsequent chapters. The analysis is made under the following assumptions: 
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(i) Each transverse section of the beam which was initially plane remains plane 

and normal to longitudinal fibers, and its initial shape is preserved after deformation. 

(ii) The yield condition of the beam and the plastic deformation thereof are 

determined by longitudinal bending stress. 

(iii) The whole area of the transverse section 1s effective with constant shear 

modulus in evaluating the torsional rigidity. 

(iv) Effect of shear on transverse deformation 1s negligible. 

(v) Effects of initial residual stress and local flange buckling are negligible. 

(vi) There is no initial deformation nor eccentric load. 

(vii) Lateral buckling is analyzed by using the tangent modulus theory. For 

this purpose, two cases are considered for the tangent modulus in evaluating the 

weak-axis flexural rigidity and the warping rigidity : if .,,,. denotes the strain range 

of the yield zone for calculating the above two rigidities, (a) .,,,.=•pn, epn being 

given in Eq. (5), or (b) •pn=O. 

These assumptions are simpler than a more detailed analysis based on yield 

conditions including the effect of shear, change in the sectional shape under tension 

and compression, and those initial and local irregularities neglected by the assump­

tions (v) and (vi). However, they may be justifiable as a first-order approximation 

for H-beams under the constraint conditions in Fig. 1 whose inelastic behavior 

is dominated by flanges, and also for the inelastic cyclic load for which detailed 

information on the effect of initial and local irregularities depends on future studies. 

This allows one to assume that the beams are symmetrical about the xz-plane, and 

that the neutral axis and the shear center coincide with the centroid of the transverse 

section. 

The two cases considered in the assumption (vii) would correspond to two 

extreme cases. Case (a) to assert •pn=•pn is consistent with Eq. (4) developed for 

the analysis of a strong-axis flexural behavior in the plane containing the external 

load P. This assumption results in almost a complete loss of lateral rigidity imme­

diately after the first yielding, and a very low deformation capacity against lateral 

buckling is obtained. However, excessive lateral buckling usually does not develop 

at the initial flange yielding. Excessive lateral buckling usually occurs when the 

beam is in the strain-hardening region.21 The critical load for lateral buckling in 

the strain hardening region is obtained from case (b) of assumption (vii) which 

ignores the yield zone in calculating lateral rigidities by setting .,,,.=O. 
These arguments may be justified if the behavior of the yield zone as described 

by Lay51 is considered. He emphasized that the yield zone is only an apparent 

macroscopic behavior. Actually, only unstable slips can occur instantaneously at 
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discrete sections along the length of the beam. Then it follows that lateral buckling 

caused by a loss of rigidity in the yield zone can result only in a limited lateral 

deflection, whereas the yield zone contributes fully to the accumulation of deflection 

in the direction of the load P. 

2. 5. Curvature, moment, and section rigidities 
Based on the assumptions described in the foregoing sections, the bending­

moment-curvature relation and the section rigidities can be obtained. The section 

rigidities herein denote those based on the tangent modulus at each state, including 

the flexural rigidity about the strong axis EI x, that for the weak axis EI,, warping 

rigidity EI,., and torsional rigidity GJ. These rigidities for the elastic region are 

represented by91 

(Eix):a= ~{B H 3
- (B-t,.) (H-2tt) 3

} l 
(EI,):a= 12{2B 3 ti+ (H-2t1) t:.,} l 

E j (EI,,,)11=24(H-t1) 2 ti B3 

(GJ)11= ~ {2Bt}+(H-t1) t;,} 

in which ( ) :a stands for the elastic rigidity. 

............ (10) 

For a nondimensional representation, the coordinate system m Fig. 2 is norma­

lized as 

Xn=x/r, l 
Yn=y/rx 

Zn=z/l 

............ (11) 

m which Xn, Yn, Zn=non-dimensional coordinates, and rx, r,=radii of gyration about 

x- and y-axes, respectively, given by 

rx=v(Eix):a/EA 0 } 

r, = v (ET;)11/ EA0 

............ (12) 

where Ao is the sectional area of the beam given by 

............ (13) 

ln the analysis of lateral buckling m a later chapter, the slenderness ratio about 

the weak axis given as follows is one of the principal ruling parameters : 

............ (14) 
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The normalized curvatures </>zn, ef>,n of the beam about the x- and y-axes, respectively, 

are represented by 

............ (15) 

in which </>z, ¢>,=the curvature about the x- and y-ayes, and ef>zy=2 ey/ H =the value 

of </>z at the initial fiber yielding. 

The bending moments M z and M, are also represented in the following non di­

mensional form : 

Msn=_!,{2-_ ) Mzy 

M,n= M, 
M,,y 

............ (16) 

where Msy is the yield bending moment about the x-axis given by 

... ···•·•••• (17) 

The non-dimensional bending moment M,.,. is generally represented by 

Msn=_l_( a y dA=-JL( a,.y,. dA,. 
M,.y J..t 2r,. J..t. 

............ (18) 

where A,. is the normalized area given by 

A .. =~ ............ (19) 
Ao 

Since the relation between the normalized strain e,. in Eq. (5) and the normalized 

curvature in Eq. (15) is given by 

Y </>s 2r,. •n=--=--y,. </>sn ey H 
............ (20) 

Eq. (6) yields 

..........•. (21) 

Hence, the non-dimensional bending moment increment .JM,.,. about the x-axis 1s 

given by 

.JM,.,.= 
2
H ( .da,.y,. dAn=[( ey; dAn] .def>sn 
rs J...t,. J..t. 

............ (22) 

Likewise, the non-dimensional bending moment increment .JM,,. about the y-axis 1s 
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obtained as 

Eqs. (22) and (23) can be rewritten as 

tJM,.n= (El,.)n tl<p:,n} 

iJMyn= (Efy)n tl<f>yn 

... ········· (23) 

............ (24) 

in which (El,.)n and (EI,)n are non-dimensional tangent flexural rigidities repre­

sented by 

............ (25) 

Next, the tangent warping rigidity (El,,,)T is considered. Let (Elt)T denote the 

tangent flexural rigidity of a single flange about the y-axis. Then, since biaxially 

symmetric cross sections are being discussed, the warping rigidity (El,,,) T is given 

by9> 

(El.,,)T=l_(H-t1) 2 (Elth= 
2
1 (H-t1) 2 ( E' x 2 dA 

2 )~ 

= 
2
1 (H-t1) 2 Er;A0 ( ex!dAn= 

2
1 (H-t1) 2 (EI,)11( ex!dAn 

)At• )At• 

The non-dimensional tangent warping rigidity is given by 

(EI ) = (El,,,)T 
111 

n (E/111)11 
l2+ (H-t1) t~}( ex2 dAn 
l B 3 tt )-'-t• n 

............ (26) 

............ (27) 

Since it is assumed that the tangent shear modulus is constant, and the whole 

sectional area is always effective in evaluating the torsional rigidity, the non­

dimensional torsional rigidity (GJ)n becomes 

............ (28) 

3. Flexural Behavior of Elastoplastic Beams 

3. 1. Description of load and deflection 
The inelastic beams dealt with herein are simple beams in the y-z plane with 

the cyclic load P applied at midspan in the y-direction as shown in Fig. 2. If 

Pr denotes the yield load at the initial yielding of the flange, and oy denotes the 

corresponding midspan displacement, we have 
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Pr= 
2 Atf "r =4 E er Ao rk- ............ (29) 

- Pr l3 
_ 1 2 oy- 6 (EI,,):s -3</J"rl ............ (30) 

In the following, the load P and the displacement v of an arbitrary section m the 

y-direction are represented by the corresponding non-dimensional terms Pn and Vn, 

respectively, given by 

Pn~P/Pr 

Vn=V/Vr 

............ (31) 

............ (32) 

Accordingly, the non-dimensional midspan displacement is given by 

On= Vn' •••0 ............ (33) 

By using these notations, the bending moment M,,n is represented by 

............ (34) 

By virtue of the well-known curvature-displacement relation and Eqs. (11), (15), 

(30) and (32), the non-dimensional curvature tp:<n takes the form 

............ (35) 

In Eq. (35), the effect of the slope dvn/ dzn is neglected since its effect is of the order 

of 10-2 even for the problem of the large deflection dealt with in this study. 

The boundary conditions for bending given by Eq. (1) is rewritten in terms of 

the non-dimensional parameters in the following form. 

1 0 d d2Vn =0 l Zn=± ; Vn= an 
dz~ 

Zn= o; dvn =0 
dzn 

............ (36) 

From Eqs. (35) and (36), Eqs. (32) and (33) yield 

dvn 3 }•• ,1. d -d =- 'I'"" Zn Zn o 
............ (37) 

)
I )•• Vn=3 ( tp:<n dzn) dz,. 
•• 0 

............ (38) 

(1 (•• 
on=3 )o ()

0 
tpu dz,.) dzn ............ (36) 

Eqs. (34), (35) and (37) ~ (39) can be used for the analysis of bending and lateral 

buckling under monotomc loading. For cyclic loading, increments of the associated 

parameters are required. They are expressed as 
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tJM,.,.= (1- J Zn!) ,:JP,. ............ (40) 

'1</>:tn= - ~ ,:1( ~2:f) ............ (41) 

t1( ~~:) = -3 r t1<f>,.,. dz,. ............ (42) 

)
I )•• t1v,.= 3 ( t1<f>,,,. dz,.) dz,. 
•• 0 

············ (43) 

............ (44) 

3. 2. Bending under monotonic loading 
In order to have a comparison with the results for cyclic loading, the flexural 

behavior of steel beams under monotonic loading is analyzed. Since the strain 

distribution is assumed to be symmetrical about the x-axis, it suffices to deal with a 

half-section of the beam as shown in Fig. 8 (a). The section is divided into layers 

( a ) t ransve rse 
section 

( b) strain ( c) stress 

e=I 

e=O 

e=l/h 

( d) elastic 
modulus 

Fig. 8. Laminated Model of Beam and Distribution of Sectional Parameters. 

parallel to the x-axis and is analyzed, assuming that the longitudinal strain, stress 

and tangent modulus, en, a,., e, respectively, are constant in each layer, as shown in 

Fig. S(b)-(d). In the present analysis, the flange and web of the half section are 

divided into 25 layers each. To obtain the longitudinal distribution of the required 

parameters, the half-span length l is divided into 100 uniform intervals. 

The numerical procedure consists of (A) obtaining the relation between the 

curvature <ft,,,. and the section parameters including the bending moment M,.,. and 

the rigidities (EI,.) n, (EI y) n, (EI,,,) n, and (B) obtaining the distribution of the 

deformation, rigidities, curvature and bending moment along the length of the beam 

for a given load. Each stage is described below. 

Stage A 

(i) Specify the curvature <fin. 
(ii) Determine the strain en from Eq. (20). 
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(iii) Find the stress a,. and the tangent modulus e from the stress-strain 

relation in Fig. 5. 

(iv) Determine the bending moment M,,,. from Eq. (18) and the tangent 

rigidities (El,.),., (El 1 ) ,., and (El.,,) n from Eqs. (25) and (27). 

Stage B 

(v) Specify the load P ,.. 

(vi) Determine the bending moment M,,,. from Eq. (34) for each section along 

z-axis. 

(vii) From the results of Stage A, find the curvature </J"" and the tangent 

rigidities (El,.),., (El,),., (El.,),. corresponding to the value of M,.,. for 

each section. 

1.5 

~ 1.0 
::!!: 

c 
§0.5 

E 

00 10 20 30 
curvature ¢xn 

1.0 

C 

><0.5 
w 

0 
0 10 20 

¢xn 
0 

curvature 

1.0 

C 

">.0.5 
w 

0 
0 10 20 0 

curvature ¢xn 
1.0 

C 

'i0.5 
w 

0 
0 10 20 30 

curvature ¢xn 

Fig. 9. Bending Moment and Section Rigidities vs. Curvature. 
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(viii) Find the deflections Vn and o,. of the beam from Eqs. (37) and (38), 

respectively. 

The rigidities (EI1 )n and (El.,,),. obtained above have no relatation to the 

flexural behavior discussed in this chapter. They are required in the analysis of 

lateral buckling in the next chapter. 

Fig. 9 shows the result of Stage A executed for a steel beam with 100Xl00X6 

XS mm H-section made of SS41 mild steel whose material properties were described 

in 2,3. This transverse section gives 

Ys=4. 18 cm, and Ys=2. 47 cm 

In Fig. 9(a), note that the elastic, 

yielding, and strain-hardening regions 

are clearly observed. In Fig. 9(b), 

(c), (d), a rapid loss of the tangent 

rigidities as the flange yields and a 

slight recovery in the strain hardening 

region are observed. Particularly, the 

flexural rigidity (EI1 )n and the war­

ping rigidity (EI.,,) n almost vanish 

in the yield zone since there is little 

contribution to these two parameters 

from the web section. This is discussed 

again in the next chapter in connec­

tion with lateral buckling. 

Fig. 10 shows the result of Stage 

B. In Fig. 10, the case where P n= 

1. O corresponds to the elastic limit : 

all parameters in the figure remain in 

the elastic region. When Pn=l. 15, the 

flanges have entirely yielded within 

the section I Zn I <O. 05, where the cur­

vature assumes a great value as a re­

sult of the loss of rigidity. The loss 

of rigidity is also observed in (EI1 ) n 

and (EI..,)n, When Pn=l. 30, an ex­

tended plastic region is observed, and 

the values of the curvature if,sn are 

great in this extended region, resulting 

~o \ 
\ 

'S, \ 

e \ 

.;! 10 I 
!l I I ... I I 
::, I \ u ' --
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0 
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1.54 
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Zn 

............ 
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'O 

0.2 0.4 
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'[// 
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1.0 

I.O 
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Fig. 10. Longitudinal Distribution of Sectional 
Parameters under Monotonic Loading. 
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in a large deflection. 

In Fig. 11, the computed Pn-on relation is compared with a test result3> for a 

steel beam with the same section and a half-span length of l=70 cm for which the 

slenderness ratio is ).=70/2. 47=28. 3. The computed and test results agree satis-

C: 
a. 

"O 
C 

2.0 

. ol result ---­ono\y11S-----

..2 -t;st;esult : '\L t 
1 , a era buckling 

"O 1.0 
.~ 
15 
E ... 
g 

00 

: occurs. 
I 

I 
I 

10 20 26 30 
normalized midspan deflection .Sn 

40 

Fig. 11. Load-Deflection Relation under Monotonic Loading. 

factorily for on<lO which is a range of practical interest. For greater values of on, 

however, there is a limit to the value of the load Pn, whereas the computed result 

increases linearly with on. One reason for this difference can be found in the 

modeling of the stress-strain relation by a straight line for the strain-hardening region 

in Fig. 6, that will overestimate the load P,. for a higher region of on. Another and 

primary reason for a decrease in Pn for higher values of on is the lateral buckling 

of the tested beam. As the transverse deflection due to lateral buckling grows, the 

value of Pn attains its maximum value, at on=26 in this case, and decreases for 

larger values of on. 

3. 3. Bending under cyclic loading 
3. 3. 1. Procedure of Computation 

When the load P,. is cyclic, the moment-curvature relation cannot be definitely 

determined. This requires a step-by-step analysis for the incremental load LJP,. in 

which Stages A and B in the previous section are interrelated. The beam is divided 

into elements arranged along the y,.- and z,.-axes in the same way as in the case of 

monotonic loading. Then the numerical procedure for bending under the m-th step 

of a cyclic loading can be described by the following iterative routine. Let the 

subscript, m represent the m-th step. The values of Pn,m-i, o,.,m-t, v,.,m-t, M:<n,m-t 

and <p:<n,m-1 for each section, and en,m-1 and O"n,m-1 for each element must be known. 

(i) Specify the load increment LJP,.,m. 

(ii) Determine the bending moment increment LJM:<,.,m from Eq. (40) for 
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each section along the z,.-axis. 

Let '1¢>~~.m=AM,m,m/(EJ,,),.,m_1 be the initial assumed value of iteration 

for the curvature increment tl<j>,,,.,m corresponding to '1M,,,.,m. 

(iv) Determine the strain increment Ae~:;,, for each element of a section from 

(v) 

Eq. (21). 

Find the stress increment Ja~:;,, and the tangent modulus 

element from Fig. 5. 

for each 

(vi) Determine the bending moment increment AM~~.m corresponding to tla~'.;,, 

from Eq. (22). Determine also the tangent rigidities (EJ,,)~;m, (EI,)~1,>m, 

( vii) 

( viii) 

(ix) 

(El..,) ~1,>m from Eqs. (25) and (27). 

If AM~1~,m is close enough to tlM,,n,m, proceed to (viii). If not, compute 

'1¢>~~,m = A<j>~1~,m + ('1M ""' m -AM~1~,m) /(EI,,) ~1
,'.... Let A<j>~2~,m be the second 

assumed value and return to (iv). 

Complete (ii)~ ( vii) for all sections. 

Determine the deflection increments '1vn,m and '1on,m from Eqs. (43) and 

(44). 

(x) Determine Pn,m, on,m, M,,,.,m and <j>,,n,m for each section, and •n,m and 

an,m for each element by adding the respective incremental values ob­

tained above to the result of (m-1)-th step. 

When the analysis is made for prescribed 

load steps, it suffices to repeat the above 

procedure. However, when the loading pro­

cess is controlled by the deflection amplitude, 

the deflection on,m obtained in (x) must be 

checked if it exceeds the prescribed peak 

value. Suppose that the computation is being 

made along the route -(!)-++® in Fig. 12. 

Then for deflection control, the following ad­

Pn 

ditional adjustments are necessary. 

(xi) If the mid-span deflection on,m 

obtained in (x) is less than the -® 

(xii) 

target peak value on+. then return 

to (i) for the next load step. If 

on,m exceeds on+. proceed to (xii). 

Fig. 12. Illustration of Hysteresis 
Loop Control. 

Adjust L1P n,m iteratively until the resulting on,m becomes close enough to 

On+, and return to (i) for the next load step on the route + ®-+-® in 

Fig. 12-

When the m-th step is on the route +®-+-®, the above check 1s made in a 
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similar manner. It suffices to replace On+ and + ®➔-® in the statements of (xi) 

and (xii) by On- and -®➔+@, respectively. 

In Figs. 13 and 14, the numerical results obtained from the above procedure 

for steel beams are compared with the test results. The beams dealt with are again 

SS41 mild steel 100Xl00X6X8mm H-sectioned beams of 70cm half-span. The test 

results have been obtained from the preliminary tests or the first few cycles of fatigue 

tests performed for a previous study8>. In these figures, the experimental curves are 

smoother than the analytical curves at the yielding corners except for the initial 

yielding. This is a consequence of the stress-strain relation model in Fig. 5 which 

neglects the Bauschinger effect. Therefore, the difference between the analytical 

and experimental results can be reduced through a refinement of the stress-strain 

Pn 2 ----

10 Sn 

-- test result 

-2 --- analytical result 

Fig. 13. Transient Hysteresis Curve with Increasing 
Deflection Amplitude. 

Pn 

5 Sn 

- - analytical result 

Fig. 14. Transient Hysteresis Curve with Constant 
Deflection Amplitude (oa=4. 76). 
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model, for example, by employing a tri-linear model for repeated hysteretic cycles 

instead of the bilinear model in Fig. 5. Such a difference will give different results 

for the hysteretic energy dissipation capacity. 

For other aspects of the flexural behavior, however, the analytical and experi­

mental results in Figs. 13 and 14 agree fairly well. In Fig. 13 which corresponds 

to the increasing deflection amplitude, the analytical result follows the experimental 

result quite well, particularly in the increase in the load amplitude with an increasing 

deflection amplitude. In Fig. 14 which is the result for a constant deflection ampli­

tude, the analytical curve again shows a good agreement with the experimental 

result in that the load amplitude increases with repeated loading cycles which 

asymptotically attain a stationary state. It should be worth noting that the first and 

second reverse loading paths (Pn-4-Pn) cross in the negative load region. This is 

observed for both the analytical and the experimental results. This behavior is 

discussed in detail in the next subsection. The high initial yield load for the 

experimental curve in Fig. 14 can be a result of loading frequency of Q. 5 Hz. 

3. 3. 2. Tansient Inelastic Flexural Behavior under Constant Deflection Amplitude 

First, the transient flexural behavior of inelastic beams is considered. Discussion 

will be confined to cases for excitation with the constant deflection amplitude of on. 
Figs. 15 and 16 show the analytical results of the force Pn - displacement on relation 

for oa= 4 and 6, respectively. They can be discussed along with Fig. 14. In Figs. 

14~16, it is commonly observed that the absolute value of Pn in the stable hysteresis 

loops is larger than that for the initial loading path. This is the effect of hardening 

in the repeated loading cycles, as modeled in Fig. 5. It is also observed that the 

unloading path in the initial loop (cor­

responding to +CD--CD in Fig. 12) 

crosses with that in the second loop 

(corresponding to +@--® in Fig. 12), 

implying that the apparent rigidity for 

the path +@--® is larger than that 

for the path +(D-4-(D. This can be 

verified from Fig. 17, showing the ine­

lastic regions in each step of loading 

for Oa=4. 

Fig. 17(a) corresponds to the step 

+CD at which the inelastic region has 

not yet fully grown. Most of the inelastic 

region is in the yield zone. The inelastic 

2 
Pn 

-2 
Fig. 15. Transient Hysteresis Curve with Con­

stant Deflection Amplitude (00 =4). 
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2 
Pn 

0 

-I 

-2 

2 6 
.Sn 

Fig. 16. Transient Hysteresis Curve with Constant Deflection 
Amplitude (oa=6). 

0 

• in yield zone 

rnITI in strain-hardening region 

111':'.•143 
Sn=+4.0 ~ &n =+4.0 

-~;;::=0:.2====0:_3===,, ~Q3 'n 

(a) +Q) 

0.1 0.2 

(b) -Q) 

Pn •-1.39 

:;n =-4.0 

I 
0.3 

(c) 

(d) 

Fig. 17. States of Midspan Plastic Hinge. 
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region expands on the path +CD--+-CD. The region which yielded before the step 

+CD no longer undergoes the yield zone and is in the strain hardening region at 

the step -CD in Fig. 17(b). However, the region which yielded newly on the path 

+CD--+-CD is still in the yield zone. On the path -CD-++®, only a small region 
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enters the yield zone, and most of the inelastic region at the step + ® in Fig. 17. 

(c) is in the strain hardening region. Thus, the path +@--® almost coincides 

with the steady-state hysteresis loop, resulting in the stable plastic hinge at the step 

-® as shown in Fig. 17(d). Since almost no yield zone is contained on the path 

+®--®• the apparent rigidity is larger than that for the path +©--CD as 

described above. 

The longitudinal distribution of the bending moment, curvature, deflection, and 

section rigidities are shown m Fig. 18. It may be observed that the curvature at 

C 2 
>( 

::i: 

40 

-40 

---

--step +CD 
------ step -CD 
---step +(2) 

10 

5 

-10 

il /./ 
0 l-'-----'~'--o""~~L1 --0+~4--0+16---+i----<1 b 

Zn0.8 

'] //7 
oo±--o""'~.~2-~o+-.14--+1--.... 1---11 

0.6 Zn 0.8 1.0 

Fig. 18. Longitudinal Distribution of Sectional Parameters under Cyclic Loading 
(oa=4). 

midspan for the initial loading step + CD affects the curvature distribution at the 

following steps. As a result, the curvature distribution in the opposite positions of 

the stationary hysteresis loop (-CD and +® in Fig. 18) is not symmeteric. This is 

also reflected in the configuration of the beam represented by the deflection Vn in 

Fig. 18. The reduction of the tangent moduli (EI,) n and (EI.),. in the mid-span 

region is remarkable. The expansion of the low rigidity region with the loading 

step is consistent with that of the inelastic region which was discussed above in 

connection with Fig. 17. Note also that the low rigidity region due to yielding 

extends more than 20 % of the span, whereas at the initial loading step + CD the 

extension is only 10 %. This difference causes a low deformation capacity against 

lateral buckling under cyclic loads which will be discussed in the next chapter. 
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3. 3. 3. Steady-State Inelastic Flexural Behavior under Constant Deflection Amplitude 

As shown in the previous subsection, the transient state of the flexural beams 

treated herein terminates within a few cycles of loading, and a steady-state hysteresis 

loop is attained. The flexural behavior of the beam under steady-state hysteresis 

can be analyzed in a simpler manner than the transient case. 

In Fig. 18, it was demonstrated that the center of fluctuation of the curvature 

is shifted toward the side corresponding to the yielding in the initial loading. 

Therefore, the load amplitudes in the positive and negative loadings do not coincide. 

However, their difference is within 1 %, and can be neglected. This leads to an 

assumption that under steady-state hysteresis loops the stress-strain relation also 

has a stable hysteresis loop in which the stress amplitude <Jo with the positive and 

negative signs are equal as illustrated 

by Fig. 19. If the corresponding strain 

range is denoted by 2ea, Eq. (8) will 

hold for all yielded elements. 

When both yielded and unyielded 

elements exist in a cross section, the 

stress of the unyielded elements is 

biased, and it is interrelated with the 

"C 
Q) 

.!::! 
0 
E 
5 
C 

stress of the yielded elements. This -I 

situation exists for each yielded section 

and lasts through the steady-state 

deformation as shown in Fig. 17 ( d). 

A precise description of this state 

Fig. 19. General Steady-State Stress-Strain 
Relation. 

requires the transient analysis described in 3. 3. 2. However, for the analysis of 

steady-state hysteretic behavior, it will suffice to assume that Eq. (8) holds throughout 

a section with yielded flanges, since the contribution from the web behavior will be 

small. Therefore in the present steady-state analysis, it is assumed that Eq. (8) is 

applicable to each cross section whose flanges have completely yielded. All other 

sections are treated as elastic. 

Then the relation between the load amplitude Pa and the deflection amplitude 

Oa at midspan can be obtained in a manner similar to the case of monotonic loading 

described in 3. 2. The procedure is also divided into two stages as follows. 

Stage A 

(i) Specify the curvature amplitude <pa. 
(ii) Substitute <po into </>sn in Eq. (20). The resulting value of e,. is the strain 

amplitude ea. 

(iii) Find the stress amplitude <Ja using Fig. 19 or Eq. (8). Determine the 
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tangent modulus e=l or 1/h corresponding, respectively, to ea<l and 

ea~l. 

(iv) Substitute <la into <Jn in Eq. (18). The resulting value of M.,,. is the 

bending moment amplitude M 0 • Determine also the tangent rigidities 

(EI.,) a, (EI,) a, and (EI,,,) a at M.,,.=Ma from Eqs. (25) and (27). 

Stage B 

(v) Specify the load amplitude Pa. 

(vi) Substitute Pa into P,. in Eq. (34). The resulting value of M.,,. is the 

bending moment amplitude Ma. Repeat this for each section along the 

z,.-axis. 

(vii) From the results of Stage A, find the curvature amplitude <pa and the 

tangent rigidities (EI.,) a, (EI,) a, (EI,,,) a corresponding to Ma for each 

section. 

(viii) Substitute <pa into <psn in Eq. (39). The resulting value of o,. is the 

mid-span deflection amplitude Oa-

A numerical result of the above procedure is shown m Fig. 20 along with the 

result of monotonic loading in Fig. 11. Observe that the load amplitude Pa in 

cyclic loading assumes a larger value than the load P,. corresponding to the same 

deflection in monotonic loading. This is a consequence of the absense of yield 

zones after repetition of loading and also the effect of hardening under repeated 

loads. 

Pa,Pn 

2 

d' tpa-aa) --­re \00 ing '..-----­~!-------
---- monotonic loading (Pn-Sn) 

2 4 6 8 

Fig. 20. Load-Deflection Relation. 

10 
~a, Sn 

4. Lateral Buckling of Inelastic Beamds 

4. 1. Basic analysis 
Inelastic buckling of beams under moment gradient generally requires an analysis 

for variable cross-sections. However, under the basic assumptions employed in 2. 4, 

the stress distribution over a cross-section is symmeteric about the x-axis, so that 
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the shear center coincides with the centroid. Therefore, (EI1 ) 1' and (EI.,,) 1' are the 

only section parameters that vary along the z-axis. The boundary conditions considered 

herein which allow no eccentricity of load also simplify the problem. 

A somewhat general form of the differential equilibrium equations of the minor 

axis bending and torsion for a beam in lateral buckling are presented elsewhereu •91 , 

Modifying them to be consistent with the basic assumptions employed in this study 

yields 

d
2

u p I (EI1 )r ~= -- (l-z) ,,, 
dz2 2 'f' 

............ (45) 
d d d2 P du P (GJ)r__<f!_-~{(EI.,,)r ~</J__}=- (l-z) --- (u0-u) 
dz dz dz2 2 dz 2 

for O~z$;l 

in which u 0 is the mid-span lateral deflection which vanishes in this study. 

By using the non-dimensional parameters defined so far and introducing some 

additional parameters, the non-dimensional representation of Eq. (45) becomes 

for O:;S;z,.;s;t, where 

a=ac~r er 
j3=b c~ r c r 
a=_!_ _H_2_r_j ~( Gc-=1~)_11_ 

4 r~ (EI 1):,, 

b=_!_!!:__ (EI.,,)11 
4 r~ (E/1 )11 

..••.•••.•.. (47) 

.......•.... (48) 

............ (49) 

............ (50) 

.•..••••..•. (51) 

Considering the anti-symmetry of the mode of buckling dealt with herein, Fig. 1 (a), 

the work done by the external load and the energy stored in the beam are equated 

in the following form. 
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From Eq. (52), it is observed that the buckling load A is affected by the coef­

ficients a and /3, the tangent rigidities (G])n and (E[,,,)n, and the buckling mode ¢· 

The basic parameters affecting these quantities are the weak-axis slenderness ratio )., 

the yield strain er, the strain range of the yield zone ep, the strain hardening factor 

h, and the shape of the cross section characterized by a and b. 

The Rayleigh-Ritz method is used for obtaining the buckling load A. Sine 

functions are employed as the deformation function satisfying the given boundary 

conditions. It is given by the following form . 

.. 
<p = ~ <pi sin i re Zn ,-1 

............ (53) 

m which m is the number of series terms and <pi (i=I, .... , m) is the undetermined 

coefficient for the i-th series term. 

Substitution of Eq. (53) into Eq. (52) yields 

............ (54) 

where 

Ai;=): [ (.Et);;-Cl -zn) 2 sin irczn sinjrczn] dz,. ............ (55) 

Bi;= ):[ij rc2 a (Gf)n cos i1rzn cosjrczn+i2 j2 rc4 f3 (Elw)n sin i1rz,. sinj1rzn] dzn 

............ (56) 

Buckling takes place at the minimum load satisfying Eq. (54) with {cpi}*{O}; i.e., 

............ (57) 

which yields 

............ (58) 

Therefore, the buckling load Pb 1s obtained as the minimum eigenvalue statisfying 

detl[Bi;]-Pi [Ai;]! =O ............ (59) 

The procedure for determining Pb is as follows. For a given value of )., the 

parameters a and f3 are determined from Eqs. (48) and (49). Depending on the 

loading condition specified in terms of Pn or Pa, that is monotonic, transient cyclic, 

or steady-state cyclic, the tangent rigidities (EI,) n and (El,,,) n are obtained from the 

procedures described in 3. 2, 3. 3. 1, and 3. 3. 3, respectively. Then all the constants 

appearing in Eq. (59) are determined from Eqs. (55) and (56), enabling one to 

obtain the value for Pb. 
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The critical load Per at which the lateral buckling actually occurs 1s obtained 

as the value of Pb when A=Pn. Let Oer be the value of the mid-span deflection o,. 

corresponding to Per• Then Oer may be referred to as the deformation capacity of 

the beam against lateral buckling. This is illustrated in Fig. 21 which is a case for 

"O 
C 
!:! 
"O 
Q) 
N 

0 
E ... 
0 
C: 

10 

5 

.A.=50 
m• 4 

~cr5 10 crl5 
normalized deflection Sn 

Pn 

20 

Fig. 21. Lateral Buckling Load under Monotonic Loadng. 

l=50, m=4. Observe that there is a slight difference in Per and a great difference 

in Oer depending on •pn =epn or O. This nature is discussed in detail in a later 

section. 

4. 2. Convergence of solution 
The accuracy of the critical load Per and the deformation capacity oer will 

depend on the number of terms m in the series in Eq. (53) giving the buckling 

mode. In the analysis of elastic buckling, convergence of the solution with m is very 

rapid; error in Per is of the order of9l 1 % for m=l. However, the error for inelastic 

buckling becomes much worse. 

Fig. 22 is a plot of the load P,. and the corresponding buckling load for the 

various values of m and for •pn=•pn, Fig. 22(a), and •pn=0, Fig. 22(b). Because 

of the stationary nature of the eigenvalue, Pb decreases with increasing m. It may 

be observed that Pb depends more on m in the inelastic region ( o,.> 1). 

Fig. 23 shows the variation of Per with m for the various values of the weak-axis 

slenderness ratio .<, For a small value of .<, say .<=50, the change in Per with m is 

great when m is small, whereas it assumes an almost constant value for m>B. When 

.< is large, say .<=200, Per varies over a wider range of m. However, the rate of 

variation is small. Similar statements can be made for the deformation capacity oer 

shown in Fig. 24, although Oer is more sensitive to m than Per as implied by Fig. 

21. Based on these results it will suffice to take m=lO. This value is used for the 

subsequent numerical calculations. 
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Fig. 22. Lateral Buckling Load under Monotonic Loading 
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Fig. 23. Convergence of Critical Load. 
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Fig. 24. Convergence of Deformation Capacity. 

4. 3. Critical load and deformation capacity under various loading patterns 
4. 3. 1, Monotonic Loading 

The critical load of a 100Xl00X6X8 mm H beam made of SS41 mild steel is 

plotted against the weak-axis slenderness ratio A m Fig. 25, In the region for 

A>310 only elastic buckling takes place and is not considered in Fig. 25. It may 

be observed in Fig. 25 that Per for ep,.=O always exceeds that for epn=epn, This 

difference is great for short beams with a small A, This tendency is much more 

remarkable in Fig. 26 which shows the deformation capacity ocr plotted against A, 

Particularly in the range of A=100~280. ocr for epn=O gradually increases with a 

decrease in A, whereas Ocr for ep,.=epn is almost constant, with values slightly greater 

than one. In the case of e;,.=epn, yielding of the flanges result in almost a complete 

loss of the tangent rigidities (EI:,) n and (EI.,,) n in the presence of a yield zone that 

is the reason for a low deformation capacity regardless of the value of A, In the 

range of A<lOO, the effect of torsional rigidity becomes dominant and Ocr increases 

with a decreasing J for ep,.=epn also. 

The significance of taking epn=epn and O may be judged by comparing these 

analytical results with experimental data. In Figs. 27 and 28, part of the extensive 
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Fig. 25. Critical Load under Monotonic Fig. 26. Deformation Capacity under 
Loading. Monotonic Loading. 

experimental data obtained by Udagawa, Saisho, Takanashi and Tanaka10
> is shown 

along with the analytical results obtained from the method of this study. They are 

the results for the SS41 H-sectioned (200Xl00X5.5X8mm) steel beams. Fig. 27 

shows the critical load Per. and Fig. 28 shows the deformation capacity Ocr-

The experimental data marked by X corresponds to a load level at which a 

lateral deflection of the flanges is observed. However, this lateral deflection usually 

does not grow further until the maximum load is attained at which an excessive 

lateral deflection due to lateral buckling takes place2
> and unloading follows. The 

data marked by O in the figures 

correspond to the maximum load. 

It can be observed that the 

analytical results for epn=ep,. agree 

fairly well with the experimental 

data for flange lateral deflection. 

Although the analytical result for 

epn=O lies only between the exper­

imental data for the flange lateral 

deflection and the maximum load, 

it may be compared with the data 

for the maximum load. If the above 
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Critical Load under Monotonic Loading 
(Test results are after Udagawa et. al.lOl). 
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comparison is allowed, the following 

statement may be made in the light 

of discussion on the basic assum­

ption (vii) in 2. 4. The yielding 

of a whole flange section causes 

instantaneous loss of the tangent 

rigidities (El,),. and (El.,,) n and 

this initiates a flange deflection due 

to lateral buckling. This corresponds 

with the result for e;,,.=epn. However, 

the yield zone can exist only in­

stantaneously, so that the lateral 

deflection of flanges does not grow 

further, and the load and the flexural 

deflection can increase beyond this 

200xl00x5.5x8 H-beam 

15 0 
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a maximum load results 
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Fig. 28. Deformation Capacity under Monotonic 
Loading (Test results are after Udagawa 
et. al.IOI). 

limit. The final excessive lateral buckling takes place in the strain hardening region 

corresponding to e;,,.=o that gives the maximum load. More detailed comparisons 

of the numerical values between the analytical results and the experimental data are 
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Fig. 29. Buckling Load under Transient Cyclic Loading. 
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impossible since the actual beams contain irregularities including the residual stress, 

etc. However, the above statements may be justified qualitatively as major factors 

affecting the lateral buckling under monotonic loading. Moreover, from the above 

discussion, the values of Per and oer for epn=O denoted by Per and aer, respectively, 

may by more significant than those for epn=•pn for practical engineering purposes. 

4. 3. 2. Cyclic Loading with Constant Deflection Amplitude-Transient State 

When steel beams are subjected to cyclic loading with the constant mid-span 

deflection amplitude oa, there are three possible ways for an occurrence of lateral 

buckling21 : (i) a limited lateral deflection due to buckling takes . place in the first 

loading step but does not grow further throughout subsequent cyclic loadings, (ii) 

similar to the previous case in the first loading step but excessive buckling takes 

place during a subsequent cyclic loading, and (iii) excessive buckling takes place 

during the first loading step. 

These cases may be explained from the results of analysis using the method of 

this study. Fig. 29 shows the vadation of the buckling load A in each transient 

loading step identified in the same manner as in Fig. 12. These results are for 

steel beams with a cross-sectional shape similar to those in Figs. 25 and 26, and the 

weak-axis slenderness ratio of ..<=50. Fig. 29(a) is for a case where the deflection 

amplitude is oa=3. Observe that the buckling load Pb for ep,.=•pn becomes smaller 

than the applied load P,. in the loading steps @-++CD and +CD➔-(!), whereas the 

value of A for ep,.=O exceeds Pn for all the loading steps accounted for in Fig. 29(a). 

Thus, a lateral buckling with •p,.=epn takes place, but, there is no further growing 

of deformation since a buckling with e;,n=O does not occur. Hence, it corresponds 

to case (i) of the above mentioned three cases. 

In Fig. 29(b), which corresponds to a larger deflection amplitude with oa=4, it 

is observed that Pb for ep,.=•pn becomes smaller than P,. in the loading steps @-+ 

+CD and +CD➔-(!), and at the same time, the Pb values for e;,,.=O also become 

smaller than P,. during subsequent stationary loading cycles. Hence, in this case 

an excessive lateral buckling takes place and this result will correspond to case (ii). 

In this case, the practical deformation capacity Jer is apparenlly smaller than that 

for monotonic loading since a buckling with •p,.=O does occur for a deflection 

amplitude oa which is much · smaller than the Jer value for monotonic loading. 

Case (iii) occurs when Pb for .:,,. =O, as well as that for •p,.=•pn becomes smaller 

than P,. before the loading step -(D. Up to this step, a clear yield zone exists as 

shown in Fig. 17. If this takes place before the step + (D, the situation is identical 

with the buckling in monotonic loading discussed in 4. 3. 1. 
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4. 3. 3. Cyclic Loading with Constant Deflection Amplitude-Steady State 

As shown in the discussion for case (ii) in the previous subsection, the prac­

tical deformation capacity against lateral buckling is usually smaller than that for 

monotonic loading. The main reason for this is an increase in the load level Pn 

with a repetition of load cycles under the constant deflection amplitude oa which 

was discussed in 3. 3. 2. This nature can be examined by obtaining the relation 

between Per and '1er for a steady state flexural behavior and comparing it with the 

result for monotonic loading. 

Fig. 30 shows the critical load Per for cyclic and monotonic loadings. It may 

be concluded from this result that the critical load for lateral buckling actually does 

not depend on the loading mode. The ques­

tion, therefore, is at what value of deflection 

the load level Pn will reach Per depending 
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on the loading mode. 

Fig. 31 is a plot of the deformation capa­

city '1er for cyclic and monotonic loadings. 

Observe that there is a great difference 

between the '1cr values for the two loading 

modes. From these results, it is clear that the 

increase in the load level P,. caused by the 

vanishing of the yield zone and the successive 

hardening during the cyclic flexural defor­

mation results in a small deformation capacity 
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under cyclic loading. This is also justified by experimental data obtained by Tanaka 

et al.8
' as shown in Fig. 32 along with the analytical result of this study. 

5. Summary and Conclusions 

Flexural behavior and lateral buckling of inelastic mild-steel beams were analyzed 

m this study. Analytical results were discussed to provide a sound physical basis 

for interpretation of the phenomena. For this purpose, previous experimental data 

were also referred to. The major results obtained herein can be summarized as 

follows. 

(1) By using the analytical model proposed in this study, the transient flexural 

behavior and the lateral buckling of inelastic steel beams can be analyzed with a 

consideration of the yield zone, strain hardening, and hardening in cyclic load 

reversals. 

(2) The analytical result of load-deflection hysteresis loops obtained from the 

method of this study permits a physical interpretation of the detailed transient 

flexural behavior of inelastic mild-steel beams. It is characterized by a low rigidity 

during the first cycle of loading and a hardening in subsequent load reversals rhat 

is a consequence of the vanishing of the yield zone of the plastic hinge and the 

successive hardening in cyclic loads. 

(3) The lateral buckling load Per of mild-steel beams with an H-section under 

monotonic loading varies depending on the treatment of yield zone; i. e., (i) the 

strain range of the yield zone epn in flexural analysis is considered also for lateral 

deflection in buckling, that is epn=epn, or (ii) it is not considered, that is s;,,.=o. 
From a discussion of the nature of the yield zone and a comparison with experi­

mental data, it may be stated that case (i) occurs during lateral buckling with an 

instantaneous complete loss of rigidity caused by flange yielding which results in a 

limited lateral deflection, whereas case (ii) occurs in excessive lateral buckling 

corresponding to a maximum load carried by the beam that may be taken as the 

critical load Per for practical purposes. 

(4) The same is true of the deformation capacity oc, for lateral buckling. 

However, the deformation capacity is more sensitive to the two cases described 

above than the buckling load. 

(5) In lateral buckling under cyclic loads, the question is that case (i) may 

occur in the first loading step or case (ii) may occur during any loading step. For 

the practical critical load Per, the Per value for case (ii) may be chosen for cyclic 

load also. 

(6) The practical buckling load P •r for monotonic loading and that for cyclic 

loading are almost indentical, whereas the corresponding deformation capacicy Jc, 
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for cyclic loading is much smaller than that for monotonic loading. This can be 

explained as a consequence of a hardening of the beam in reversed flexural defor­

mations. This result agrees qualitatively with the experimental data. These results 

should provide useful information for the design of structural beam members subjected 

to cyclic deformation during strong earthquakes. 
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Appendix. Notation 

A area element 

A,. normalized area element 

Ao = total sectional area 

a = parameter for Eq. (46) 

B width of flange 

b parameter for Eq. (46) 

E elastic modulus 

Eh strain hardening modulus 

E' tangent modulus 

e E' IE = normalized tangent modulus 

EI f = flexural rigidity of a single flange about y-axis 

EI,.= warping rigidity 

EI,, = strong axis flexural rigidity 

EI,= weak axis flexural rigidity 

G = shear modulus 

GJ = torsional rigidity 

H = height of H-beam 

h El Eh = strain hardening factor 

l half span length 

Ma bending moment amplitude about x-axis 

M,,, M, = bending moment about x- and y-axes, respectively 

M,,,., M,,. = normalized bending moment about x- and y-axes, respectively 

M1:r= yield bending moment about x-axis 

m number of series terms in the Rayleigh-Ritz method for lateral buckling 

P external load applied at mid-span 

Pa normalized load amplitude 

Pb buckling load 

P., critical load for lateral buckling 

Pc, practical critical load (P., value for e;,,.=O) 

P,. = P/Pr = normalized load 

Pr = yield load 

r,,, r:, = radius of gyration about x- and y-axes, respectively 
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t f, t,,, = thickness of flange and web, respectively 

u, v = deflection in x- and y-directions, respectively 

Un, Vn = normalized deflections 

Vy = deflection at yielding of flanges 

x, Y, z = position co-ordinates 

Xn, Yn, Zn= normalized position co-ordinates 

LlMu, LlM,n = normalized bending moment increments 

Llvn normalized deflection increment 

Lion normalized mid-span deflection increment 

Lle strain increment 

Llen normalized strain increment 

Lia stress increment 

Lian = normalized stress increment 

Ll</Jsn= normalized curvature increment about x-axis 

oa = normalized mid-span deflection amplitude 

oc, normalized deformation capacity for lateral buckling 

'ac, normalized practical deformation capacity Coe, value for cpn=O) 

on normalized mid-span ,deflection 

or yield deflection 

e fiber normal strain 

ea strain amplitude 

en e/sy = normalized strain 

ep strain range of yield zone 
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