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Abstract 

This paper proposes simple and practical iteration methods for finding an 
optimal solution of a nonlinear programming problem with inequality and equality 
constraints. The iteration methods seek a point which satisfies the Kuhn-Tucker 
conditions. It is shown that the sequence of points generated by the iteraion 
methods converges to the optimal solution. Numerical results show the efficency 
of the proposed methods. 

1. Introduction 

535 

Let R" be the n-dimensional Euclidean space, and let f(x), h,(x) (i=l, 2, ... , 

m) and gJ(X) (j=l, 2, ... , l) be real-valued functions defined on R". Let us con

sider the following nonlinear programming problem : 

(P) Minimize f(x), 

subject to 

h;(x) ;;;o (i=l. 2, ... , m) 

and 

g1(x)=0 (j=L 2, ... , l). 

This paper improves the iteration method for finding the optimal solution of (P) 

proposed in the previous paper.4, 5> Throughout this paper, it is assumed that the 

functions f, h;(i=L 2, ... , m) and g;(j=L 2, ... , l) are three times continuously 

differentiable on R". 

Section 2 shows the Kuhn-Tucker conditions for (P) and devises an iteration 

method for finding an optimal solution of (P), so that the Kuhn-Tucker conditions 

are satisfied. In Section 3 are given several lemmas which are used in proving the 
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local convergence of the proposed method in Section 4. A modified version of the 

method is also given in Section 5. As a numerical example, the Rosen-Suzuki Prob

lem 7l is solved by the proposed and modified methods presented in Section 6. 

and 

2. Iteration method 

Let 

x = (xi, x 2, ••• , x,.) be an n-dimensional vector, 

J.= (J.1, ).2, ••• , J.m) an m-dimensional vector, 

µ= (µ1, µ2, ••. , µ1) an l-dimensional vector. 

Define m-dimensional and l-dimensional vector-valued functions h and g as follows : 

and 

Then, the Lagrangian function <p(x, )., µ) associated with Problem (P) is 

<p(x, )., µ)=f(x) +J.h(x)*+µg(x)*, 

where superscript * denotes transposition. Denote by oh(x)/ox and og(x)/ox the 

mXn and lXn Jacobian matrices with (i, j) components oh;(x)/ox; and og;(x)/ox;, 

respectively. Let <p:e and <p:e:e be the gradient row vector with components o<p/ox; 

and the Hessian matrix with (i, j) component o2</J/ox;ox;, respectively. 

In the following, the Kuhn-Tucker conditions1> are introduced, under which 

point x is an optimal solution of Problem (P). 

and 

The Kuhn-Tucker conditionsll : 

h(x) ~o. 

g(x) =O, 

h(x) (diag{l)) =O, 

1,>0 for all i E B={i; h;(x) =O}, 

<p:e(x, 1, µ) =O, 

V<pn(X, t µ) v*>O, 

. .. ········· ( 1) 

......... ··· ( 2) 

......... ··· ( 3) 

...... ······ ( 4) 

......... ··· ( 5) 

......... ··· ( 6) 

for every non-zero vector v satisfying v(h;(X)):=o for iEB and v(g;(x)):=o for 

j=I. 2, ... , l. 

In addition, suppose that the vectors 
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{ (h,(.i')) s; if B}, { (g 1(.i') )s; j=l. 2, ... , l} are linearly independent . 

...... ... ... ( 7) 
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In order to simplify the notation, denote by z the (n+m+l)-dimensional vector (x, 

.:1, µ) and by z the triple (x, i, µ) which satisfies the above conditions. Define the 

(n+m+l)-dimensional vector y(z) and the (n+m+l) X (n+m+l) matrix A(z) as 

follows: 

y(z) =(<ps(z), h(x) (diag(.:1)), g(x)) 

and 

[ 

<pss(Z) 

A(z) = diag(.:1) (oh(x)/ox) 

. og(x)/ox 

(oh(x)/ox)* (og(x)/ox)* l 
diag h(x) 0 , 

0 0 

where diag(A) is the diagonal matrix with the i th diagonal component .:11, Put 

where the (n+m+l) Xn matrix A1(z) and the (n+m+l) X (m+l) matrix A 2(x) are 

as follows: 

[ 

<pss(Z) l 
A 1 (z) = diag(.:1) (oh(x) /ox) , 

og(x)/ox 

(oh(x)/ox)* (og(x)/ox)* l 
A2(x) = diag h(x) O • 

0 0 

The proposed method in the previous paper5' is based on a method for minimizing 

E(z) given by 

• I 

E(z) =II <ps(Z) 11 2+ I;(M1(x)) 2+ I;(g1(x)) 2
• 

1-1 1-1 
.. .......... ( 8) 

The Kuhn-Tucker conditions imply that if z satisfies E(z) =O, (1) and (4), then z 

is an optimal solution of (P). The previous iteration method is given by 

z<A+u =z<A> _a __ l --y(z<A>)A(z<A>) 
II A (z<A>) Ill, ' 

where 

•+•+I 
II A(z) Ill,= I: (a1;(z)) 2 

1,1-1 

and a is a constant satisfying 0<a<2. 
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In this paper, we consider the submatrices A1(z) and A(x2) instead of A(z). 

Given an initial point x< 0i, we can find the Lagrange multiplier w< 1i = (A<ii, µ<ll) 

corresponding to x<oi by minimizing E(x< 0i, w). This wui can be obtained by solv

ing the system of (m+ l) linear equations 

With wui, an improved point x< 1i is then determined by minimizing E (x, wm). 

Summarizing this procedure, we obtain the following iteration method for solving (P) 

Step 1 : Let x<oi be given. Set k=O and choose a positive number e>O. 

Step 2: Solve the system of (m+l) linear equations 

A2 (x<Ai) * A2 (x<li) w* = -Az (x<Ai) * (/s(x<Ai)' 0, g(x<Ai)) * 

Step 3: 

and set w<A+ii = <J<A+u, µ<l+u) as the solution. 

Find x<A+1i which minimizes E(x, w<A+ll). 

Otherwise, set k=k+I and return to Step 2. 

Stop if m~xlxJi+1i-xt\<e. 
1 

Remark. Since many computational methods for solving unconstrained minimi

zation problems are available2• 3•'• 5i, any of these methods can be applied for finding 

x<A+u which minimizes E(x, w<A+ii) in Step 3. For example, the previous iteration 

method leads to the following algorithm: 

Set .x< 0i=x<Ai and P=O. Calculate .x<P+ll by 

with the stopping criterion max \x_;P• 1i-xt \ <•" where e1 is suitably chosen for 
J 

the initial point x<li and a is a constant such that O<a<2. 

And set x <A+u = .x <P+ll. 

3. Preliminaries 

Denote by 11 x :: and i A !. the Euclidean norm and the corresponding matrix norm, 

i. e., 

and 

IIAll=P"', 

where p is the maximum eigenvalue of A*A. 

First, the following lemma holds. 

Lemma 1. If conditions (1) -(7) are satisfied, then there exist neighbourhoods 

V 1(z) and Vi(£) such that 
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rank A(z) =n+m+l, z E Vi(z), 

rank A1 (z) =n, z € Vi (z), 

and 

rank A2(x) =m+l, XE Vi(x). 

Proof. From Fiacco-McCormick1>, it follows that rank A(z) =n+m+l. 

It is clear by (7) that 

rank A 2(.f) =m+l. 

Therefore 

rank A 1(z) =n. 
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The continuity of f, h; (i=l. 2, ... , m) and gi U=l. 2, ... , l) implies the desired 

result. 

Now define an nXn matrix C(z) by 

• o<fo ( o<fo (z) ) '" C(z) =I::~"~- --- ~-~ + I:: J.;h;(x)J.;(h;(x) ),,,. 
•-I uX1, UX!, "" ;-1 

I 

+ l:;gj(X) (gj(X))n. 
1-1 

Then we have the following lemma. 

Lemma 2. Under the same conditions as in Lemma 1. 

det E,.,.(z) *O, ZE Vi(z) 

holds. 

Proof. From conditions (2), (3) and (5), it follows that 

E,.,.(z) =2[A1 (z) * A1 (z) +C(z) J 
=2A1(z)*A1(z). 

Since A 1 (z) is an (n+m+l) Xn matrix, Lemma 2 follows from Lemma I. 

Conditions (2), (3) and (5) show 

.. 
E,.(z) =2[<jJ,.(z)<jJu(z) + I:; (l;h;(x))J.;(h;(X)),. •-1 

I 

+ I:;gj(X) (gj(X)),.] 
1-1 

=0. .. .......... ( 9) 

Consequently Lemma 2, (9) and the implicit function theorem6> imply that the 

equation 

E,.(z) =E,.(x, w) =O 
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has a unique solution 

X=cp(w), (x, W)f. V(x) XW(w), 

where V(x) and W(w) are neighbourhoods of x and w, respectively. 

Since (8) can be rewritten as 

E(x, w)=IIA2(x)w*+(/,.(x), 0,g(x))*ll2. ............ (10) 

Lemma 1 implies that 

minimizes the value of (10) for an arbitrarily fixed XE Vi(x). Define the (m+l)

dimensional vector u(x) and the (m+l) X (m+l) matrix A3(x) by 

and 

Put 

L1 = sup 11 u(x) II ............ (11) 
uVz(i) 

and 

......... ···(12) 

Then the following lemma holds. 

Lemma 3. For any x', x" E Vi(x), there exist M1>0 and M2>0 such that 

11 u (x") - u <x') 11:::;;M 1 llx" - x'II ............ (13) 

and 

•·•··•·•• ... (14) 

Proof. First, we shall show (13). By the definition, we have 

u(x) = (/,.(x) (ah(x) ;ax) *,f,.(x) (ag(x) ;ax)*). 

Therefore, 

11 u (x") - u (x') li2 = 11 /,. (x") cah Cx") ;ax)* - f,. (x') (ah Cx') ;ax)* 112 

+ 11/,.(x") (ag(x") ;ax)*-f,.(x') (ag(x') ;ax)* 11 2• 

Define the m-dimensional vector P(x) and the l-dimensional vector q(x) as follows: 

p(x) =f,.(x) cah(x) ;ax)*, 

q(x) f,.(x) (ag(x) ;ax)*. 
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Put 

Ms= sup 11 ap(x)/oxll 
s•Yz(i> 

and 

Then it follows that 

ii u (x") - u (x') 11 2 ~ (M: + MD ii x" - x'l[2
• 

Consequently, (13) holds with M, = (M:+Mi)¼. 

We shall now show (14). From (12), it follows that for an arbitrary x', x" e Vi(x), 

II As (x") -As (x') II= II As (x") (As (x')-1-As(x")-1)As (x') II 
;:S;il As (x") 1111 As (x') [ill As (x')- 1-As (x")-111 
::s;L~ I! As (x')-1- As (x")-1[[. 

Denote by b1;(x', x") the (i, j) component of the (m+l) X (m+l) matrix (As(x')-1 

-As(x")-1). 

Since 

As (x')-1-As (x")-1 = Az (x') * Az (x') -Az (x") * A2 (x") 

is symmetric, the inequality 

holds. (See, for example, Ortega-Rheinboldt.6>) 

············ (15) 

Now define the mXm matrix A11(x), the mXl matrix A 12 (x) and the lXl matrix 

A22(x) as follows: 

and 

A11(X) = (oh(x)/ox) (oh(x)/ox)*+ (diag h(x)) 2, 

A12(x) = (oh(x) /ox) (og(x) /ox)* 

Then we have 

As(x)_ 1 =[A11(x) A12(x) ] 
Au(x) * A22(x) 

and 

max I b1;(x', x") I = max[ max I h;(x')) ,.(h;(x')) :- (h;(x") ),.(h;(x")): I, 
1:;;1.1:;; .. +1 1+1 

1:;;1. 1:;; .. 
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max 111 (h; (x')) s\1 2 - II (h1 (x")) s\1 2 + (h1 (x')) 2 

1;:;;1;:;;. 

max I (g; (x') )s (g J (x')): 
1:.1, J:.l 

- (g; (x") )s(gJ (x")) ! I]. ······ ··· ... (16) 

Moreover, define the real-valued functions PIJ(X), P1(x), QIJ(X) and r,,Cx) as follows: 

and 

Put 

P;;(x) = (h;(x))s(h;(x))! (i=toi), 

P1(x) =II (h1(x))s\12+ (h1(x)) 2, 

Q;J(X) = (h;(x))s(gJ(x))! 

M;;= sup ll(q;;(x))sl!, 
uV2(i) 

N;;= sup ll(r;;(x))sll. 
uVzCS) 

Then, from (15) and (16) 

holds, where 

L,= max L;, 
1;:;;1;:;;. 

M;;= max M;;, 
1:;ii:i.• 
1;:;;1;:;;1 

N;;= max N1;. 
1;:;;1, ;;:;;, 

This shows that (14) holds with 

M 2=L~(m+l)[max(l;;, l1, M;;, N;1)]. 

Now put e(x) and U(x) as follows: 

e(x) S=-U(x)Aa(x) =w, 
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and 

U(x) = V(x) n VzCx). 

Then we have the following lemma. 

Lemma 4. For arbitrary x', x" 1: U(x) and arbitrary w', w" E W (w), the following 

inequalities hold. 

lle(x") -e(x') 11;:S;; (L2M1 +L1M2) llx"-x'II, 
llg,(w")-g,(w') ll;S;Kllw"-w'II. 

............ (17) 

.. .......... (18) 

Proof. Inequality (17) is shown as follows. For arbitrary x', x" E U(x), it follows from 

(11), (12), (13) and (14) that 

!!e (x") -e(x') II= llu(x")A3 (x") -u(x")As (x') + u(x")As (x') -u(x')As (x') II 
;S;IIA3 (x") -As (x') 11 llu Cx") 11 + IIA3 Cx') llliu(x") -u(x') 11 
:s;; CM2L1 + L2M1) llx" -x'II. 

Moreover, observing that ef, is differentiable, by the implicit function theorem, ine

quality (18) follows by setting 

K = sup 11-[E,.,.(x, w)J-1E,.,.,(x, w) II. 
c.-, • )au Ci> x we;> 

4. Convergence Proof 

The following theorem shows the local convergence of the iteration method 

proposed in Section 2. 

Theorem 1. If z satisfies conditions (1)-(7), and the inequality 

K=K(L1M2+L2M1)<1 

holds, then there exists a neighbourhood U(x) such that for any starting point x< 0> 

1: U(x), the sequence x<A> remains in U(x) and converges to x. 

Proof. Note that 

x=ef,CeCx)). 

For any x( 0> E U(x), (17) and (18) show 

llx<A+l)_xll = llef,Ce(x<A>) )-ef,(e(x)) II 
;S;K\ie(x<A>)-e(x) ii 
:s;;k11x1•> -xii. 

This completes the proof. 

The following corollary follows immediately from Theorem 1. 

Corollary I. If the conditions in Theorem 1 are satisfied, then the sequence { w<A>} 
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converges .to w. 
Proof. The corollary immediately follows since 

w<A+ll =e(x<Al) 

and 

Further we have the following corollary. 

Corollary 2. Suppose that the same conditions as in Theorem 1 hold. 

Then E(x<A+I>, w<A+1 >) :;;;.E(x'1>, w<A>). 

Proof. Since Step 3 implies that 

and Step 2 shows that 

E(x<A>, w<A+I>) =min E(x<A>, w), . 
the corollary holds. 

5. Modified Method 

The iteration method for finding the optimal solution x of (P) is proposed in 

Section 2, and its local convergence is proved in Section 4. Step 3 in the proposed 

method requires the minimization of E(x, w<1+1>). However, it seems that solving the 

associated unconstrained minimization problem requires much time because of the 

double iterations. In this section, we consider a modified method which determines 

x<A+i> without an iteration in Step 3. 

The proposed modified method is as follows : 

Step 1. Given x< 0>, set k=O and choose a positive number s>0. 

Step 2: Solve the system of (m+l) linear equations 

A2(x<1>) * Aa(x<A>) w* = -Az(x<A>) *(fs(x<A>), 0, g(x<A>)) * 

and put w<A+1i as the solution. 

Step 3: If k=O, then find x< 1> that minimizes E(x, w<ll). Otherwise, calculate x'A+u 

by 

Step 4: Stop if maxlxt+ 1>-xY'> l<s. Otherwise set k=k+l and return to Step 3. 
I 

Define an n-dimensional vector valued-function r;(x, w) as follows: 

r;(x, w) =x-allA1(x, w) 11»2 y(x, w)A1 (x, w). 
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Then the operation in Step 3 can be rewritten as 

As noted in Section 3, the operation in Step 2 is represented by 

For suitably chosen neighbourhoods Vo(i) and W 0 (w), let 

1= sup \1071(x, w)/ox\l, 
c.,. >•VoC'i) X Wo(it) 

M= sup llo71(i, w)/owll 
• t1'Q(i;") 

and 

tr= sup 11ae(x) /ox!!. 
••Vo(!) 

The following theorem shows the local convergence of the modified method. 

Theorem 2. If conditions (1)-(7) are satisfied, and the inequality 

holds, then there exists a neighbourhood Vo(i) such that for any initial point x< 0> 

1: Vo(i), the sequence x<A> remains in Vo(i) and converges to i. 

Proof. 

\lx<l+I) - i\l = 117/ (x<A>, ecx 11')) - 71 (i, ecx 11')) 

+ 7/(i, e(x<Al) )-.ill 

;S;!l7/ (x<A>, ecx 11')) - 7/ (i, ecx 11')) II 
+ ll71(i, e(x 11')) - 71(x, e(i)) II 

;S; (1+ Mfr) \lx<A> -ill. 

This completes the proof. 

6. Numerical Example 

The Rosen-Suzuki Test Problem7' was solved as a numerical example by using 

the proposed method and its modified version. 

The Rosen-Suzuki Test Problem7' : 

Minimize 

subject to 
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a 

0.9 0.005355 

1. 3 0.003690 

1. 9 0.002531 

a 

0.9 0.005343 

1. 3 0.003713 

1. 9 0.002533 

a Xt 

0.9 0.005328 

1. 3 0.003699 

1. 9 0. 002514 

a 

0.9 0.001715 

1. 3 0.001171 

1. 9 0.000800 

a 

0.9 0.001700 

1. 3 0. 001170 

1. 9 0.000786 

a XJ 

0.9 0.001673 

1. 3 0. 001155 

1. 9 0.000778 
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Table 1. Computation resutls of the proposed method. 

x(Ol=(0.6, 0.6, 0.6, 0.6) 

X3 

1. 000254 2.002725 -0. 985844 

1. 000240 2.001867 -0. 990165 

1. 000216 2.001271 -0. 993213 

x<OI= (1. 0, 1. 0, 1. 0, 1. 0) 

X3 
' 

1. 000446 2.002683 -0. 985861 

1. 000337 2.001860 -0. 990099 

1. 000264 2.001263 -0. 993204 

X(Ol=(l.1, 1.1, 1.1, 1.1) 

X3 

1.000748 i 2.002619 -0. 985876 I 
1. 000505 

I 

2.001821 -0. 990120 

1. 000355 2.001236 -0. 993246 

-43. 99194 

-43. 99415 

-43. 99585 

-43. 99200 

-43. 99414 

-43. 99585 

I
CPU time,Number of 

(sec) iterations 

0.366 339 

0.308 271 

0.238 211 

I
CPU time,Number of 

(sec) iterations 

0.381 342 

0.311 271 

0.250 220 

I 
CPU time IN umber of 

(sec) iterations:J~ 

-43. 992081 0.503 
I 

492 

-43. 99418 , 0.403 
I 

371 

-43. 99588 [ 0.337 I 314 

Table 2. Computation results of the modified method. 

x<Ol=(0.6, 0.6, 0.6, 0.6) 

I I 
1. 000183 

! 1.000149 
I 

I 1. 000118 I 

I 
1. 000212 

1. 000165 I 

' 
1. 000124 

I 

X2 

1. 000257 

1. 000190 

1. 000137 

X3 

2.000855 ! -0. 995379 -43. 99711 

2.000580 1-0. 996826 -43. 99799 

2.000392 -0. 997832 -43. 99861 

x 101 =(1.0, 1.0, 1.0, 1.0) 

X3 

[CPU time,Number of 
1 (sec) iterations 

~ 

0.517 501 

0.391 385 

0.298 290 

I
CPU time I Number of 

(sec) iterations 
-----·--~-i 

2.000841 -0. 995417 -43. 997141 0.522 50fi 

2.000575 -0. 996836 -43. 99800 0.384 349 

2.000384 -0. 997868 -43. 99864 ! 0.303 292 

X(Ol=(l.1, 1.1, 1.1, 1. 1) 

I X3 ! 
X4 I CPU time IN umber of 

(sec) iterations 

2.000818 1-0. 9954851 -43. 99718 0.656 i 657 I 
I 

2.000563 -0. 996874 -43. 99802 0.483 488 

2.000377 i -~'.9978891 -43. 99865 0.362 357 
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Optimal solution is X= (0, 1, 2, -1) with f(x) = -44. 

Computations with e=l0-4 were carried out on an M-190 computer of Kyoto 

University Computation Center. The results are shown in Tables 1 and 2, 

7. Conclusions 

In this paper, we proposed an iteration method and its modified version for 

solving Problem (P), and proved their local convergence. Compared with the previ

ous method5>, the size of the system of equations solved for finding the optimal 

solution x is reduced from (n+m+l) to n. Therefore, these methods seem favorable 

from the computational viewpoint. 
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