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Abstract 

We present a numerical method for the solution of eeddy current problems arising in 
the analysis of electric machines. The method is based on a network analogy which is 
equivalent to a differential-integral equation formulation of Maxwell's equations, using the 
Biot-Savart Law. The present approach is intended mainly to give an intuitive picture 
rather than to be used as a general method for solving practical problems. A more effective 
method is presented in a companion article, where we start from a direct mathematical 
formulation. 

1. Introduction 

367 

The recent advances in computing and numerical analysis has made it possible to 

solve efficiently a variety of classical problems arising in physics and engineering. 

Among them are partial differential equations describing e.g. the electromagnetic field 

distribution in an electrical machine. This kind of computation is very sensitive (both 

in cost and accuracy) on the particular algorithm used. For three-dimensional field 

distributions, yielding a large number of unknown variables after discretization, the 

numerical solution is often economically unfeasible. In such cases the engineer still 

has to resort to physical modelling or crude analytical approximations, and those are 

timeconsuming cir unreliable. For this reason there is a constant search for new and 

better numerical techniques for field calculations. 

Integral equation methods have been advocated for several reasons. They provide 

a natural way to deal with boundaries in infinity. Also in cases of stationary three 

dimensional magnetic fields and two-dimensional TM and TE-mode induction problems, 

it was shown how to reduce the dimensionality (and thus the number of unknowns) 
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using the boundary-type Green functions for the kernel of the integral equation.1h 2>, 3>, 4> 

The possibility of reducing a three-dimensional problem to a two-dimensional (surface

type) one becomes attractive, however, only when dealing with relatively large scale 

problems. For example, if the number of subdivisions of a solid cube is n in all direction

s, then the number of surface elements will be lower than the number of volume ele

ments. Only when n is greater than 7, that is, for the case of 882 ( =3 x 6 X 72) or more 

complex unknowns (vecotr potential components), will the shells (at most two volume 

elements think) have the same number of surface and volume elements. In that case 

the surface equation does not mean reduction of unknowns. Besides this, it is easy to 

find an intuitive picture for the volume type integral equations, as will be shown by the 

following. In contrast with this, it is not easy to give a simple physical interpretation 

for the mathematical manipulations, by which a surface-type integral equation is de

rived. With the volume-type approach we can still reduce the number of unknowns 

(compared with the finite difference or the finite element methods) by confining the 

calculation to the region of interest, that is, to the conducting bodies. 

2. A Continuous Analogy 

We can get an integral equation for the eddy current problem for non-ferromagnetic 

media using the equations of Maxwell for a time harmonic field with negligible dis

placement currents. The magnetic field strength is given by 

H(r)=l/(4rr) J. J(r)(r-r')/lr-r'l3dv+H(r) (1) 

where integration is over all space. We can now substitute (j/wµo))P E for H, and the 

resulting differential-integral equation is easy to transform into an integral equation by 

using Green's theorem 

P(pJ)=jwµo/(41r) J. J(r-r')/lr-r'l3dv-jwµHo (2) 

h J/adp= -jwµ/( 41r) J. ( 4rr Ho+ J. JLlr/1Llrl3dV) dS (3) 

Here p and S are the perimeter and the surface of the same (arbitrary) surface element. 

Where 

It is possible to use eq. (3) directly for a numerical solution by transforming it into 

an algebraic system using an appropriate approximation space and numerical inte

gration formula. We choose instead an indirect way and first establish a network 
analogy. 
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3, A Network Analogy 

We can visualize the current density distribution inside a conducting body as 

discrete currents flowing in the branches of a resistance network. 5>, 6> The currents 

generate a magnetic field which in tum induces electromotive forces in the meshes of 

the network. Notice that the resistance network has to be created only inside the 

conducting body since there are no currents in insulators. lfwe are to find an equivalent 

circuit for the finite difference/finite element approach, it is also necessary to approximate 

the magnetic field distribution by discrete magnetic fluxes flowing in the branches of 

a magnetic resistance network interconnected or inteilinked with the electric network. 

This magnetic network, however, encompasses all space (at least insi.de of a well de

scribed closed boundary with sufficient boundary conditions). 

Returning to our electric network, we can take the divergence-free nature of eddy 

currents into account simply by transforming the branch currents into the mesh currents. 

The transformation is singular, reflecting the fact that we took a new condition into 

account. The main difficulty with the equivalent circuit formulation is to determine 

the value of the circuit elements. The program we used is a simple ALGOL 60 program 

based on the network analogy, which generates the resistance and inductance matrices 

together with the excitation vector at first, and then solves the resulting system of 

equations for various frequency values. 

4. Generation Of The Discrete System 

Using uniform cubic subdivisions and permitting only homogeneous conductivity 

(also excluding ferromagnetic materials), it is a relatively straightforward computing 

taken to calculate the resistance matrix. We first set up the transfom1ation matrix 

between the branch and mesh quantities, and then the diagonal matrix of branch 

resistances can easily be transformed into the mesh resistance matrix. 

Hear Ro is the resistance of a branch. In the first approximation, 

Ro=p/LJ.h (5) 

The inductance matrix is directly calculated from the geometric date. Although the 

mutual inductance of two rectangular current loops can be given explicitly, the self

inductance of a current loop is not defined. To simplify the program we use the same 

formula for self and mutual inductances: 

(6) 

where H11 is the magnetic field at the center of the i-tlz loop induced by the j-tlz current 
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loop. (i andj can be equal). 

The effect of the original field is a set-induced electromotive force in the meshes, 

given in a way similar to (6): 

U;= -jwµ,oH;n;(llh)2 

The mesh currents are calculated from 

The total eddy current loss is given by 

1 
P=2 Re{Rcm>Icm>Icm>*} 

(7) 

(8) 

*complex conjugate (9) 

As it can be seen from the simple approximations and the many restrictions, the aim of 

our program is to demonstrate the feasibility of a numerical IE-type formulation based 

on the network theory principles, rather than to develoep an effective general procedure 

for practical applications. In a program for "production runs", higher order approxi

mations would be advantageous, using possibly a coordinate system conforming with the 

problem, in a manner similar to that of. 7>). However, since the extension of the above 

expressions for the cases of non-uniform discretization, inhomogenous conductivity, 

multiple body problems etc. appears almost trivial, we mention here only the difficulties 

arising from the presence of ferromagnetic bodies. In principle, forromagnetic effects 

can be represented with the appropriate modification of the inductance values. In 

practice, however, it would seem better to retain a set of auxiliary variables (e.g. magnet

ization vector components) inside the magnetic bodies, except possibly for some simple 

cases of magnetic reflection. 

5. Computational Aspects 

The system matrix resulting from (8) is full, if we regard it as a single complex 

matrix. This is in contrast with the FFM/FDM-type formulations where the sparse 

algebraic systems are usually well suited for solution by special numerical methods. 

Our compact system, however, can be regarded as a partially eliminated form of e.g. 

an FD M matrix, so we can expect a better performance, especially in not too "dense" 

situations. If active (conductive) material occupies only a small part of the region of 

interest, the FFM/FDM makes it necessary to calculate a large number of (most proba

bly) irrelevant field values (in the air etc). The drastic reduction in the number of 

unknowns, reached by our method, is expected to be rewarding, even if we cannot use 

effective sparse equation solvers. 

Since the impedance matrix is only a weakly diagonally dominant, we could not 

use standard algebraic equation solvers. The algorithm used in the test runs was a 
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very strongly convergent, tough and consequently particularly slow interative procedure_ 

For this reason the run times are not included, being irrelevant. In practice an ortho

gonalization based algorithm would seem to be useful. 

6. Computational Results 

Unfortunately, we were not able to find any published computational and test re

sults for truly three-dimensional problems, suitable to compare with our method. For 

a test problem, we have chosen the case of a conductive sphere placed into an homo

genous time-harmonic magnetic field. The analytic solution can be found in e.g. 8>). 

The calculated power loss for three discretizations is shown in Fig. 2 together with the 

exact analytic solution. The sphere is the "worst case" for our method in several 

senses. Our volume-type formulation compares least favourably with the surface meth

ods in the case of a sphere for the number of subdivisions. Also, the rectangular 

elements are clearly better suited for straight boundaries. The method presented here 

can be reasonably expected to perform better in other cases. From Fig. 1, a discrepancy 

of O (1) can be seen between the numerical and the analytical results. The primitive 

6 meches 
(V/V0 •1.91) 

114 meshes (V/V0 •0.778) 

Fig. 1. Subdivisions for a Sphere. 

36 meshes 
(V/V0 =O.355) 
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Fig. 2. Eddy Current Losses in a Sphere. 

approximations for the values of the circuit elements could be responsible for this. 

The results indicate generally the possibility of using the volume integral equation meth

od for eddy current calculations. 
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