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Abstract 

This paper deals with a general nonlinear programming problem depending on 
a scalar parameter. Two algorithms are presented to obtain a parametric optimal 
solution of the problem by reducing it successively to associated 'problems which 
contain a smaller number of variables. The reduction is accomplished by partitioning 
variables into b11sic and nonbasic variables, and also by generating a reduced prob­
lem from only nonbasic variables. It is shown that both algorithms are essentially 
equivalent to each other. The finiteness of the algorithms is proved under certain 
assumptions. 

Application of parametric programming to handle some (originally nonparametric) 
problems is also indicated. 

1. Introduction 

In a previous paper[ll], a method of parametric programming has been examined 

by the authors for a linearly constrained programrr'iing problem with a nonlinear ob­

jective function, depending on a scalar parameter. The underlying idea of the Basic 

Algorithm proposed there is to reduce the problem to a relaxed one by expressing 

basic variables as functions of nonbasic variables. A striking feature of the reduced 

parametric problem is that the Kuhn-Tucker conditions for the problem do not in­

volve any Lagrange multiplier explicitly, but only nonbasic variables. 

Evidently the fundamental idea of the above method is similar to that of the 

reduced gradient method for solving nonlinear programs with linear constraints[13]. 

Therefore, it may be reasonable to try to generalize the method of parametric pro­

gramming for linear constraints to the case of nonlinear constraints, which also 

depend on a parameter in a way similar to that in which the reduced gradient 
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method ~as generalized for nonlinear constraints by Abadie and Carpentier[l]. In 

fact, as will be shown in the next section, the basic theorems stated in [11, section 

2] concerning the relationship between the solutions of the reduced · problem and 

those of the original problem may be clearly generalized. On the basis of such a 

generalization, in section 3, two algorithms for finding optimal solutions of a parame­

tric n.onlinear program are presented, and further computational aspects are discussed; 

In section 4, four applications of parametric programming are indicated. In section 

5; a numerical example is given to illustra:te the functioning of this program. 

2. The Generalized Reduced Parametric Problem 

In this paper, the following parametric nonlinear program is considered: For 

each tE T, find an n-vector x (t) that 

minimizes f(x, t) ( 1) 

subject to g(x, t) =O, x2:0, 

where t is a scalar parameter varying in a compact interval T, and the functions 

f: R• X T➔R and g=(g1, ... , g,.) T: R• X T➔R"' are twice continuously differentiable 

i11 x and t. Notice that any nonlinear program involving a scalar parameter may be 

expessed in the form 

minimize,. 

subject to 

f(x, t) 

g(x, t) =O, a:::;x;;;.b, 

(2) 

where the components of a and b are allowed to be - oo or + oo, It suffices to con­

sider only equality constraints, since any inequality constraint can be made into an 

equation by introducing a slack variable. The reason why we consider problem (1) 

rather than problem (2) is merely for simplicity of exposition. It should be noted 

that the results obtained in this paper may easily be translated into those for prob­

lem (~) by suitable modifications. 

In this section, we apply· the implicit function theorem to problem (1), and obtain 

some results which may be viewed as an immediate generalization of those given in 

[11]. For problem (1), we adopt the following nondegeneracy assumption: For any 

tE T and for any feasible solution x, i.e., g(x, t) =O and x>O, there exists a partition 

of x into y and z, where y is m-dimensional and z is (n-m)-dimensional, such that 

the mXm matrix f7:,g(y, z, t) is nonsingular and y>O. 

The components of the vectors y and z are called basic and nonbasic variables, 

respectively. With respect to the partition x=(y, z), the matrices f7 .. f(x, t) and 

f7 ,.g(x, t) are partitioned as [fl :,J(x, t), f7 .f(x, t) J and [f' 
3
g(x, t), fJ .g(x, t) ], 

respectively. 

Given lE T, let x be a feasible solution of (1). Then by the nondegeneracy as­

sumption, the implicit function theorem assures that we can find a pa.rtition · x= (y,z) 
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and a twice continuously differentiable function h: R•-m X T➔ R"' implicitly deter­

mined by solving the nonlinear equation 

g(y, z, t)=O 

for all (z, t) in some neighborhood of (z, l), namely, 

y=h(z,l) 
and 

g(h(z, t), z, t)=O (3) 

for all (z, t) in the neighborhood of (z, l). Consequently, we may define, at least 

loca)ly, a generalized reduced parametric problem as follows: For tE T, 

minimize. F(z, t) J f(h(z, t), z, t) ( 4) 

subject to z>O, 

where h is the implicit function defined by (3). Notice that the objective function 

F is twice continuously differentiable in x and t, because both f and h have the 

same property. It is to be noted that more than one such reduced problem may be 

defined in the neighborhood of (.f, l), since a possible choice of basic variables is 

not necessarily unique. 

In general, the function F is not available in a closed form except in some simple 

cases like those with linear constraints. Fortunately however, the gradient 17.F(z, t) 

and the Hessian matrix 17!.F(z, t) can be expressed in terms of the gradients and 

the Hessians of f and g. Specifically, we have 

r.F(z, t) =17.f (h(z, t), z, t) +r y/(h(z, t), z, t)f'.h(z, t). ( 5) 
Differentiating (3) with respect to z yields 

r.g(h (z, t), z, t) +17 ~(h (z, t), z, t)17.h(z, t) =0. (6) 

Since the matrix 17 Yg(h (z, t), z, t) is nonsingular, eliminating 17,h from (5) and 

(6), we obtain 

f' .F (z, t) = 17 J (h (z, t) , z, t) 

-17 y/ (h (z, t), z, t) [17 Yg (h (z, t), z, t) J-117 .g (h (z, t), z, t) ( 7 ) 
which is called the reduced gradient (with respect to z.) 

Let 

A(x, t)J f'yf(x, t)[f'yg(x, t)J-1 

Then (7) may be written as 

17 .F (z, t) = 17.f (h (z, t) , z, t) - J (h (z, t) , z, t) 17 .g (h (z, t), z, t). 

Now (8) implies 

17 yf (h (z, t), z, t) -J (h (z, t), z, t) 17 yg (h (z, t), z, t) =0. 

Differentiating this with respect to z, we have' 

17!.f-Jr!.g+[l7~J-ir!ygJ 17.h-17ygT ~! =O. 
----~ 

(8) 

(9) 

(10) 
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Similarly, differentiating (9) yields 

r!.F (z, t) =r!.f-t.r!.g+ [r!y/-t.f .yg Jr .h-r.gr ~!. (11) 

Eliminating ;; from (11) by using (10), and taking account of (6), we obtain 

r!.F(z, t) =[r.hT, I n-mJ[r:y/-t.J7:yg r:.f-t.J7:.g] [r.h ] 
J7,y/-t.J7,yg r .. f-t.J7.,g I .-m 

(12) 

where 

(13) 

Notice that all functions in (10)-(13) are evaluated at (x, t) =(h(z, t), z, t). 

Now review the second-order sufficiency conditions for isolated local minima of 

problems (1) and (4). A statement of the conditions for more general nonlinear 

programs can be found elsewhere, for example, in [9, p. 235], and hence, no proof 

is given here. 

For tE T, if an n-vector x (t) satisfies 

g(x (t), t) =0, x (t) >0 

and if there exists an m-vector ). such that 

J7 J (x (t) , t) - t.f .g (x (t) , t) 2:0 
[r .f (x (t), t) -).r ,.g(x (t), t) ]x (t) =0 

and 

sr[r!.f(x (t), t) -t.f!.g (x (t), t) Js>0 

for all non-zero n-vectors s, such that J7 .g(x (t) ,t) s=0 and s1=0 for iE{i; [r ..f(x (t), t) 

-.<f,.g(x(t),t)];>0}, then x(t) is an isolated local minimum of problem (1). 

For tET, if an (n-m)-vector z(t) satisfies 

and 

{
r .F (z (t), t) >o, z (t) ~o 
J7 .F (z (t) , t) z (t) = 0 

VTJ?'!.F (z(t), [) v>o 

(14) 

for all non-zero (n-m)-vectors v, such that v;=0 for jE {j;r • . F(z(t), t) >0}, then 
J 

z(t) is an isolated local minimum of problem (4). 

The following two theorems state important relationships between the optimality 

conditions for problems (1) and (4), on which the algorithms in the next section are 

based. The proofs can be completed by using (7) and (12) in a manner quite 

analoguous to that for Theorems 1 and 2 in [11], and hence are omitted. 

Theorem 1. For tE T, if x (t) satisfies the second-order sufficiency conditions for a 

local minimum of problem (1), then there exists a partition x(t) =[y(t), z(t) J such 
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that y(t) >0 and that z(t) satisfies the second-order sufficiency conditions for a l!>Cal 

minimum of the generalized reduced problem (4). 

Theorem 2. For tE T and an (n-m)-vector z(t), let h be an implicit function 

determined by (3) on a neighborhood of (z(t), t). If z(t) $itisfies the second-order 

sufficiency conditions for a local minimum of the generalized reduced problem (4), 

and if h(z(t), t)~O, th¢!l then-vector [y(t), z(t)J satisfies the second-order suffi­

ciency conditions for a local minimum of the original problem (1), where y(t) = h(z 

(t), t). 

In Theorems 1 and 2, we have tacitly assumed that we know the function h ex­

plicitly when handling (14). In practice, however, we need to solve another nonlinear 

equation (3) separately to have h(z, t). Motivated by this fact, we consider the 

following system of equations and inequalities in place of (14) : 

\ 

g(y, z, t) =0 

H (y, z, t) >O, z~O 

H (y, z, t) z=O 

(15) 

where, for the partition x=(y, z), the function H: R• X T➔R•-m is defined by 

H (x, t) = V .f(x, t) -r ,f(x, t) [f' ,g (x, t) J-1p .g (x, t). 

It is easily verified that 

f' zH (x, t) = [f' ,H (x, t), f' ,H (x, t)] 

=[-v,g-
1
v.g]T [vf,f-iv;,g v;J-lr~~·g] 

I •-m /i'.,f-J.f!.,g /i'.J-).f! .. g 

=I'r[v;.f(x, t) -J.(x, t)p;.g(x, t)], (16) 

where ). and I' are given by (8) and (13), respectively. Notice that ). and I' are 

evaluated at (x, t)=(y, z, t) in (16), while these are evaluated at (X, t)=(h(z, t), 

z, t) in (12). Theorem 3 shows that (14) may be replaced by (15) in the optimality 

conditions for the reduced problem. 

Theorem 3. For tE T, suppose that an n-vector x (t) =[y(t), z(t) J solve,s (15). If 

y(t)>O and if 

v?T[p;J-J.v;.g]I'v>O (17) 

for all v, such that V;=O for iE{j;H;(x(t),t)>0}, wherer!2.f. r!,,g, A and I' are 

evaluated at (x (t), t), then x (t) satisfies the second-order sufficiency condition,s for 

problem (1). Conversely, if x(t) satisfies the second-order sufficiency conditions for 

problem (1), there exists a partition of x into y and z, such that y(t) >O and that 

x (t) =[y(t), z(t)] iiatisfies (15) and (17). 

Proof. First note that y(t) =h(z(t), t). Now, the theorem immediately follows from 

Theorems 1 and 2 and the fact that 

and 
V .F (z (t) , t) = H (x (t) , t) 

P!.F (z (t), t) = rr[f'!.f(x (t), t) - l (x (t), t) V!,,g (x (t), t) ]I'. □ 
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3. Methods of Computing Parametric Optimal Solutions 

In what follows, we assume the existence and the continuity of x(t) which sat­

isfies the second-order sufficiency conditions for a local minimum of problem (1) for 

every !ET. Under this assumption, we shall propose two algorithms for solving prob­

lem (1) parametrically. Without any loss of generality, let T be the unit interval 

[O, l] in the rest of this section. 

On the basis of Theorems 1 and 2, we first state the following algorithm which is 

a straightforward generalization of the Basic Algorithm presented in [11]. 

Algorithm 1. 

Step 1: Obtain an optimal solution x (0) of problem (1) for t=O by an appropriate 

method. Choose a sufficiently small number T>O and set t'=O. Go to step 2; 

Step 2: Partition x into basic y and nonbasic z, such that the corresponding basis 

matrix is nonsingular and all components of y(t') have a value greater than r. Go 

to step 3.1; 

Step 3, 1: Choose sets I and J of indices such that 

{j;r • .F (z (t'), t') >0} cf c {j; z; (t') =0} 
1 

and l={l.2, ... , n-m}-]. Go to step 3.2; 

Step 3. 2: Obtain the solution z(t) of the system of equations 

{
V •

1
F(z, t) =0 

ZJ=O 
(18) 

where z 1 and ZJ are the vectors with components Z;, iEI, and Z;, jEJ, respectively, 

and solve (3) to get y(t)=h(z(t), t), as t increases from t' to t=t0 .J min{t*, t**}, 

where 

t*=sup{t;y;(-r)>T vi,for all -r such that t';S'.;-r;S'.;t;S'.;1} (19) 

and 

t**=sup {t;p,
1
F(z(-r),-r)?_O and z1 (-r)>0 for all -r, such that t';S'.;-r;S'.;t;S'.;1}. 

Go to step 3. 3; 

Step 3. 3: If t0 = 1, terminate. Otherwise, setting t' = t0
, return to step 2 if t0 = t*, 

and return to step 3. 1 if t0 = t** 

Notice that in step 2, we always have y(t') >0 by virtue of the nondegeneracy 

assumption. Thus, it can never happen that t' =t* in step 3. 2, On the other hand, 

in general, it is not always the case that t' <t** in step 3, 2, unless the sets are 

properly determined in step 3. 1. Now the question is how we may find such I and 

J, especially when the strict complementarity, i. e., 

{j;p. ;F (z (t'), t') >O} = {i ;z1 (t') =0} 

does not hold. However, this problem is basically the same as that of finding an 
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index set among all valid sets in step 3 of Geoffrion's Basic Parametric Procedure 

[ 4], where a trial and error technique is described in detail. Hence; we shall not 

be coni:ierned with that matter in this problem. Thus, it is supposed that adequate 

index sets I and J are always specified in step 3. 1 so that t' <t** holds. 

Next, we propose .another algorithm for finding a parametric solution of problem 

(1). 

Algorithm 2. 

Steps 1 and 2: Same as those in Algorithm 1; 

Step 3. 1: Choose I and J, such th.at 

{j;H; (x (t'), t') >0} cf c {j;z; (t') =0} 

and I=U,2, ... , n-m}-]. Go to step 3.2; 

Step 3.2: Obtain the solution x(t)=[y(t), z(t)] of the system of equa.tions 

j 
g(y, z, t) =0 

H 1 (y, ~. t) =0 

ZJ=0 

as t increases from t' to t= t0 4 min {t*, t**}, where t• is defined by (19, and 

t**=sup {t;H J (x (-,), 1:) >O and z1 (1:) :;;:o for all 1:, such that t' ;£:;1:;£:;t;£:;I} 

where H=[H1 , HJ] and 

HI =/7. J-/7 yf[p yg]-1/i'. Ig=/7. J-J.17. lg, 

HJ =/7 .Jf-17 yf[/7 yg J-117 .Jg=/7.J-J./7 .Jg. 

Go to step 3. 3; 

Step 3. 3: Same as that in Algorithm 1. 

It follows immediately from Theorem 3 that Algorithms 1 and 2 are essentially 

equivalent to each other. To summarize the procedures, we determine parametrically 

the values of nonbasic variables by solving t'he equations which are derived from the 

optimality conditions for the generalized reduced problem. We also monitor the basic 

variables to decide whether the current basis is changed or not. 

Both Algorithms 1 and 2 are ideal in the sense that we assume that (18) and 

(20) are solved for all continuous values of the parameter t. In practice, it is usually 

not possible to solve parametric nonlinear equations continuously except in very 

simple cases. Although it is often possible, as was indicated in [11] for linearly 

constrained problems, to derive a differential equation from the · system of equations 

and apply some numerical integration method, we shall content ourselves here with 

the so called discretization approach to the parametric solution of nonlinear equations. 

Namely, systems of nonlinear equations are solved by some iterative method succes­

sively for a finite number of representative values of the parameter. 

Consider first the system (18). It should be noted that z(t,) and z(t2) are ex-
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pected to be close to each other, provided I t1 -t2 I is suffiaiently small, by virtue of 

the continuity of z(t). Thus, if z(t1) is known, iteration for solving a system for 

t=t2 with the starting point z(t1) may converge to z(t,). A typical procedure of 

discretization is as follows: Let Llt>O be sufficiently small and z(t) be given for the 

initial value of t, say t0• Put lp=t0 +pL1t, P=L 2, .... For each p, compute z(tp) as 

a limit of Newton's iteration 

z,,+i = [z}+1
} = [zi-[v! 1 • 1 F (zi, tp) J-1

17J i' (z', tp)} 
zj+l 0 

with the initial condition z0 = z (t p-i). 

Note that at every iteration (21), we must solve 

g(y, z', tp) =0 

(21) 

(22) 

for fixed z" and tp to obtain y,.=h(z",tp) by using an iterative method in order to 

evaluate 17! 1• 1F (z", t1) and /7. 1F (z,., tp). Therefore, the above procedure is regarded 

as a two-fold iteration in the sense that each iteration (21) involves another set of 

iterations for solving (22). 

We now turn our attention to the solution of (20). By the continuity of x (t), a 

procedure similar to that for (18) can be applied. In this case, Newton's iteration 

corresponding to (21) may be written as 

[[

Y,,]-[17,g(y\zi,tp) r.1g(y",z",tp) 1-1
[g(y",z",tp)] 

= z} v,H1(y\z,,,tp)/i'.IH1(y',z",tp) H1(y",zli,tp) 

0 

(23) 

where, of course, the initial condition is x0 =x (tp_1). 

It is to be noted that the inverse matrices which appear in (21) and (23) exist, 

provided (y", z,.) is sufficiently close to (y(tp), z(tp)). This is easily verified for (21), 

since [';1•1F(z(t),t) is continuous with respect tot, and since the invertibility (or, 

more precisely, the positive definiteness) of ('; 
1 

• 
1
F (z (t p), t p) follows from the fact 

that z(tp) satisfies the second-order sufficiency conditions for optimality. To show a 

similar result for (23), it suffices to prove that the matrix 

[
/7,g(y,z,t) /7.1g(y,z,t) ] 

v,H1(Y,z,t)r.IH1(y,z,t) 
(24) 

1s nonsingular for (y, z) =(y(t), z(t)). Here, we show that this matrix has a non-

zero determinant. Since the matrix f' ,g is nonsingular by the nondegeneracy as• 

sumption, it is easy to see that 
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= det[l7 ,g] • det [17. 1H 1-17 ,H 1 (17 ,g)-'17.1g J 
=det[17,g] 

·det[[-(j7,g)-'17.1g]r[17:,f-).17;:g 17:•J-,W;:1g ][-(j7,g)-1
f. 1g]] 

I, 17.1'f-).17.1'gl7.1.J-).17.I~Ig I, 

=det [17 ,g]• det [17! 
1 

•
1
F] 

for (y, z) =(y(t), z(t)), where I, is the identity matrix of order r, and r is the 

number of elements in set I. Obviously det[17,g]*0 and, by the same reason as 

before, we have det [17! 
1 

•
1
F] * 0. This proves the nonsingularity of (24) for (y, z) = 

(y(t)' z(t)). 

We have adopted Newton's formula (21) and (23) to solve (18) and (20), respec­

tively. This is for expository purposes only. Obviously, it is also possible to apply 

other methods such as the conjugate gradient or the quasi-Newton methods. 

Notice that step 3. 2 of Algorithm 2 requires the solution of m+r equations (20) 

in m + r unknowns y and z 1 , while that of Algorithm 1 needs the solution of r equa­

tions (18) in r unknowns z 1 • However, at each step of the iteration one should 

solve a system (22) of m equations in m unknowns y, where r may vary but does 

not exceed n-m. Although the efficiency of the algorithms might entirely depend 

upon the structure of equations (18) and (20), as for the execution time, the latter 

seems preferable within our limited numerical experiments. 

It is an important problem whether each step of an algorithm will be executed 

only a finite number of times before termination. For Algorithms 1 and 2, this prob­

lem consists of two parts, namely, one is the finiteness of the number of points t* 
at which the basis is updated. The other is that of the number of points t** at 

which I and J are revised. Observe that these questions may be simultaneously 

answered for either of the Algorithms, since their actions are essentially identical. 

For the first question, we provide the following. 

Theorem 4. Assume a "strong" nondegeneracy: There exists a scalar f>0, such 

that for any feasible x and t, a partition x=(y, z) exists such that 17 ,g(y, z, t) is 

nonsingular and Y,>f for all i. If either of Algorithms 1 and 2 with any r, such 

that 0<r:;;,f is applied to problem (1) whose solution exists and is continuous with 

respect to t, then the number of points t* at which the basis change occurs is 

finite in T. 

Proof. The theorem can be proved m a similar manner to the one for [11, Theorem 

3], and hence is ommitted here. 
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Another important question concerns the finiteness of the number of points t** 

where sets I and .T are revised. A sufficient condition for the finiteness may be the 

analyticy of the functions f and g on some open set containing XX T, where X is 

the feasible region of problem (1). Noting that function F defined in (4) also be­

comes analytic by the implicit function theorem, the pro6f may be completed in a 

way quite analogous to that of [ 4, Theorem 3]. 

4. Application 

In this section, we show four examples of applying parametric programming to 

different kinds of problems, that is, stochastic programming, fractional programming, 

bicriterion mathematical programming and a deformation method for nonlinear 

programs. It is shown that a parametric programming problem, to which Algorithm 

1 or 2 may be applied, plays an important role in each of them. 

4.1. Stochastic Programming Let a stochastic programming problem be 

minimize,. f(x, a) 

subject to g(x, a) =O, x>o, 

where a is a random variable with some known distribution. 

The "wait-and see" problem associated with this problem may be written as 

Emin,.{f(x, a) lg(x, a) =0, x>0}, (25) 

where E denotes the expectation taken with respect to the distribution of a. This 

problem and related ones are studied elsewhere, for example, [10], Obviously, prob­

lem (25) involves a parametric nonlinear programming problem of the form (1). 

Algorithm 1 and 2 may be efficient in particular if the random variable has a con­

tinuous distribution. 

4. 2. Fractional Programming A general nonlinear fractional programming prob 

!em is 

minimize N(x)/D(x) 
(26) 

subject to xES/){x;g(x) =0, xz0}, 

where it is assumed that D(x) >0 for all x ES. 

fact that 

Dinkelbach [2] proves an interesting 

qo=N(x0 )/D(x0
) =min{N(x)/D(x) lxES} 

if and only if 

N (x 0
) -qJJ (x 0

) =min{N (x) -qJJ (x) I xES} =0. 

Thus, associated with (26) is the following parametric programming problem: 

minimize,. N (x) -qD (x) subject to xES, (27) 

and problem (26) reduces to that of finding the value of parameter q for which the 

minimal value of (27) is exactly zero. Specifically, this is accomplished by solving 

(27) parametrically for various values of q as it increases (or decreases) until q=q0 
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is encountered, for which the minimal value becomes zero. 

4.3. Bicriterion Mathematical Programming A bicriterion nonlinear programming 

problem may formally be stated as 

minimize [1 ~:~] (28) 

subject to g (x) = 0, x~0, 

where J;_ and f, are real-valued functions. A feasible point x 0 is said to be efficient 

[5] (noninferior, nondominated, or Pareto optimal), if there does not exist a feasible 

point x, such that f;(x)~f;(x 0
), i=L 2, with at least one strict inequality. Efficient 

points play a central role in analyzing vector minimization problems, and it is well 

known [6] that if x 0 is an optimal solution of the following scalarized problem for 

some O<A<l 

minimizez A/i (x) + (1- A) f, (x) 

subject to g(x) =0, x;:::,:o, 
(29) 

then x 0 is (properly) efficient in problem (28). Moreover, it can be shown that, 

under a certain convexity assumption, any efficient x 0 solves problem (29) for some 

O~A~l [5, Lemma 2]. Therefore, finding efficient solutions of (28) may be reduced 

to the parametric programming problem (29). 

Hocking and Shepard [8] propose an alternative parametric approach to the 

bicriterion mathematical program (28). They consider the following parametric 

programming problem: 

minimizez Ii (x) 

subject to f, (x) ~~ (30) 

g(x) =0, x>0, 

in place of (29), and prove that if x 0 is efficient in (28), then X 0 also solves (30) 

for some ~- Clearly, (30) as well as (29) belongs to a class of problems of the form 

(1). 

4. 4. A Deformation Method Suppose that the following nonlinear programming 

problem is to be solved: 

minimize f, (x) 

subject to g 1 (x) =0, x>0. 
(31) 

On the other hand, we suppose that the vector x 0 1s known to be an optimal solu­

tion of another problem 

minimize fo(x) 

subject to g 0 (x) =0, x>0, 
(32) 

where g0 has the same dimension as g1• In practice, the solution of (32) may be 

considerably easier to obtain than that of (31). 

Consider now a parametric nonlinear program in which problems (31) and (32) 
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are imbedded: 

minimize., tfi(x) + (1-t)fo(x) 

subject to tg,(x) + (1-t)g0 (x) =0, x::2;0. 
(33) 

It is easily verified that (31) and (32) are identified with (33) for t=O and t=l. 
respectively. Therefore, an optimal solution of (31) may be obtained by solving (33) 

parametrically as t increases until t=l with the initial condition x=x0 for t=O. 

5. Numerical Experience 

An example is solved by the deformation method (4. 4) which incorporates 

Algorithms 1 and 2. The objective function and the constraints of (33) are transfor­

med as follows: 

minimize (1-e-')fi(x) +e-•.fo(x) 
(34) 

where the components of a, b are allowed to be - oo or + oo. It is evident that (33) 

and (34) are equivalent by taking tE[O, l] for (33) and tE[O,oo J for (34). 

In our experiments, we use .fo(x) =\\x-x0 \\
2 and g 0 (x) =g1 (x) +r as an initial 

problem (32) where X0 and rare vectors, such that g1(X0)=-r and a-S:,x-S:,b. Using 

(34), the computer experiments are performed on the well-known Rosen-Suzuki 

Test Problem: 

minimize 

f(x) =xf+x~+2xf-xi-5x1-5x2-2lx3+7x4 

subject to 

g1(X) =xf+x~+x;+~+x,-x2+xs-x.+x5-8=0 

g~(x) =xf+2xHxl+2x!-~1-x,+x6-10=0 

ga(x) =2xf+x~+xl+2x1-x~-x,+x1-5=0 

X5~0, X 6~0, x1::2;0 

where every inequality constraint has been transformed into an equality constraint 

by introducing slack variables x5, x 6, x7• 

The optimal solution is x*=(O, 1. 2, -1) with f(x*)=-44. These computations 

were given, using double precision, and carried out on the FACOM M 190 computer 

of Kyoto University Computation Center. The results of the calculations are summa­

rized in the following Tables 1 and 2, with the same initial estimates as given. 
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Table 1. Computation Results by Algorithm 1 

--- -- - s~;ti;;--- optim;m value · starting \ opt 

point point I 

--

imum vlaue 

(opt. sol. (opt. sol. of (opt. sol. 
_________ o_f _(3_2)_)~ (31)) __ o~ (32)) I 

opt. sol. of 
31)) 

x, I o. 1 0.390426D-05 o. 5 -0.44 0028D-06 

~I---::: 
------- -- --------- ----

0.999967D+00 

0.2000010 + 01 

1.5 

1. 5 

0.9 

0.2 

- --

99995D+oo 

00000D+Ol 

J star!ing 

I pomt (opt. sol. 
of (32)) 

4. 

4. 

4. 
··-------

-0. 5 -0.100000D+0l -0. 7 -0. 100000D+Ol 4. 
··----

1.86 o.o 1. 56 o. 0 4. 
------- - -- ------------ -- --- ·-- -- --------

100000D+0l 4. 
-------- - ----- --- --~ ,. ~' ~96 01000000+<)1 1 82 f 

l_x_1_ __ o~ -~~~ __ _ _ o. 8 _o._ 0 4. 
~------- -- -----

f O. 0 -0.440000D+02 0. 0 -0. 

CPU 
time 
(sec) 

3.957 3. 

440000D+02 o.o 
1: 

i 

944 I 

11 

optimum value 

(opt. sol. of 
(31)) 

0.112255D-05 

0.9999910+00 
·-------·----

0.200000D+Ol 
---

-0.100000D+0l 
------ ----

o.o 
--- ---··----

0.100000D+0l 
----- --

o.o 
--

-0.440000D + 02 

4.551 

--- -··-------- -- ---------------------- -----

Table 2. Computation Results by Algorithm 2 

I starting -I op;i~um ~alu 
'I point 

(opt. sol. (opt. sol. of 
_____ :_of (32)) I (31)) 

--------- -----·----··--------· 
l1 starting optimum value 

11 
starting e 

II 

!1 
point 

ii 
point 

(opt. sol. (opt. sol. of (opt. sol. 
II of (32)) (31)) Ii of (32)) 

I 

·----------- --:- ---

0 0.5 -,--0.819380D-12 4. 
-1 -------

1 1.5 0.100000D+Ol 4. 

0.1 

1.2 

1.8 

0.100593D-1 

0.100000D+0 

0.200000D+o 
-- --- -- --

-------- ------- -----

-0. 5 -0.100000D+0 

0.0 X5 1.86 
---- ----

x6 2.97 0.100000D+0 

1 I 1.5 0.2000000+01 4. 

1 I ~°"-_,---- - ·-----

-0.100000D+0l 4. 

1---
0.0 4. 

11-- 1--~ -·----------·-- ------

1 I! 1. 82 0.100000D+0l 4. 
---- --

X7 0.8 
---

f o.o 

CPU 
time 
(sec) 

0.0 

-0.440000D+0 

2.760 

-11 
--- - - - -------· - ----- --------

l 0.8 o.o 4. 
--------------

i -------------1 
2 ' 0.0 -0.440000D+02 o.o 

11 I 

!: 4.090 Ii I 

! 
i· ,, 

optimum value 

(opt. sol. of 
(31)) 

-0.432060D-10 

0.1000000+01 

0.200000D + 01 
--

-0.100000D+0l 

0.0 

0.100000D+0l 

0.0 
---

-0.440000D+02 

4.977 
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6. Concluding Remarks 

It has been assumed that the optimal solution x (t) of problem (1) is continuous 

with respect to t. In fact, the continuity of x (t) is an indispensable condition to be 

satisfied when Algorithm 1 or 2 is applied. Detailed discussions for continuity prop­

erties of the solutions of parametric programs can be found elsewhere, e. g., [3, 7, 12]. 

Theorems 1 and 2 relate the optimal solution of problem (1) to the optimality 

conditions for the reduced problem involving only nonbasic variables. Theorem 3 

gives other conditions which may take the place of those optimality conditions in 

terms of not only nonbasic variables but also basic ones. It should be noted that 

(14) and (15) do not contain any Lagrange multiplier, and this leads to a consider­

able reduction of the number of variables compared with the ordinary Kuhn-Tucker 

conditions for the original problem (1). Furthermore, the second-order sufficiency 

conditions ensure that the systems of equations (18) and (20) have nonsingular 

Jacobians at the solutions, and that the optimal solutions are locally unique as well. 

The nonsingularity of a Jacobian is a standard assumption in many iterative methods 

such as Newton's method for solving a system of nonlinear equations. 
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