
8 

A New Approach to Transient Stability Region 
of Synchronous Generator 

By 

Yasuharu OHSA w A* 

(Received September 27, 1977) 

Abstract 

This paper describes a method of analytically determining the domain of transient 
stability in state space for a synchronous generator. The motion of a synchronous generator 
is represented in the state space; and the rate of change of the direction of the motion is ex
pressed by a series expansion of the distance along the motion. The stability boundary is 
determined by the minimal point of the differential coefficient of a sufficiently high order, 
based on the facts that every state on the stability boundary approaches the saddle point 
with time, and also that the direction of the trajectory changes discontinuously at the saddle 
point. As a numerical example, the method is applied to a simple synchronous generator 
connected to an infinite-bus. The results show that the most important part of the stability 
boundary can be obtained very accurately with a reasonable amount of computation. 

1. Introduction 

The transient stability of electric power systems is assessed by analyzing a set of non

linear ordinary differential equations called "swing equation." The method which has 

been used widely for the purpose is that via simulation. This method consists of solving 

the swing equation numerically, obtaining the performance of the system after the clear

ance of the fault, and then judging whether the system is stable or not. This method has 

an advantage that the system can be modelled as minutely as the computer permits. 

The method also has a weak point in that it requires much computing time, because the 

differential equations must be solved until the system is judged to have stability. 

The other methods, such as the equal-area criterion, do not require the solution of 

the differential equations, but they are applicable in practice to a 1- or 2-machine system 

only. As a method which is applicable to a multimachine system, the direct method of 

Lyapunov has been studied by many researchers. 1- 4> This method has some very at-
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tractive features, but there are also some drawbacks. Except in special cases, estimates 

of the region of stability are conservative. Although there are some methods which can 

theoretically predict the true region of stability, 5, 6> the amount of computation is con

siderable. Another difficulty is that the method is almost restricted to a simplified mo

del, in which the effects of A.V.R., line conductances etc. are neglected. 

This paper describes an analytic method of deriving the boundary of the stability 

region by using the property whereby the trajectory discontinuously changes its direction 

at the saddle point. First, the function which represents the partial derivative of the 

direction of a trajectory with respect to the direction perpendicular to the trajectory is 

defined. Next, this function is expressed by the series expansion of the distance along 

the trajectory, and the stability boundary is determined from the fact that the differential 

coefficient of a sufficiently high order of the series expansion takes its minimal value on 

the stability boundary. In Section 2, the principle of the method is described. As a 

numerical example, it is applied to a simple single-machine system in Section 3. 

2. Principle of the Method 

We consider the autonomous system described by the following set of differential 

equations: 

.:i:1=X1(x1, X2, ... , Xn) 

.:i:2=X2(x1, X2, ... , Xn) 
(1) 

Xn=X n(x1, x2, ... , Xn) 

X;(0, 0, ... , 0)=0 i=l, 2, ... , n 

or 

x=X(x), X(0)=0 (2) 

The origin is assumed to be a stable equilibrium point, and our problem is to obtain the 

asymptotically stable region around the origin. First we describe the proposed method 

for the case of second order system, and then, we generalize it to higher order systems. 7> 

Fisrt of all, we define the following function in the state space of the second order. 

F - oa _ o[arctan {X1(x1, x2)/X2(x1, x2)}] 
-an- on (3) 

This function is the partial derivative of the direction of the trajectory at a point with 

respect to the direction perpendicular to the trajectory (Fig. 1). The value of this func

tion is positive when the trajectories approach each other, and negative when they diverge. 

Since the direction of the trajectory changes discontinuously at the saddle point, the value 

of this function approaches -oo along the trajectory which approaches the saddle point. 



10 Y asuharu OHSA WA 

n 

dot= CX.2-0<.1 

Fig. 1. Definition of the function F. 

Fig. 2. Definition of the variable /. 

This trajectory is called the separatrix. When we take one initial point (x10, x20), a 

unique trajectory passes through this point, as long as the point is not a singular point. 

If the distance from the initial point along this trajectory is denoted by l, the function F 

on the trajectory becomes the function of the initial point and /. Representing the func

tion Fby the series expansion_with respect to l, we have: 

aFI 12 a2FI F(x10, X20, l)=F(x10, X20, O)+l· at + 2-1. o/2 
<z10, s20> cs10 1 szo> 

+ 

(4) 

where oF/ol, o2F/ol2, ... represent the partial derivative of F of each order with 

respect to the direction of the trajectory l. 

If the series expansion (4) is truncated at the finite number of terms m, it yields the 
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error Rm. Since F takes -oo at the saddle point, Rm is -oo regardless of the value of m. 

Since a point on the separatrix approaches the saddle point with time, the partial deri

vative cJ' F/a/k takes a larger value on the separatrix than on the other points near it, as 

long as the order of the derivative k is high enough. Hence, by computing the value of 

a1, F/azi, continuously along some line crossing the separatrix, we can know the point on 

the separatrix, that is, on the stability boundary, from its minimal value. In connection 

with the case of the power system transient stability problem, the stability boundary 

(and at the same time the critical clearing time) can be derived by calculating the value of 

a1, F/8!1, for the post-fault system at each during- fault point obtained by the step-by-step 

method and by identifying its minimal value. 

In the case of a general n-dimensional system, the ortho-complement of a vector is 

of order (n-1). It is, therefore, necessary to impose (n-2) supplementary conditions and 

to transpose the ortho-complement into a 1-dimensional space in order to define the func

tion Fin the same way as eq. (3). For the supplementary conditions, we assume that 

all coordinates except two are constant, that is, x; is assumed to be constant for z"=l,2, 

···,p-l,p+1, •··, q-1, q+l, •··, n. Then the plane (xp, Xg) is defined by this assumption. 

If we draw the line tangent to the trajectory at the point where the trajectory crosses this 

plane, then the vector, which is orthogonal to this tangent line, and at the same time lies 

on the plane, is orthogonal to the projection of the tangent line to the plane. Hence the 

function F is represented as follows : 

Fpg=.£!!:_= a[arctan{Xp(x1, ···,Xn)]/Xg(x1, ···,xn)}] I p g 

On dn s-1=s10,••· V ••• V ··•,Xn=S'nO 

(5) 

The possible number of a 2-dimensional space in n-dimensional space is the same as the 

number of the combination nC2. The function F can, therefore, be defined for an n

dimensional case as follows : 

(6) 

It is not necessary to calculate all of the elements in eq. (6), since each F pg has the same 

feature that its value is minus infinity at the saddle point. 

3. Numerical Example 

The method described above is applied to the single-machine infinite-bus system 

which is represented by the following differential equation6>: 

d 28 dB . 
M dt2 +D dt =Pm-P.sm8 (7) 

M=0.0138 D=0.0285 

Pm=0.91 P,=3.02. 
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Introducing a new variable Tso that 

T=✓(P ./M) ·t=l4.8t, 

eq. (7) is reduced to 

d28 d8 . 
dT2 +0.I40 dT =0.301-sm8. 

The singularities of eq. (8) are 

stable focus 8=0.306 rad. 

saddle 8=2.836 rad. 

(8) 

The stable equilibrium is transferred to the origin through the co-ordinate transforma

tion 8=x1 +0.306. Using the state variable representation 8=x1=x2, eq. (8) is rewrit
ten as follows: 

x2=0.301-sin(x1 +o.306)-0.140x2 
(9) 

We consider the asymptotic stability region around the origin. The actual stability 

region obtained by solving the differential equation (8) using a numerical integration is 

shown in Fig. 3. ok F/olk for the various values of k is calculated along the lines radiat

ing from the origin in the first quadrant, where the transient instability usually occurs. 

(The detailed process of the calculation is included in the Appendix.) Fig. 4 shows the 

results of taking r as the axis of abscissa and of taking k as the parameter. In Fig. 4(a), 

the stability boundary is accurately assessed by calculating the derivative of the function 

F up to only the second order. On the other hand, in Fig. 4(b) and Fig. 4(c), the deri-
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Fig. 3. Stability region of the model system and radial lines for the application 
of the proposed method. 
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Fig. 4. Assessment of the stability boundary by the proposed method. 
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vatives must be calculated up to at least the third order and fifth order, respectively. 

In Fig. 4(d), even the sixth order is still insufficient. This is because of the fact that when 

the stability boundary point is near the saddle point, the value of l in eq. (3) is small, and 

hence, the derivative of a low order takes a large negative value at the stability boundary. 

On the contrary, for the boundary point apart from the saddle point, the value of l is 

large and high order derivatives must be calculated in order to know the stability bound

ary. In Fig. 3, the trajectory in the case of the three-phase short circuit on the transmi

ssion line is also shown. From this trajectory, it can safely be said that the method pro

posed here can predict the stability boundary with sufficient accuracy and a reasonable 

amount of computation at the region which is important for transient stability problems. 

4. Conclusions 

In this paper, we proposed a method for obtaining the stability boundary by making 

use of the property of the trajectories at the saddle point, and applied it to a simple power 

system. The results of the numerical example show that using the method proposed 

here, a fairly accurate assessment of the stability boundary can be obtained with a reason

able amount of computation at the region where the transient instability of power systems 

usually occurs. 
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Appendix 

For a second order system, the function Fis calculated as follows: 

where 

a=arctan(Xi/ X2) 

aa = X 2 2
• 1 (aXi ,x

2
_ ax2 ·Xi) 

axi v2 X22 axi axi 
~- X22 ,_1_(axi ,x2_ ax2 ·Xi) dX2 - v 2 X2 2 ax2 dX2 

F- X22 . 1 ( axi ·X2- ax2 ·Xi) -X2 + X22 . 1 
v2 X22 axi axi v v2 X22 

The (k+l) th order derivative of Fis obtained using the k th order derivative as follows: 

a"+1 F 1 d ( a" F ) 
;J/Hl =v•df afT' 

-! {a!1 (~"f)•x1+ a!2 (tf)•x2] 

n 

V 

Fig. A-1. Calculation of the function F for second order system. 


