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Abstract 

In this paper, a Lur'e type Lyapunov function derived from the generalized 
Popov's theorem is applied to the transient stability problem of electric power 
systems. Also described is the method of evaluating the critical fault clearing 
time using the Lyapunov function V. On the occasion of the estimation of the 
critical fault clearing time or the assessment of the transient stability region via 
the Lyapunov direct method, the determination of the critical value of the Lyapunov 
function is as important as the construction of the function. In this paper, it is 
examined what the transient stability region of electric power systems is practically 
like. It is shown that the degree of the conservativeness of the estimation can 
be reduced, if vuc, the value of V at the unstable equilibrium point corresponding 
to the first swing, is used as the critical value instead of the minimum of the 
values of V at all of the unstable equilibrium points. Two methods of approximately 
calculating vuc are proposed, and applied to the model systems as numerical 
examples. Large estimation errors were seen in some cases due to the defect of 
the Lyapunov function used, which will be overcome in the companion paper. 

1. Introduction 

The object of electric power systems is to supply customers with electric power 

of good quality uninterruptedly and sufficiently. This object is attained by a well 

designed system and its operation. One of the important items which should be 

investigated at this juncture is the transient stability. Recently, large generating 

stations are constructed in places remote from the load center due to environmental 

problems etc. Also, transmission lines are getting to be of large capacity. Accor­

dingly, the transient stability analysis of power systems gets to be more important. 

The present day transient stability analyses are mainly performed by simulations. 
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This method needs to solve multivariable nonlinear differential equations many times, 

and very much computing time is required for systems with many generators. To 

substitute for the method of simulation, Lyapunov's direct method was proposed and 

many kinds of Lyapunov functions have been investigated until now.1i-s, 

In the Lyapunov method, a critical value is sought which determines the tran­

siently stable region. The system is regarded as stable if the value of the Lyapunov 

function at the final change of the circuit is less than this critical value. Therefore, 

the critical fault clearing time is determined by solving the system's differential 

equations under the sustained fault condition only once. Hence, the total computing 

time is shortened by a large degree making the on-line estimation of the transient 

stability possible, if the time for the calculation of the critical value is short. 

In this paper, we investigate the method for effectively determining the critical 

value of the Lur'e type Lyapunov function which is derived from the generalized 

Popov theorem6'. The method for constructing the Lyapunov function from Popov 

theorem has already been applied to the transient stability problem of electric power 

systems; and several kinds of Lyapunov functions have been constructed1>-11 >. How­

ever, it can safely be said that the constructed Lyapunov functions have seldom been 

applied to practical problems, and the feasibility of the function has not been com­

firmed until now. In this paper, we first investigate the characteristics of the Lur'e 

type Lyapunov function and examine how to determine the parameters included in 

the function. The method for determining the critical value, as well as the constuc­

tion of the Lyapunov function, has a great effect on the performance of Lyapunov's 

direct method. So far, the minimum of the values of the Lyapunov function at all 

unstable equilibrium points has been used as the critical value. The estimation of 

the stable region, however, is considerably conservative with this value. In bad 

cases, the estimated value of the critical clearing time is so much smaller than the 

actual value as to make it meaningless. Besides, it takes a long time to calculate 

the usual critical value when the number of the generators is large. This is because 

the number of the equilibrium points is very large, and the usual methods need to 

calculate all of them. 

Recently, a few studies have been made in order to solve this problem12 >, 13 i, the 

results of which still seem unsatisfactory from the viewpoint of accuracy. From the 

consideration on the transient stability region, we show that it is possible to reduce 

the conservativeness of estimation by use of the critical value vuc instead of the 

usual critical value. vuc is the value of the Lyapunov function at the unstable 

equilibrium point corresponding to the first swing; and we propose two methods to 

determine the value vuc approximately. One of the methods supposes that one 

machine goes out of step, and determines the critical value by a linear combination 



568 Naoto KAKIMOTO, Yasuharu OHSAWA, and Muneaki HAYASHI 

of the values of the Lyapunov function at the unstable equilibrium points which 

correspond to each one-machine step-out. The other method approximates the 

unstable equilibrium point which corresponds to the first swing, and takes the value 

of the Lyapunov function at this point for the critical value. The latter has the 

merit that it does not need to calculate the unstable equilibrium points correctly. 

Therefore, it does not suffer from the difficulties which accompany the calculation of 

the unstable equilibrium points. In the last part of this paper, we apply the above 

mentioned methods to 4-machine and IO-machine systems as numerical examples, 

estimate the critical fault clearing time, and have a discussion on the method of 

determining the critical value and the Lyapunov function. 

2. Lur'e type Lyapunov Function 

When the transient stability of electric power systems is analyzed by Lyapunov's 

direct method, the following assumptions are generally made for multimachine systems 

although more detailed models are used for one-machine systems. 

( 1 ) Each synchronous machine is represented by a constant voltage behind its 

transient reactance. In other words, the flux linkages are constant during the 

transient period, and the flux decay and the voltage regulation are not taken 

into consideration. 

( 2) Damping power is proportional to slip velocity, and is thus assumed to be 

mainly due to the mechanical friction and the asynchronous torques. 

( 3) The mechanical power input is constant, and the governor action is not taken 

into account. 

( 4 ) Each synchronous machine is a round-rotor machine. 

( 5) The inertia coefficient of each generator is constant. 

( 6) Loads are represented by constant impedances. 

Under the above assumptions, the motion of the i th machine is described by 

the following differential equation ; 

n) ..... , .. ,(1) 

where 

time 

ih the angle between the rotor shaft of the i th machine and the shaft rotating 

at the synchronous speed (in electrical degrees) 

m; the inertia constant of the i th machine 

d; the damping coefficient of the i th machine 

Pm; the mechanical power input for the i th machine 
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Y1;L..</>1;= Y;1L..</>;1 : the post fault short-circuit transfer admittance between th and 

j th generator nodes (obtained after reduction of the network retaining only 

the generator nodes) 

01;=tr:/2-<j>1; 

01;=0;-01. 

For the above system, Gudaru11 ' has derived the following Lyapunov function by 

applying the generalized Popov theorem ; 

1 a-1 ■ -I 

+- ~ ~ a,Df;(2wj+a;) 
q 1-1 J-1 

+ ± :i:,E,E;Y.1{cos(o:;+01;) -cos(o1;+01;) -(01;-01;)sin(o:1+01;)} 
1-1 J-1 

= v.+av,.+lvd+ Vi,, ............ ( 2) 
q 

where 

and 

for i=j, 
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µm;n and µmas are given by the following equations : 

where JJmin and JJmas are the solutions of the second order equation, 

l=O. 

In order to assure the absolute stability of the system, q must satisfy the condition 

Vi, represents the kinetic energy due to the relative angular velocity, and V1.11 . . 
represents the kinetic energy due to the average angular velocity I; m;w;/I; m;. V11, 

i-1 i•l 

does not appear in the function in the case of uniform damping, because a equals 

zero. Vd includes damping coefficients but also vanishes as q-'HX>. Vp represents 

the potential energy which is stored by the deviation of the angles from their values 

at the stable equilibrium point. Hereafter, we call V.., V1.11 and Vp kinetic energy, 

kinetic energy of the inertia center and potential energy, respectively. 

3. The Effect of Vd on the Estimation of the Stability Region 

We investigate the effect of Vd on the estimation of the transient stability region 

by the example of a single machine connected to an infinite bus. The swing 

equation of the machine can be written as 

............ ( 3) 

and the Lur'e type Lyapunov function is written as follows; 

where 

q>d/m. 

The estimations of the stability region m the case of putting q->oo and q=m/d are 
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Fig. 1. Estimations of the stable region. 
a : actual boundary 
b: estimated boundary with q-+oo 
c: estimated boundary with q=d/m 
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shown in Fig. 1. where the critical value V" is given by the value of the Lyapunov 

function at the unstable equilibrium point (o, w) "= (1r-o',O). The system parame­

ters are as follows ; 

m =0. 0138 

Pm=0. 91 

d =O. 0285 

P.=3. 02 

The curve (a) represents the boundary of the actual stability· region, and the curve 

(b) and the curve (c) represent the stability boundaries estimated by the Lyapunov 

function with q-Hx, and q=m/d respectively. The estimation is better with q-H>o 

than with q=m/d at the first and the third quadrants, and conversely at the second 

and the fourth quadrants. Since the first quadrant is mainly important for the tran­

sient stability, we choose q to be infinite in this paper. 

4. The Conditions for Transient Stability 

When an electric power system is going to lose its synchronism owing to some 

fault, it is separated into two groups of machines at the first instant. The aspect 

of this loss of synchronism is called the mode of the step-out. The maximum num­

ber of the modes is 2n-1 -1 for an n-machine system, and each mode corresponds 

to an unstable equilibrium point o", which is a solution of the equationsU>, 

8;=~1-{Pm;-i:,E;E; Y;; sin (o;;+fh1)}=constant, (i=l, 2, ···, n) ······(5) 
m; ;-1 
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Fig. 2. Equipotential curves for a 3-machine system. 

Fig. 2 shows the potential energy of a three-machine system in the plane of the 

angular differences oz1 and 031. The potential energy takes its minimum value at 

the point s. The points Ui, Uz and Us correspond to the saddle points. The equi 

potentials are yielded by the following equation 

Vp(o) =constant, ··· ··· ··· ··· ( 6) 

where Vp(o) denotes the potential energy as described before. 01, 0 2 and 0 3 are 

curves which are orthogonal to the equipotentials and go through the points Ui, Uz 

and Us, respectively. 

The total torque applied to the system is represented as follows: 

(The proof is given in Appendix 1.) 

Accordingly, the direction of the torque is always orthogonal to the equipotential 

curves, and synchronism will be lost at the moment when the system crosses one of 

the curves 0,,, since afterward the torque T is such that it will separate the system 

from the curve O,,. 
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If the system has a total energy equal to £ 3, the synchronism can be lost by 

crossing 0 1 or 0 2• In other words, machine 2 or machine 1 can be separated from 

the rest of the system. However, which one will actually be separated depends upon 

the direction in which the system swings. 

Fig. 3 shows some examples of the trajectory of the 3-machine system projected 

onto the angular space. The angular velocities are initially assumed to be zero, and 

the initial state is put on the 021 -031 plane. The initial point in Fig. 3 (a) is (021 , 

031) = ( -0. 5, 2. 5) rad., and the total energy is 5. 03, which is enough to cross 

the curve 0 1 or 0 2• The system, however, stays in the stable region after three 

oscillations for two seconds. In Fig. 3 (b), starting from the point (021, 031) = (3. O, 

2. 0) rad., the system crosses the curve 0 2 after two oscillations. The total energy 

is 4. 27, and is also enough to cross the curve 01 or 0 2• In Fig. 3 (c), starting from 

the point (021, oa1) = ( -1. O, -1. 0) rad., the system crosses the curve 0 2 without 

oscillation. The total energy is 5. 61 in this case. As seen in these examples, the 

system can stay in the stable region for a fairly long time, even if it has enough 

energy to become unstable. In these cases, it is possible to keep the system in 

synchronism by changing the system's construction or parameters, or by decreasing 

the total energy via the damping effect. 

f ----\~--- 82, 
4 (rad) 

10 

' 13 
~ 

(a) o0= ( -0. 5, 2. 5) !rad. 

Fig. 3. Trajectory projected onto the angular space for the 3-machine system. 
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s3I (rod) 
~ 

+ 4 

--4 

(b) i5o= (3. 0, 2. 0) rad. 

S31 (rod) 
I 
I 
+-4 

-4 

(c) i5o=(-1.0, -1.0) rad. 

7 

I 
10 

~+-~ 021 

4 (rad) 
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Now we can establish the conditions for the stability of power systems. First 

consider the loss of synchronism around an unstable equilibrium point o"". Since 

o'"" is the point which makes the potential energy minimum on the curve Os, the 

system must have more energy V than V"" in order to cross the curve O,., where 

V"" is the potential energy at the point o"". Hence, a sufficient condition for sta­

bility can be written as follows ; 

Stability Condition 1 
If the system satisfies the condition 

············( 8) 

around the unstable equilibrium point o"", then the system is stable around the 

point o""'· 
Stability Condition 1 is related to the stability around a certain unstable equilibrium 

point, and in order to be stable for all of the unstable equilibrium points, the system 

must satisfy the following condition. 

Stability Condition 2 
Let vum designate the minimum of the values of V at all of the unstable 

equilibrium points. Then, if it is 

V<V"m, ... ·········( 9) 

the system is stable with respect to all the unstable equilibrium points. 

Stability Condition 2 is the condition which is generally used in Lyapunov's direct 

method. However, it is well known that by using vum as the critical value of V. the 

estimation of the critical clearing time is considerably conservative compared with the 

actual value. In many cases, the system loses synchronism during the first swing, 

and if the system stays in step after the first swing, the system will be stable for the 

succeeding swings. Hence, in such cases, Stability Condition 2 is too strict; and 

Stability Condition 1 is suitable for checking the stability for the first swing. There­

fore, Condition 1 is rewritten as follows ; 

Stability Condition 3 
Designating o"c as the unstable equilibrium point which corresponds to the 

first swing, and Vl'c as the value of the Lyapunov function at o"•, the system is 

stable for the first swing if 

.....•...... (10) 

It is expected that the conservativeness which exists in the usual Lyapunov direct 
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method can be reduced by use of V11
• as the critical value. 

5. Methods of Determining the Critical Value 

In this paper, we pay attention only to the stability for the first swing. By using 

the critical value V"', we try to reduce the conservativeness which is inevitable to 

the usual method which uses V""'. In order to determine the critical value V'" 

described in the last section, it is necessary to know the unstable equilibrium point 

which corresponds to the first swing. Two methods are proposed in the following. 

Method 1 CVestl) 

For an n-machine system, (n -1) unstable equilibrium points at the most corres­

pond to a one-machine step-out with respect to the No. 1 generator. Each of them 

can be represented by the (n-1) dimensional vector y;, i=2, 3, ···, n, and they are 

independent each other, where the suffix i denotes the number of the generator 

which goes out of step. In the same manner, the angles of the machines during 

transient swings can also be represented by the (n-1) dimensional vector as follows; 

............ (11) 

Then x can be represented by the linear combination of the unstable equilibrium 

vectors y;'s as 

············(12) 

The coefficients a;'s can be obtained by solving the simultaneous linear algebraic 

equations, . 
(x, YJ) = ~ a;(y;, Y;) (j=2, 3, ······, n) ,-z 

............ (13) 

and indicates the magnitude of the i th unstable swing which is an element included 

in x. Method 1 supposes that the i th one-machine step-out is going to occur with 

the magnitude of ja;I, and determines the critical value V,s11 by the following equa­

tion; 

v,.11 ········· ···(14) 

where vr is the value of the Lyapunov function at the unstable equilibrium point 

y;. The critical value V •• ,, is interpreted as a weighted average of Vf's. If some 

la;! is much greater than the other la1l's (j=t=i), then 

...........• (15) 
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i. e., V,s11 is equal to the critical value for the i th one-machine step-out. V,,t1 is 

a function of time, and the time when V., 11 crosses the Lyapunov function for the 

sustained fault is determined as the critical clearing time. In case of a step-out of 

two or more machines, however, accurate results can not be expected, since V.,1 1 is 

derived by assuming only a one-machine step-out. 

Method 2 ( Vest2) 

As in Method 1, the angles during transient swings are represented by the 

(n -1) dimensional vector x. Using x, we approximate the unstable equilibrium 

point o"• which corresponds to the actual step-out by the equation 

y=ax, ············(16) 

where a is a positive constant given by 

a 

The critical value V.112 is defined by the following equation : 

Vest2 = Vi,(y), •........•.. (17) 

where Vp represents the potential energy. The meaning of this method can be 

considered as follows : It is supposed in this method that the system loses its synch­

ronism when the absolute value of some component of x becomes greater than tr. 

Then the unstable equilibrium point is approximated by y, and the potential energy 

at y is taken as the critical value. Since the angles of the machines which go out 

of step are nearly equal to tr at the corresponding unstable equilibrium point, and 

the Lur'e type Lyapunov function is not very sensitive to the small change of o near 

the equilibrium point12 >, the critical value suggested above is considered to be a 

good approximation of the value V"' which corresponds to the first swing. Moreover, 

this method does not need to calculate the unstable points correctly, so the compu­

ting time is very short. Since V,s12 is also a function of time, the estimation of the 

critical clearing time is made in the same way as by V.stt. 

6. Examples 

The Lur'e type Lyapunov function and the methods of determining the critical 

value are applied to the transient stability analysis of 4-and IO-machine systems. 

6-1 4-machine system 
The construction of the system is shown in Fig. 4. This system was used by 

El-Abiad3
> for the first time, and since then it has often been used in the studies of 
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load 

6 

3 

Fig. 4. Construction of the 4-machine system. 

the transient stability via Lyapunov's direct method. The assumed disturbance x-y 

is the 3-phase short circuit which occurs at the terminal x of the transmission line 

x-y, and which is cleared by opening the line at both terminals after a certain 

lapse of time. 

Table 1 shows the estimated critical clearing times for seven faults together 

with the critical values v•m, Vesti and V,,12- The estimation by v•m is conservative 

for all faults compared with the actual values. As mentioned in Section 4, the esti­

mation error is large when the unstable equilibrium point which gives v•m does not 

coincide with the actual mode of the step-out. Table 2 shows which machine (or 

machines) swings largely, which machine gives V"m, and the results of the estimation 

by V"•. It can be seen from this table that the error for fault 2-3 which was the 

greatest by v•m is greatly reduced by V"•. 

Table. 1. Estimations of the critical clearing time (sec.) for the 4-machine system. 

Tcr: actual critical clearing time. 

Fault I 
yum 

I Vest 1 I Vest 2 
i 

Tcr 

2-1 i 0.56 0.58 0.57 0.61 
2-3 I 0.41 0.50 0.55 0.54 
2-5 0.50 0.53 0.59 0.53 
3-2 0.37 0.38 0.37 0.42 

' 3-4 0.40 0,40 0.40 0.42 i 
4-3 0.40 0.44 0.46 0.43 

I 
4-5 0.43 0.48 0.43 0.47 
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Table. 2. Estimations with the critical value yuc for the 4-machine system. 

aum : number of the generator corresponding to yum 

o"' : number(s) of the generator(s) losing synchronism 

Fault I 
aum 

I o"' I 
yuc 

I Tcr 

2-1 1 2 0.58 0.61 

2-3 3 2 0. 52 0.54 

2-5 2 2 0.50 0.53 

3-2 3 3 0.37 0.42 

3-4 3 3 0.40 0.42 

4-3 3 4 0.45 0.43 

4-5 4 4 0.43 0.47 
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I 

The estimation with V.,11 gives conservative results for all faults, but its degree 

of conservativeness is smaller than the results with v•m. Also, those results are very 

similar to those with V"'. This is because only a one-machine step-out occurs in 

this example, and V.m approximates the value of Vat unstable equilibrium point for 

the first swing. 

Fig. 5 shows an example of a variation of Vesti for the sustained fault 3-4. V,s1 1 

decreases gradually as time proceeds, and is almost constant after the time when the 

potential energy Vp reaches its maximum value. This is because the mode of the 

step-out becomes apparent with the increase of the potential energy, i. e., the in­

crease of the angular differences of the machines. The mode is almost determined 

at the time when the potential energy reaches its peak, and does not vary afterwards. 

This situation is the same for the other faults. 

-: 
::, 

ci. 

> 

J 

V V 

f -

time (sec) 2 

Fig. 5. The time variations of V esfl and V em for the 4-machine system ; fault 3-4. 
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The estimation with V,,12 gives greater values of critical clearing time than the 

actual values for some faults, but has the same accuracy as with V,, 11 on the ave­

rage. Fig. 5 also shows the time variation of V,s12 for the sustained fault 3-4. It 

has similar characteristics to the time variation of Vest1• It should be noted that the 

estimation with V,,12 gives more accurate results than with the usual V"m, though 

V,,12 can be obtained quite easily without a calculation of the saddle points. 

6-2 10-machine system 
Fig. 6 shows the construction of the 10-machine system which is called the New 

England test system15 >. For this system, two cases of load conditions are considered, 

which are designated as the light load condition and the heavy load condition. The 

heavy load is taken twice as large as the light load. The faults are assumed to be 

the 3-phase short circuit, and their expression is the same as for the 4-machine 

system. 

(a) Light load 

Table 3 shows the results of the estimation of the critical clearing time under 

the light load condition. The error is relatively large in the case of the estimation 

with V"m. Table 4 shows the number of the machine which corresponds to the 

unstable equilibrium point o"m and the number of the machine(s) which actually step 

out. Both coincide only for the fault 11-12, for which the error of estimation is 

small. When the critical value vuc corresponding to the first swing is used, the 

36 
35 

-'---'-31 

37 

23 

25 

7 

Fig. 6. Construction of the 10-machine system. 

17 
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Table. 3. Estimations of the critical clearing time (sec.) for the 10-machine 
system ; light loads. 

I I I 
I 

Fault V Vest 1 Vest 2 I Tcr 

11-12 0.33 0.37 I 0.36 0.30 
15-14 0.27 0.36 0.42 0.41 
17-18 0.34 0.42 0.47 0.47 
18-17 0.33 0.42 0.49 0.50 
24-16 0.28 0.35 0.46 0.45 

30-27 0.35 0.45 0.48 0.47 
34-29 0.33 0.42 0.47 0.46 
38-15 0.43 0.54 0.63 0.66 

Table. 4. Estimations with the critical value V"c !or the 10-machine system; 
light loads. 

Fault I 
iJUffl 

I 
/jUC 

I 
vuc 

I Tcr 

11-12 2 2 I 0.33 0.30 
15-14 6 3 I 0.34 0.41 
17-18 6 4 I 0.42 0.47 i 
18-17 6 5 

I 

0.44 0.50 
24-16 6 1 0.44 0.45 
30-27 I 6 8 0.43 0.47 
34-29 

I 
6 9 

i 
0.39 0.46 

38-15 6 1 0.67 0.65 
I ! I I 
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estimation 1s improved to a great extent, compared with the estimation with V"m. 

Also by comparing the results between the two model systems, it can be seen that 

the improvement of estimation by using V"c instead of V"m as the critical value is 

salient in the case of a system with many machines. vuc is here selected from the 

values of V at the saddle points corresponding to a one-machine step-out by inspec­

ting the swing curves. Hence, this vuc is not adequate when two or more machines 

go out step. The relatively large errors in Table 4 are considered to be generated 

from this cause. 

In the case of an estimation using V.,11 as the critical value, conservative results 

are given except for the fault 11-12; and the errors are smaller than those with V"m. 

The errors for the faults 24-16 and 38-15 are greater than those with vuc. This is 

because all the machines except No. 1 go out of step, and Vem is effective only for 

a one-machine step-out as seen from its definition. The reason why the estimation 

for the fault 11-12 is larger than with V"c is that the mode of step-out is not appa­

rent at the time when V.,11 crosses the Lyapunov function. The estimation can be 
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improved by using the value of V.m at the time when the mode is established. For 

this fault, even the estimation with V"• is larger than the actual value. This is due 

to the characteristics of the Lyapunov function, about which we will later consider. 

In the case of an estimation with V.,12 , very good results are given except for 

the fault 11-12; and the average error is smaller than with V"•. This is because 

V.,12 can select the unstable equilibrium point which just corresponds to the actual 

mode of step-out. Hence, there are good estimations for the step-out of two or more 

machines as well as for a one-machine step-out. The errors are very small, especially 

for the faults 24-16 and 38-15 in comparison with Vuu. The reason why the result 

for the fault 11-12 is worse than the one with V"• is the same as for V,m. 

(b) Heavy load 

Table 5 shows the results of the estimation under the heavy load condition. By 

using V"m as the critical value, conservative results are obtained except for the faults 

11-12 and 38-15. For the fault 11-12, No. 2 generator loses synchronism, and the 

critical clearing time estimated by using vum is still larger than the actual value. 

Table. 5. Estimations of the critical clearing time (sec.) for the 10-machine 
system; heavy loads. 

------· 

Fault I 
yum 

I Vest 1 I Vest 2 I Tcr 

11-12 I 0.10 0.13 0.18 0.06 
15-14 0.15 0.19 0.25 0.20 
17-18 0.17 0.22 0.26 0.22 
18-17 0.17 0.21 0.27 0.22 
24-16 0.13 0.15 0.23 0.18 
30-27 0.18 0.22 0.27 0.23 
34-29 

I 
0.18 0.22 0.26 0.22 

38-15 0.21 0.21 0.27 0.17 

Table. 6. Estimations with the critical value yuc for the 10-machine system; 
heavy loads. 

Fault aum i 
o"' I I I 

I V"' Tcr 
I 

11-12 2 2 

I 
0.10 0.06 

15-14 2 1 0.24 0.20 
17-18 2 1 0.26 0.22 
18-17 2 1 0.26 0.22 
24-16 2 1 0.21 0.18 
30-27 

i 
2 1 0.27 0.23 

34-29 

I 

2 1 0.25 0.22 
38-15 2 1 0.28 I 0.17 

I -~--··------
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Table 6 shows the results of estimation with V"c. The estimated values are larger 

than the actual values, and its average error is large compared with V"m. This is 

again due to the Lyapunov function used. 

The estimation with V,, 11 and V,m gives similar results to the estimation with 

V'". In the next section 6-3, we investigate the cause of the fact that the estimation 

is not good by using V"c, V,s11 and V. 512 under the heavy load condition. 

Under the heavy load condition, the kinetic energy rapidly increases and the 

potential energy slowly increases during a fault. Hence, in many cases the value of 

V exceeds the critical value early, while the angular differences are small. In these 

cases, the establishment of the step-out mode is delayed compared with the increase 

of the Lyapunov function ; and V.su and v •• 12 do not settle down to the value which 

corresponds to the mode of the step-out at the time when they intersect the Lyapu­

nov function. Therefore, it is preferable to adopt the value to which V,s 11 and 

V.m settle down as the critical value. 

6-3 Consideration of the cause of the large error for the fault 11-12 
The time variations of the Lur'e type Lyapunov function and its components 

when the fault is cleared at the critical time are shown in Figs. 7 and 8. In the 

case of a IO-machine system (unlike the 4-machine system), the value of V increases 

after the clearance of the fault, reaches its peak, and decreases to the level at the 

clearing time. Also, V takes its peak value at nearly the same time as Vp. The 

above tendency is remarkable for the heavy load condition. The increase of Vp 

means the increase of the angles of the machines which go out of step. Fig. 9 

shows the swing curves for the fault 11-12. In this case, the No. 2 generator suffers 

a large disturbance, and its angle and the value of V equal about 115 degrees and 

3. 66, respectively, at the peak. On the other hand, at the unstable equilibrium point 

51 

~ - I 
:::, 

~ 

a. 

>-

0 

V 

---- +-- -
time (sec) 

+--
2 

Fig. 7. The time variations of the Lyapunov function and its components 
for the 4-machine system; fault 2-1. 
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Fig. 8. The time variations of the Lyapunov function and its 
components for the IO-machine system; fault 11-12. 
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Fig. 9. The swing curves for the IO-machine system ; heavy loads, fault 
11-12 cleared at 0. 06 sec. 
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for this fault, the angle of the No. 2 generator is 124 degrees, and V"• is 4. 09. 

Since a step-out occurs when the angles exceeds a certain limit, the value of V at 

the peak instead of at the clearing time must be compared with the critical value. 

The above explanation is the reason why the estimation with vu• does not work 

well for a 10-machine system under the heavy load condition. Considering the fact 

that the Lyapunov function which correctly takes the transfer conductances into 

account has not been obtained in spite of the efforts of many people, it is worth 

studying to appropriately modify the function used in this paper and make a more 

accurate estimation. One method of modification is proposed in the companion 

paper. 

7. Conclusion 

In this paper, we considered a method of determining a critical value which is 

one of the most important problems in Lyapunov's direct method applied to the tran­

sient stability problem. First, we investigated the condition under which the system 

is transiently stable. We showed that it is preferable in actual problems to use v•• 
as the critical value rather than V"m. We devised two approximations of V"•, i. e. 

V,.u and V.,, 2, from the angles of each machine during fault. As numerical exam­

ples, we estimated the critical clearing time for 4-and 10-machine systems by using 

v•m, v••, V,sti and V,.12 as the critical values. The following results were obtained. 

(1) As expected, the estimation with V"• gives much better results than the esti­

mation with V"m. 

(2) Since V,m supposes that one machine goes out of step, it gives results as 

accurate as v•• in cases where the fault leads to a one-machine step-out. 

(3) V,512 gives considerably good results even when more than one machine go 

out of step, in spite of the ease in its calculation which omits the computation 

of the unstable equilibrium points. 

(4) The Lyapunov function used in this paper has the property that its time 

derivative can be positive when transfer conductances are large, and V can 

increase after the clearance of the fault to its peak value. Estimation errors 

are large in such cases. 

(5) The peak value of V corresponds to V'". 

In the companion paper we propose the modification of the Lyapunov function to 

improve the accuracy of estimation. 
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Appendix 

Kinetic energy V 1, is written as 
•-1 • 

~ ~ m;m;(w;-w;) 2, 
i-1 J-i tl 

............ (A-1) 

and its partial derivative with respect to (w;-w 1) can be written as 

2mi • • 
-.--{(~ m;) (w;-w1)-~ m;(w;-w1) }. 
~ m; ;-1 ;-E 

1-1 

av,. 
.. .......... (A-2) 

Now suppose that angular momentum constant m1 of the No. 1 machine is exceedingly larger 
than that of the other machine, then eq. (A-2) can be rewritten as 
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and in vector form 

av,. =Mm, om, ' 

............ (A-3) 

············(A-4) 

············(A-5) 

where o,=(02 -01, 03 -01, •·····, on-01). Substituting eq. (A-4) into eq. (A-5). we get 

· · av V=Mm,. m,+ 00: . m,, 

=(M;,,,+ ~i;:) • m,. ············(A-6) 

587 

Since V always equals zero in the case of neglected transfer conductances, the following relation 

can be obtained 

M ,;, + oVp =O 
r OOr ' 

that is, 

············(A-7) 


