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Abstract 

It was found in the previous paper that the time derivative of the Lyapunov 
function used for the transient stability analysis can take a positive value in the 
case of a system with large transfer conductances ; and it makes the estimation 
error of the critical fault clearing time large. In this paper, the Lyapunov function 
is modified in order to remove the defect and fit it to the analysis of the transient 
stability. Moreover, a new method of determining the critical value of the Lyapunov 
function is proposed. which is derived from the consideration of the modification. The 
method uses the value of the potential energy as the critical value when the system 
gets out of the stability domain. The modified Lyapunov function and the new 
critical value are applied to a IO-machine system as a numerical example. 

1. Introduction 

Recently, Lyapunov's direct method has been examined as a method of on-line 

assessment of transient stability1>-3 >. In the previous paper10 >, we investigated the 

estimation of the critical fault time via the Lur'e type Lyapunov function which is 

derived from the generalized Popov's theorem. From the results of the paper, it was 

shown that a more accurate estimation than by the usual method of Lyapunov can be 

made by paying attention to the stability for the first swing, which the system suffers 

by a fault. However, it was also ascertained that the time derivative of the used 

Lyapunov function becomes positive for the system with large transfer conductances, 

and it makes the error of the estimation large. In this paper, we make its cause 

clear, and appropriately modify the Lyapunov function so as to remove its defect and 

fit it to the analysis of transient stability. So far, no Lyapunov function correctly 
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takes the effect of transfer conductances into account. The method via the modified 

Lyapunov function proposed in this paper is one which can correctly evaluate the 

transient stability when transfer conductances can not be neglected. 

Moreover, we have devised a new method of determining the critical value of 

the Lyapunov function from a consideration about the modification of the function. 

This method makes use of the fact that the time derivative of kinetic energy 

becomes zero at the instant when the system gets out of the stable region, and uses 

the value of the potential energy at that instant as the critical value. The idea 

about the critical value in the previous paper is refined to this method to give a more 

accurate critical value, and to make the calculation easier. Hence, it can be said that 

this method is very efficient in comparison with the usual method of Lyapunov. 

In the last part of this paper, the modified Lyapunov function and the new 

critical value are applied to a 10-machine system; and the critical fault clearing 

time is estimated. 

2. Modification of Lur'e type Lyapunov Function 

The Lyapunov function used in the previous paper is of the Lur' e type, which 

is derived from the generalized Popov's theorem by Gudaru7>. It takes the following 

form, when the damping is not considered : 

. . 
+ I; I;E;E;Y;;{cos(of;+0;;)-cos(o;;+0;;) - (o;;-o:;)sin(of;+0;;)} 

i•l i-1 

= V1,(w) + Vp(o) ............ ( 1) 

where V1, is called kinetic energy, and Vp is called potential energy. By investigating 

the time variation of V when the fault is cleared at the critical time (Fig. 1), it 

becomes clear that V increases after the clearance of the fault to its peak value at 

the time when Vp becomes maximum ; and that this tendency is more remarkable 

as the loads get heavier. The time derivative of V is calculated as follows: 

. . 
V(o, w) = I; I;E;E;Y;;{sinC0:;+0;;) -sin(o;;+0;;)}(.::lw;+,::fo1;) 

i•l j•l 

=li,,ca, w)+Vp(o, w), ....... ·····C2) 

where 
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Fig. 1. The time variations of the Lyapunov function and 
its components for the IO-machine system ; critically 
cleared fault 11-12. 

. . 
iii= ~ m;w;/ ~ m; 

1-1 1-1 

Llw;=w;-w. 

From eq. (2) it is seen that V is not generally negative definite, when 8;1~o. i. e., 

transfer conductances exist, although they equal zero and V=comtant in case of 

811=0. Consequently, V does not satisfy the conditions for the Lyapunov function 

(there was a mistake found in the process of induction in Gudaru's paper). Very 

accurate estimations, however, can be made via this function in the case of small 8;/s, 

as was shown by the numerical examples in the previous paper. It is difficult to get 

a Lyapunov function which correctly takes the transfer conductances into account. 

Therefore, we modify the V function in this paper so that an accurate estimation is 

possible even if the loads are heavy and 8;;'s are large. 

Since the peak value of V corresponds to the critical value for the first swing 

of the system, we consider such a modification of V that the value of V is kept 

constant at its peak value after the fault clearance. We first consider the increment 
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JV of V after the fault clearance. JV can be written as 

JV= (t,,,. V dt 
J,o, 

= ('''°'(Vp+V.) dt ............ ( 3) 

) ''"' 
=JVp+JV•, 

591 

where tp.ai is the time when V reaches its peak, and t..,, is the time of fault clea­

rance. If JV is added to Vat the clearing time, V equals its peak value. Performing 

the same operation for t, t~t.,. 1, we get 

50 
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..... 
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(a) heavy loads 

0 1"=>'[.----t------,;~-+----t---+--t--J;---t---
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(b) light loads 

time 
(sec) 

Fig. 2. The time variations of V p and V .t for the 10-machine 
system ; critically cleared fault 11-12. 
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Vp,a.11=V(t)+L1V(t), ............ (4) 

and the value of V equals Vp,a.11 after the time of fault clearance. Since the critical 

clearing time is unknown at the time of the estimation, it is necessary to perform this 

modification without knowing the variation of V p and V r, after the fault clearance. 

Fig. 2 shows an example of the time variations of V p and V r, when the fault is 

cleared at the critical clearing time. V p and V,. vanish at the time ts, because the 

angles of the machines at this time are similar to those at the stable equilibrium 

point. After t,, V p becomes positive and V,. becomes negative, i. e., Vp increases 

-. ::, 
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Fig. 3. The time variations of V p and V,. for the 10-machine 
system ; sustained fa ult 11-12. 
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and V,. decreases, and V increases because \ V p \ > \ V Ai\. V p and V Ai again vanish at 

time lpeal,, when V takes its peak value. 

Fig. 3 shows the time variations of V p and V 1, for a sustained fault. Both V p 

and V 1, vanish at time ts by the same reason as in Fig. 2. After ls, V p is positive, 

V 1, is negative, and V p and V 1, again equal zero at time lend1 and lend2, respectively. 

lendi is generally smaller than t,,.d2, and its discrepancy becomes larger as loads get 

heavier, as is seen by a comparison with Fig. 3 (a) and (b). 

As will be shown in Section 3, the system loses its synchronism after the time 

lend 1, when V 1, becomes zero. Therefore, the value of Vp at lend1 is to be the critical 

value for stability. Because the peak value of V after the fault-clearing corresponds 

to this critical value, LIV in eq. (3) is approximated as follows: 

LIV= ):·••IV dt 

= ):'"'\Vp+V1,) dt 

=LIVp+LIV1,, 

............ ( 5) 

where V, V p and V 11 are expressed by eq. (2) , and with parameters for the post 

-fault condition. 

Eq. (5) is interpreted as follows : if the ,system reaches the boundary of the 

stable region after the clearance of the fault at time t, the increment of V is 

approximately given by eq. (5). 

Table 1. ,JV p, .JV 1, and /3 for the 10-rnachine system; fault 11-12. 

(a) heavy loads (b) light loads 

Critically 
4Vp = 3.597 

cleared fault 
.dV11 =-1.325 

Critically 
.d Vp = 13.894 

cleared fault 
4 v,, = -10. 466 

/3 = 2.715 f3 = 1.328 

.dVp = 3.574 4 Vp = 14.475 

Sustained fault 4V1, =-1.326 Sustained fault 4 v,, = -10. 347 

f3 = 2.695 /3 = 1. 399 

Table 1 shows an example of the values of LIVp and LIV,., from t, to lend1 for 

the sustained fault, and from ts to tp,a1, for the critically cleared fault. It shows that 

the approximation is very reasonable. Subsequently, we consider the reason why the 

values of LIVp and LIV,, are almost the same in both the cases of a sustained fault 

and a critically cleared fault. From eq. (1), 

· av,, . v,,=--. ro,' aw, 
.........•.. ( 6) 
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Accordingly, .dVp can be written as 

.dVp=) ~:: w, dt 

=( av, do, 
J ao, 

= v,(o.) - v,(o,), 

............ ( 7) 

and it depends upon only o, and o,, which are the values of o, at the upper and 

lower boundary of the integral. Suppose that Os is the stable equilibrium point, 

then Vp(o,) =O, and .dV, can be determined only by o,. Hence, if o, changes a little 

between the cases of a sustained fault and a critically cleared fault, then .dVp is 

almost the same between them. On the other hand, .dVi, can be written as follows; 

.dV.= f av,, • &i, dt ) aw, 

where L(do,) is a linear function of do, . 

.•..•.•..•.. ( 8) 

.dV1, depends upon the integral path. Therefore, if the projections of the trajectories 

onto the angular space are almost the same for both the cases of a sustained fault 

and a critically cleared fault, then .dV1, is almost the same (see Fig. 4). 

Accordingly, it is permitted to substitute eq. (5) for eq. (3), if the mode of the 

swing is not varied very much by the clearance of the fault. On that occasion, the 

value of t must be large enough to satisfy the assumption that the system reaches 

$31 

1 
I ,,o~, 

0 

' i 

I I 
trajectory 

Fig. 4. Trajectories projected onto the angular space. 
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the boundary of the stable region after the fault-clearance. We can use eq. (9) in 

order to modify the Lyapunov function in the same way as eq. ( 4), namely, 

Va(t) = V(t) +JV(t). . ........... ( 9) 

As JV(t) is a function of time t, and should be computed with time t varied, the 

calculations become a little complex. To avoid it, we consider another modification, 

V,(t) = Vp(t) + ,BV11(t), ............ (10) 

where 

In this modification, ,B is a constant which represents the average efficiency of 

transformation from kinetic energy V.t to potential energy Vp when the system moves 

from the stable equilibrium point to the boundary of the stable region. That is, 

after the clearance of the fault, kinetic energy V11 decreases and is transformed into 

potential energy Vp, and its efficiency is ,B on the average. Therefore, the value of 

V after transformation can be obtained by multiplying Vi by ,B. This latter modifica­

tion has the advantage that the Lyapunov function is represented analytically unlike 

the former one. It is inevitable, however, that V will oscillate a little after fault­

clearance because ,B is an average value. 

3. Determination of the Critical Value of the Lyapunov Function 

Fig. 5 shows an example of equipotential curves of the 3-machine system. The 

three stability conditions shown in the previous paper were based on the unstable 

equilibrium point. According to the previous paper, however, the system becomes 

unstable when it crosses the curve O,,. Hence, it is more suitable to use the value 

of Vp at the time when the system crosses the curve O,, as the critical value rather 

than the value at the unstable equilibrium. 

The time when the system crosses O,, can be known in the following manner. 

Fig. 6 shows the projection of the trajectory at the instant when the system crosses 

the curve O,,, where w, is orthogonal to the curve O,,. V p can be written as 

· _ oVp 
Vp- oo, w,. 

Accordingly, when w, is orthogonal to O,, as in Fig. 6, V p equals zero because 

oVp/oo, is parallel with O,,. On the other hand, Vt can be written as 
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Fig. 5. Equipotential curves for a 3-machine system. 

Fig. 6. Relation between the directions of w, and iJV p/il/3, when 
the system crosses the curve 0,. 
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Therefore, V p and V .11 vanish at the instant when the system crosses the curve O,. 

orthogonally. The point where V p and V .11 vanish does not lie on O,., when w, is not 

just orthogonal to O,.. This discrepancy, however, is small, because the direction of 

oVp/oo, is greatly changed near O,.. 

Next, the signs of V p and V .11 are considered. When the system is inside the 

curve o,., i. e., in the stable region, V p, which equals the inner product of oVp/oo, 
and w,, is positive, and V.11 is negative because oVp/oo, and w, make an acute angle. 

On the other hand, when the system is outside O,., oVp/oo, and w, make an obtuse 

angle, and accordingly, V p is negative and V .11 is positive. Table 2 summarizes this 

situation. That is, in the stable region, the potential energy Vp increases and the 

kinetic energy V.. decreases. The decrease of V.. means the decrease of I w, I, and 

prevents the system from getting out of O,.. The situation is the contrary outside 

O,.. Consequently, it is possible to regard the time when V p changes its sign from 

positive to negative, or when V Al changes from negative to positive as the time when 

the system crosses O,.. 

Table 2. Sign of V p and V,. when the system crosses the curve Ox. 

! Inside of Ox I Outside of O,. 

Vp positive negative 

V.11 negative positive 

When transfer conductances are not neglected, V is not always zero, and accor­

dingly, the times when V p and V Al vanish do not coincide. In this case, the instant 

when V Al becomes zero is considered as the time of the crossing of the stability 

boundary. This is because V,, is expressed by the same equation as the case when 

transfer conductances are neglected ; and the distinction between the inside and 

outside of O,. was made by the decrease or increase of I w, I -
The instant when the system crosses the boundary of the stable region can be 

known through the process mentioned above ; and V.,, the value of Vp at that 

instant, shows the boundary value for stability on the trajectory. Therefore, if the 

total energy of the system V satisfies the condition 

V<Vc,, ··•········· (11) 

then the system is stable. Hence, we can use Ve, as the critical value. Actually, 

the trajectory changes, when the fault is cleared so as to satisfy the above condition. 
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The change must not be large for the above condition to be valid. When the change 

of the trajectory is large, we can modify the value of Ve, as follows. First calculate 

the Ve, from the sustained fault, and call it Vc',. Vc', is generally greater than the 

true critical value. Hence, the system crosses the curve O., if the fault is cleared at 

V= Vc',. We call the value of Ve, of this case V;,. V;, is closer to the true critical 

value than Vc',. By repeating the above operation, the more accurate critical values 

VJ,, Vf,, . .. can be obtained. The number of repetitions, however, should be limited 

at most to 2 or 3 times, in order that the advantage of the Lyapunov's method may 

not be cancelled. 

4. Examples 

Following the method described so far, we have estimated the critical fault clear­

ing time of the 10-machine system9>, which was used in the previous paper. 

Table 3 shows the estimated values of the critical clearing time and the actual 

values which are obtained by simulations. Although the values estimated by V are 

Table 3. Estimations of the critical clearing time (sec.) for the 
IO-machine system. 

(a) heavy loads 

Fault 
I 

V 
I 

v. I Vp 
I 

11-12 
I 

0. 10 0.06 0.06 
! 

15-14 I 0.23 0. 21 0.21 
17-18 0.26 0.20 0.21 
18-17 0.27 0.21 0.21 

24-16 0.23 0. 18 0,18 

30-27 0.26 0. 21 0.22 

34-29 0.25 0.20 0.21 

38-15 0,28 0.22 0.22 

(b) light loads 

Fault ! V I v. I ViJ I I I 

11-12 0.33 0.29 0.30 
I 

15-14 0.42 0.40 0.41 
17-18 0.51 0.47 0.49 
18-17 0.53 0.48 0.50 
24-16 0.49 0.44 0.46 
30-27 0.51 0.47 0.49 
34-29 0.50 0.46 0.48 

38-15 0. 71 0.67 0.69 
-- ---··-

Tc, 

0.06 
0.20 
0.22 
0.22 
0. 18 
0.23 
0.22 
0. 17 

Tc, 

0.30 
0.41 
0.47 
0.50 
0.45 
0.47 
0.46 
0.65 
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greater than the actual values, the values by Va and Vp are exceedingly near 

the actual values. In general, Va gives smaller estimated values than Vp, but the 

differences between them are small. For the fault 38-15, however, the estimated 

value is exceptionally greater than the actual value, and its error is great compared 

with those for other faults. 

Table 4 shows the values of V, Va and Vp at the critical clearing time and the 

Table 4. V, V • and V fi at the critical clearing time, V Peak and 
Ver for the IO-machine system. 

(a) heavy loads 

I 
I I 

Fault V 
I 

v. 
I 

Vp I VpeQh 
I 

11-12 1. 52 3.69 

I 

3.65 3.66 
15-14 22.04 29.25 26.73 30.94 
17-18 22.62 37.58 37.35 36.24 
18-17 21. 64 40.89 I 39.53 39.14 
24-16 23.52 40.71 

I 

38.84 35.45 
30-27 22.21 33.69 34.02 32. 70 
34-29 22.53 

I 
34.78 I 35.20 30. 72 

38-15 8.96 21. 46 
I 

16.03 14.00 

(b) light loads 

Fault I V I v. I Ve I VpeQh 

11-12 11. 10 14.83 14.06 14.00 
15-14 45.99 48.53 47.08 50.41 
17-18 40.25 49.96 45.32 47.65 
18-17 50.37 60.90 56.45 61. 42 
24-16 54.07 66. 79 62.08 64.06 
30-27 36.54 44.36 40.55 40.50 
34-29 39.61 48.25 44.31 44.16 
38-15 45.99 52.82 49.23 I 49.61 

Ver 
I 

3.90 
32.52 
34.38 
39.19 
41. 93 
31. 04 
32.35 
28.70 

I Ver 

14. 75 
47.11 
50.17 
58.61 
66.41 
45.89 
49.17 
56. 13 

peak value of V. The value of V is small in comparison with Vp,ak, and this trend is 

remarkable in the case of heavy loads. The values of V. and Ve obtained by modi­

fying V are almost the same as with V p,ak, so it is ascertained that the modification 

of V is successfully performed as was aimed. In Table 4, the critical value Ver is 

also shown. It is proved from the comparison between Ver and Vp•ak that the critical 

value proposed in this paper is quite proper. For the fault 38-15, especially in case 

of the heavy loads, there are large differences between Ver and Vp.ak, while Vp 1s 

almost equal to Vpeak- The cause of this discrepancy will be investigated later. 

Fig. 7 shows the time variations of V, V. and Vp when the fault 11-12 is susta-
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Fig. 7. The time variations of V, V. and Vp for the IO-machine system; sustained fault 11-12. 
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ined. Va is the function which can be obtained by adding JV, the increment of V 

from the instant of the fault clearing to the time of crossing the boundary of the 

stable region, to V. Accordingly, the difference with V is large when the time t is 

small, but it approaches V assymptotically as time proceeds. On the other hand, V~ 

is given by multiplying V1 by fi in V, so its difference with V gets larger as V.. gets 

larger. 

Fig. 8 shows the time variations of V, Va and V~ when the fault 11-12 is 

critically cleared. The function Va follows eqs. (3), (9), when the fault is cleared. 

Hence, it is kept at the constant value of V ,sd after the clearance of the fault. v;,, 
however, does not always coincide with V,sd in the case of the estimation, because 

eq. (5) is used. Vp is almost equal to V,sd at the clearing time, and oscillates a 

little afterwards, where the value of fi is that used in the estimation. 

From the above results, it is verified that the the method for modifying the 

Lyapunov function and determining the critical value proposed in this paper are 

proper except for the fault 38-15. In the following, we consider the case of the 

-::::i 
a. -
> 

> 

5 

V 

0 ~I ----+-----+-----+------I---

l time (sec) 

(a) heavy loads 

time (sec) 

(b) light loads 

2 

Fig. 8. The time variations of V, Va and V p for the IO-machine 
system; critically cleared fault 11-12. 
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fault 38-15-

From Table 2 it is shown that the assumption in Section 3 is not satisfied, 

because the critical value Ver largely differs from Vped- The swing curves, when 

the fault is sustained and when the fault is cleared at a time a little later than the 

critical value, are shown in Fig. 9. The modes of the swings are very different, and 

so there is a great difference between Ver and the actual critical value. One method 

to improve the estimation in such cases, as described in the last section, is to repeat 

the calculation of V.r by clearing the fault at the time which is obtained in the 

previous estimation. Table 5 shows the result. An estimated value adequately near. 

I 

5t-

~4~ 
0 ... 
~ I 

</031 
I -

WI 

10 

time (sec) 

(a) sustained fault 38-15. 

time (sec) 

(b) fault 38-15 cleared at 0. 18 sec. 

2 

Fig. 9. The swing curves for the IO-machine system ; heavy loads. 
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Table 5. Improvement of the estimation by repetition in case of 
the fault 38-15. 

(a) heavy loads 

No. I Ver I v. Vp I (3 I 
I 

1 28.70 
I 

0.22 0.22 1. 831 

2 21. 92 0.19 0. 19 1. 890 

3 19. 73 0.18 0.18 1. 891 

(b) light loads 

No. i 
Ver i v. Vp I /3 I 

I I 
! I 

1 
I 

56.12 I 0.67 0.69 1.189 
i 

2 I 53.06 i 0.65 0.67 1.176 
I I 

603 

I 
I 

the true value can be obtained after three iterations in the case of heavy loads, and 

after two iterations in the case of light loads. The change of Ver is particularly 

large for the heavy loads, and its value gets smaller with repetition. The value of 

{3, however, does not change so much, and does not affect the estimation. From the 

above results, an adequately accurate estimation can be obtained by repeating the 

calculations 2 or 3 times even for the fault 38-15. 

5. Conclusion 

In this paper, we considered a mod~fication of the Lyapunov function V used 

m the previous paper, so as to make the estimation of the critical clearing time 

better, when transfer conductances are taken into account. From the fact that the 

increment of V after the fault clearance can be approximated by the data for the 

sustained fault, under the assumption that the mode of the swings does not change 

so much when the fault is cleared, the function V was modified so as to get the 

functions V. and Vp. 

On the other hand, we advanced the considerations made in the previous paper 

about the condition under which the system is transiently stable, and showed that 

as the critical value we can use Ver, the value of Vp at the instant when the time 

derivative of the kinetic energy vanishes for the sustained fault. 

As an example, we applied the functions Va, Vp and the critical value Ver to 

the IO-machine system and estimated the critical fault clearing time. Consequently, 

the following results were obtained. 

1) The estimation via Va or Vp gives better results compared with the estimation 
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via V. 

2) The values of Va and Vp at the critical clearing time are almost the same as 

the peak value of V. 

3) The critical value V., correctly indicates the boundary of the stable region, 

and its calculation is easy. 

4) When the mode of swings changes largely between the sustained fault and 

the cleared fault as in case of the fault 38-15, a good estimated value can be 

obtained by repeating the estimation two or three times at most. 

Accordingly, we can correctly estimate the critical fault clearing time by using 

the functions Va, Vp and the critical value Ver, even if the transfer conductances 

are large. Besides, we can avoid the difficulties accompanying the calculation of 

the unstable equilibrium points, which is a great obstacle to the application of the 

Lyapunov direct method. 
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