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Abstract 

The realistic stress-strain relation of cohesive soil is applied to analyze the 
dynamic response of layered cohesive soil system during shear wave propagation. 
The cohesive soil is treated as a saturated elastic-viscoplastic body and assumed to 
be a K 0-consolidated state. The characteristics method was used for this anaysis, 
and the stress, strain and velocity under the ground were determined from the 
surface motion. From the analytical result, even if the surface response is the same 
between the elastic ground and elastic-viscoplastic ground, the stress, strain and 
velocity responses of the elastic-viscoplastic ground are greater than those of the 
elastic ground. 

1. Introduction 

Faced with the problem of dynamic analysis of ground during earthquakes, these 

four following factors are considered to be important. 

(1) Constitutive equation of soil composing the ground 

(2) Boundary conditions (the geological conditions of the site in question) 

(3) Type of seismic wave 

(4) Method of analysis 

This paper considers the influence of the non-linear soil behavior of the dynamic 

response of layered soil on the basis of the constitutive theory proposed by author1>. 

The constitutive equations used for describing the dynamic behavior of soil are 

as follows: linear elasticity, non-linear elasticity, visco-elasticity and simple elastic­

plasticity. The convienient stress-strain relation developed by Ramberg-Osgood is 

also used by many investigators2h 3>. On the other hand, the dynamic property of 

soil has been examined in detail and the constitutive equation that includes the 

effect of dilatancy is now being established in soil mechanics. Therefore, it is re­

quired and of interest to apply these refined constitutive theories to the practical 
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problem. Generally, the local geological condition is often inspected in detail. The­

refore, a one-dimensional horizontally layered system of the ground is rather easily 

investigated. Furthermore, a two- or three-dimensional model of ground must be 

included in the dynamic analysis in the future. When we deal with the wave which 

has the component of the short period, the dynamic response is sensitive to the local 

geological system in a surface layer of ground. 

To analyze the dynamic behavior of soil deposit in a case where the soil can be 

described by a unique constitutive equation, two types of methods for analysis exist. 

One is to describe the soil system as the multi-degree of freedom. Idriss & Seed4
> 

used a shear beam as a discrete system for computing the ground vibration. This 

method is called a lumped mass method. This simple method, however, is not con­

venient for expressing the geometrical dissipation. The other method3h 5> is to get 

a solution by integrating a differential relation along the characteristics of partial 

differential equations. The well used multiple reflection theory of wave is based on 

this characteristics method. This method is restricted to the linear elastic system. 

The general characteristics method is available for non-linear analysis, and the time 

required for computation is relatively short. When the geological condition is com­

plicated and the constitutive equation is not unique, the finite element method is 

available for analysis. The analysis by the finite element method has a difficulty in 

determining a boundary condition. 

Many seismic records were obtained on the surface of the ground, but the rec­

ords of base rock motion are scanty. In order to design an underground structure, 

it is necessary to estimate the strain, velocity or stress under the ground. In this 

paper, the author aims to determine the strain, stress and velocity in the layered 

cohesive soil calculated from the surface motion of the ground. The stress-strain 

relation proposed by the author1> is extended to the K0-consolidated condition. The 

pore-water pressure is also calculated. 

2. Ground Model and Equation of Motion 

The dynamic response of a horizontally layered system, which 1s composed of 

elastic layers and saturated clay layers, will be considered in this paper. Shearing 

stresses are set up by horizontal motions imposed at the base of soil layer as shown 

in Fig. 1. The clay layer is initially K0-consolidated. Fig. 2 shows the initial stress 

conditions, where a~; co> is the initial effective stress. The material property of each 

layer is assumed to be constant. As the boundary condition, the shear stress at the 

ground surface is zero and the velocity records at the surface are given. It is im­

portant to determine the value of the stress, velocity and strain in the ground, from 

the ground surface records. The initial stress condition is given as follows. 
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Fig. 1 Model of soil layers. 
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Fig. 2 Stress condition. 

From Eq. (1), the initial mean effective stress 11~co> is expressed by 

11~co> = ~ (1 + 2Ko) 11:,co> 

Similarly, the initial deviatoric stress S,;co> 1s 

S;;co>= : (1- Ko) 11i,co> 0 0 

0 
1 
3 (Ko-l)1111co> 0 

0 0 ~ (Ko-1) 11:1(0> 

(1) 

(2) 

(3) 

(4) 

in which, }~ is the second invariant of the deviatoric stress. The stress condition 

during the shear wave transmission is given by 

11;; =11:;co>+L111;1 

11~ = 11ij(O) + J11;. 

s,; =S,;co>+Lls,; 

(5) 

(6) 

(7) 

The equation of motion and the kinetic relation between the strain and the dis­

placement are expressed by Eqs. (8) and (9), respectively. 
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(8) 

(9) 

Where, the strain tensor e11 is taken positively in compression and the body force 

is neglected, v1 ; velocity vector, u1 ; displacement vector, t111 ; stress tensor, p ; 

density of saturated soil. Since derivative components in the X2 and x3 direction in 

the above equations may be negligibly small in one-dimensional analysis, Eqs. (8) 

and (9) are approximated by Eqs. (10) and (11). 

OV2 Ot121 (10) 
P;ft=- ox

1 

-e12 = ~ ::: (11) 

3. Stress-Strain Relation of Soil 

The elastic layers are modelled by a linear elastic body expressed · by 

t1;; =A.euou +2µ,,; 

where A. and µ are Lame's constants. 

(12) 

When eu=0, t111 =2µe11 • (13) 

In the saturated clay layers, the stress-strain relation is presented by an elastic­

viscoplastic or viscoelastic-viscoplastic body. We extend the stress-strain relation 

proposed by the author1> to an anisotropically consolidated state, and it can be ex-

pressed by the following relation in a K0-consolidated state. 

-r A 1 r , " a s,1 elj- l~IJ +3 ~.,u;;+/'1~21/ 
_/~() 1 

+/lz[M*-"-~/2 ' +M*ln {t1' /t1'<•>}]-o-• a:,.<,> ffl m 3 •J 
(14) 

Deduction of Eq. (14) is now given as follows. Roscoe's original theory which was 

extended to a three-dimensional problem is also formally extei;ided to an anisotropic 

consolidated state for the purpose of being used in an equilibrium state. The static 

yield function is given by 

f,= ± (1J*-1Jto,) +M*ln(t1~/t1~y) =0 (15) 

where 1Jto>=./2/2<o>lt1~co>• The plus or minus sign of Eq. (15) corresponds to an active 

or passive state, respectively. 

The hardening rule is expressed by 

, _ , [l+e, ] t1.,-t1.,.exp ).-,/u (16) 

As we postulated that de=0 during the wave propagation, the equation is obtain­

ed in an equilibrium state according to Adachi & Okano6> as follows; 
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(17) 

(18) 

The plastic volumetric strain increment is given by Eq. (18). From Eqs. (17) and 

(18), we obtain under the condition of 7J*=7J~o> when ef i=O, 

±( *- * )-(l+e)M*.:i, (19) 
1) 1) <o> - (.:i-.t).t eu 

From Eqs. (17) and (19), a;. can be determined by 

_, [-Cl+e),] Om(,)-Om,eXp --,t-eil 

Finally, ,/2N•> is determined by Eqs. (16), (19) and (20). 

_r-<,> -[~~;co> (l+e)M*.:i , ] , 
y2f2 - ~,--- ± (.:i-.t).t ei l Om(,) 

Om(O) 

(20) 

(21) 

Therefore, the static stress path in the ,/2J -o~ space can be determined by Eqs. 

(20) and (21), corresponding to the value of plastic strain. Next, the /-function 

which is considered to be a dynamic yield function will be determined by Fig. (3). 

f is given by Eq. (22) corresponding to Fig. (3). 

P1-P3 :Equi-inelastic Strain Line 

~ 

Fig. 3 Manner to determine £-function. 

f =,/2J2- 7J~o>u:+M*o1mln (o:/a:Y) -F=0 (22) 

From the constitutive theory of the elastic-viscoplastic body m this paper, the dy­

namic stress-strain relation is expressed by 
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, _ 1 • + 1 7 ., ,, + at 
<-;;-2c•;; 3 2<1.,U;J O;JUO<Ju 

The elastic strain-rate is given by 

tt.=Tp:,. 
Taking account of the e-ln <1:,. curve of the consolidation, 72 is given by 

T2= (l+'°e)<1:,, 

o;1 u in Eq. (23) is assumed to be as 

fi2 ) 
01JU =-2 (Ou011+0;;0; A 

Differentiating Eq. (22) with respect to the stress tensor, we obtain 

of = S;J -+[M*_ ,/21/•>+M*ln {q" /<1' (,)}]lo .. 
0<1;; ,/2]2 (]~<•> .. .. 3 • J 
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(23) 

(24) 

(25) 

(26) 

(27) 

The explicit expression of Eq. (23) can be rewritten by substituting this equation 

into Eq. (23) and by taking the relation of Eqs. (25) and (26) with the assumption 

that fi1=~, 11 

(28) 

where 

fi1 =C1exp [ m~J1
> 

<J,., 
(29) 

From Eq. (28), we obtain 

oe12= __!_ 0<1;2+fi (F) u:2 
at 2G at 1 ..;212 (30) 

(31) 

" Since Eqs. (10), (11) and (30) formulate the system of quasilinear hyperbolic partial 

i. differential equations, the characteristics exist. Along the characteristics, these differ­

{ ential relations are given by 

Along dx/dt= ±C, 

Along dx/dt=0, 

du' =.,..pCdv -2G>l(F)-!!..~,dt 12 ' 2 /-'1 ,/2]2 (32) 

(33) 

Fig. 4 shows the characteristics net. When the particle velocities at two points, 

Bo and B1, on the boundary of the bed rock are known, the stress and strain at C0 

can be determined by the differential relations along the lines B0-B1 and C0-B1. 
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Ground Surface 

Bed Rock 

Fig. 4 · Characteristics net. 

The stress, strain and velocity at point C2 can be obtained by solving the three 

differential relations along the lines (A1-C2, C1-C2 and B2-C2). 

Along the line A1-C2, the relation is· given 

(34) 

Along the line C1 -C2, 

(35) 

Along the line B2-C2, 

u:2cc2,-u~2cB2>= -p C (V2cc2,-v2cB2i) -

-2Gf31 . u;2 <tee ,-t<B ,) 
../2/2cB2J 

2 2 
(36) 

From Eqs. (34) and (36), u~2ccai and Vzcczi are determined and e12cc2i 1s obtained 

by Eq. (35). Conversely, if the stress, strain and velocity at points A1, A2 and C1 

are known, the stress, strain and velocity at point C2 can be obtained theoretically. 

By the same manner,. the underground motion can be presumed from the surface 

motion. 

4. Numerical Examples and Discussion 

In this section, we will examine the underground motion, using Eqs. (32) and 

(33) from the surface record. At the boundary of the layers, the mean value of pa-
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rameters in two layers was used for the finite difference method. 

Example A 
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Table 1 shows the parameters of the ground employed in example A. An elastic 

Layer I 

I 
1 I 

' 
2 

" 
3 

4 

5 

6 

Table 1 Parameters of example A. 

H I 
3.0 

3.1 

3."2. 

3.28 

3.36 

36.12 

G I p I C1 
I 

440 196 0 

480 200 0 

520 204 0 

560 208 10-6 

600 212 10-• 

640 216 10-• 

H; depth (m) 
G; Shear modulus (kg/cm2) 

p; density (kg sec2/m') - -, 
C1 ; parameter in Eq. (29) (1/sec) 

} ~ru, ~~ 

1 Clay l,,ye, 

layer of dry sand 9. 3 m thick lies on the' horizontal saturated clay laye_r. The clay 

layer is 42. 3 m thick. The parameter m hi Eq. (29) can be assumeci'to b~_a,s follows 

from the constant strain-rate triaxial compression test, 

m=49 (le12l~lo-3> 
m=49- (le12l-10-3) X1D8 c10-22 le12lz10-3) (37) 

m=40 (ls12lzto-2) 

where m depends on the amplitude of strain. The void ratio is calculated from the 

variation of the density with the depth. The other parameter K0, M*, ;i and " are 

taken as K0=0. 5, M*=l. 4, ;!=O. 127 and K=O. 021. The time trace of velocity on the 

surface is assumed to be sinusoidal and expressed by 

V2co>=A0sin(211:ft) ,A0=0.15m/sec,f = 1. 0 (38) 

Fig. 5 represents the calculated stress-strain relation at the depth of 33. 1 m in 

the ground. In this figure, the viscoplastic strain is produced and th4 hysterisis 

damping loop can be recognized. The velocity record at the depth of 50. 4 m is 

shown in Fig. 6 by the solid line. It is obviously known, as would be anticipated, 

that the velccity on the surface is considerably amplified. The dotted line shows the 

velocity response, which has been calculated under an assumption that all the layers 

are linearly elastic. Comparing the two calculated results, it may be noted that the 

absolute value of velocity in the clay layer, which has been assumed to be elastic­

viscoplastic in behavior, is greater than the result calculated under the assumption 
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described above. The difference of the amplitude of these two cases gradually 

vanishes with time, similar to the tendency of the velocity response. The part 

marked on the time axis shown in Fig. 7 indicates the period when the state of 

stress of the clay layer is viscoplastic in behavior. Moreover, it may be noted that 

the magnitude of stress, at which the viscoplastic behavior initiates, increases with 

u 
0 

~ 

-5 

-3 

Depth = 33. l m 0.4 

0.3 

-2 

-0.2 

-0.3 

-0-.-4-· 

Fig. 5 Stress-strain relation (calculated result). 

Depth = 50.4 m 
----- Elastic 

Fig. 6 Velocity response. 
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Fig. 7 Stress response. 

Depth = 33. l m 

Depth = 50. 4 m 

----- Elastic 

2.2 2.3 

Mean Effective Stress(kg/cm2) 

Fig. 8 Effective stress path (calculated resut). 
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the number of cycles repeated, caused by the hardening property of clay. Fig. 8 

shows the typical effective stress path during the shear wave propagation. In this 

figure, the mean stress decreases and the residual pore pressure increases. 

Example B 

In example A, the sinusoidal velocity curve was used as a boundary condition, 

but for the practical aim of engineering, a more realistic wave propagation must 

be considered. Then, in this example, a seismic surface acceleration record was used 

as a boundary condition by transforming it into the velocity record. The frequency 
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Table 2 Parameters of example B. 
... 

H I p I C 

4 196 200 

4 200 200 

4 204 200 
I 

6 I 208 300 

6 212 300 

104 216 400 

H: depth (m), 
C: Shear wave velocity (m/sec) 
p: density (kg sec2/m4) 

C1 parameter in Eq. (29) (1/sec) 
m : parameter in Eq. (29) 

I C1 

0 

0 

0 

10-4 

10-• 

10-• 

I 
m 

0 

0 

0 

30 

30 

10 

component of the accelerogram more than 10 Hz was cut off by performing the base 

line correction. The first 10 sec of the S69E component of the accelerogram at Taft 

during the 1952 Kern Country, California Earthquake was used, as shown in Fig. 9. 

Table 2 shows the parameters of the ground employed in Example B. Fig. 10 shows 

the velocity response at the depth of 59. 9 m, while the dotted line shows the result 

of the case where all the comprised layers· are elastic. The solid line shows the 

result of the saturated elastic-viscoplastic ground. The velocity response for the 

elastic-viscoplastic ground is more predominant than that. oLth~ elastic ground in 

general. Fig. 11 represents the strain response and Fig. 12 shows the stress response 

at the depth of 59. 5 m. The maximum value of the stress and strain response for 

the elastic case is slightly smaller than that of the other case depicted by solid line. 

These phenomena can be interpreted that the wave energy dissipates during the 

wave propagation through an elastic-viscoplastic soil layer by producing an inelastic 

strain. Even if the surface velocity responses are equal, a larger stress, strain and 

velocity may be induced in the saturated clay layer than in the elastic ground. 

During 10 sec, the mean effective stress decreases by 0. 04 kg/cm2
, in this case at 

the depth of 59. 5 m. 

5. Conclusion 

The main concern of this paper is to solve various engineering problems as a 

boundary value problem using a realistic stress-strain relation of soil. In this paper, 

the author has presented the calculation of strain, stress and ~-~locity · induced in the 

subground during the shear wave propagation through clay layers. The clay layer is 
regarded as an elastic-viscoplastic body. The stress-strain relation under the isotrop­

ic consolidation was formally extended to the K0-consolidated state so as to be ap-
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plied for the anisotropic consolidation. Some researchers have investigated the effect 

of the non-linearity of soil on the motion of ground, but the effect of the non-line­

arity in the time range, in consideration of visco-plastic nature of soil, has seldom 

been examined. Comparing the motion of the elastic ground with that of the elastic­

viscoplastic ground during the seismic wave propagation, the effect of the time 

dependency of the stress-strain relation was examined. At the same time, the de­

velopment of the pore water pressure during earthquake motion was discussed. The 

method of characteristics was used because of its short time for computation and 

because of the easiness in taking a non-linearity of the material into analysis. The 

main conclusions obtained in this paper are as follows. 

(1) The motion of the layered cohesive soil during an earthquake can be calculated 

by using the method of characteristics. In this paper, from the surface records, 

the velocity, stress and strain induced under the ground were calculated. The 

stress-strain relation of cohesive soil was extended to the K0-consolidated state 

from that developed by author in order to apply it to the layered soil condition. 

(2) The difference between the non-linear and the linear elastic analysis was noted 

for the calculated results. From these results, even if the surface response is 

the same between the elastic ground and elastic-viscoplastic ground, the stress 

strain and velocity responses of the elastic-viscoplastic ground are greater than 

those of the elastic ground. These response characteristics vary with time 

in which the hardening property of clay can be obviously recognized. The 

characteristics of response develope behavior with time. 

(3) The pore water pressure developed during loading was estimated. From the 

example given, it is noted that the residual pore water pressure may be devel­

oped during an earthquake, but the absolute value of the pore water pressure 

1s relatively small compared to consolidation pressure . 
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