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Abstract 

The transport equation for neutral particles in a high temperature plasma was 
numerically solved in a one-dimensional phase space. Close correlation has been found 
between the spectra of the emerging neutral flux and the plasma parameters. The 
numerical results show that the asymptotic temperature, which is determined from the 
calculated spectrum of the emerging neutral flux, varies from about 70 % to 95 % of 
the maximum ion temperature for the realizable plasma conditions. The reflection 
coefficient of the wall and the profile of the ion temperature of the plasma do not bring 
any important influence to the spectrum of emerging neutral flux. 

I. Introduction 

The energy spectrum of fast neutral particles emerging from a high tempera

ture plasma is closely correlated with the ion temperature T;, the electron tem

perature T,, the plasma density n, and their spatial distributions in the plasma 

column. Therefore, it is considered that the energy analysis of of those neutral 

particles escaping from the plasma is an effectual method of the plasma diagnos

tics, 1•2l provided that the above mentioned correlations of the spectrum with 

the plasma parameters are established. 

The purpose of the present study is to find these correlations in the simplest 

case of one-dimensional plasma geometry, and hence to give a more accurate es

timation for the ion temperature measurement in the next generation tokamaks. 

Dnestrovskii, Kostomarov, and Pavlova3l treated the neutral transport by a 

one-dimensional slab geometry. They assumed that, with a charge-exchange, a 

neutral atom is generated with an energy equal to the ion temperature and with an 

equal probability of travelling in the ±x-direction. Thus, the neutral distribution 
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J(x, v) in the layer -a<x<a satisfies the following equation: 

where 

s = s(x) = F+l0- 3 a,nv,, F = F(x) = 0.04apnv;, 

V; = v;(x) = I .4 x l 0\/ T;(x) IP , v, = 0.6 x l08y TJ~), 

N. = N.(x) = [=f(x, v)dv. 

They introduced a boundary condition m the form of a delta-function as 

J(±a, v) = A0 a (v±v;) 
Vo Vo 

( l ) 

( l ) 

where v0 and A0 are the thermal velocity and the density of the neutrals in the 

vacuum, respectively. 

Thus, they have derived an integral equation for the neutral density N. 

(0<x<a), ( 3) 

where No(x) corresponds to the density of the neutrals in the plasma without 

considering the secondary neutrals which appeared as a result of the charge-ex

change. Hence, the kernel is written as follows: 

where 

K(x, f) = _ _!__ F(t) {¢(,, x, v;(,)sign(x-f)) 
2 V;(f) 

+¢(0, f, v;(,))¢(0, X, V;(,))} , 

¢(,,x,v) =exp[-:
1 

i;sdx'J. 

( 4) 

Rehker and Wobig4l also derived an integral equation for N n· They treated 

the boundary condition in several reflection mechanisms of the neutral particles 

from the wall. Then they compared the results obtained with a Maxwellian 

distribution of ions with those of a delta-like distribution. 

Table l shows some characteristics of the mathematical models used for the 

Table 1. Solutions for neutral transport 

Authors Geometry Ion velocity Boundary Numerical method distribution condition 
-------

Dnestrovskii, Slab Delta-function & Deltafunction Integral eq., functional 
et al. ( 1971 ) Maxwellian iteration for N • 

Rehker et al. Slab Delta-function & Ideal & dififfuse Integral eq. (1973) Maxwellian reflection 
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solutions of neutral transport in references 3) and 4). 

In this paper, we shall solve the transport equation for the 11cuti·al particles in 

an infinite slab model which is also adopted in references 3) and 4). However, we 

are going to treat this problem with the following improvements: 

( 1) Instead of the delta function and the diffuse reflection of the neutrals being 

treated as a boundary condition in references 3) and 4), we treat the immerging 

slow neutrals as an equivalently distributed external source. 

(2) The infinite difference equation for the transport equation is derived and 

solved iteratively. 

(3) In preparation for the next geneartion tokamak, the influence of the plasma 

parameters on the emerging neutral spectra is studied systemtically by changing 

the plasma parameters in wide ranges. 

2. Particle interactions in a high temperature hydrogen plasma 

Among many kinds of particle interactions which may take place in a high tem

perature plasma, we shall take into accuont the following three reactions which 

are considered to be the most important. The first is the ionization of hydrogen 

atoms by electrons 

The second is the charge-exchange between ions and neutral particles 

ff+ ff+ ~ ff++ ff . 

The third is the ionization of neutral atoms by ions above 10 keV 

ff+ff+ ~ 2ff+ +e. 

( 5 ) 

( 6) 

( 7 ) 

Riviere has summarized all the cross-section data for the above interactions, 

and has presented formulas which fit the experimental data welJ. 5l We quote 

the following cross-section formulas from reference 5). 

For the ionization of hydrogen atoms by electrons, the cross-section above the 

threshold energy is given by 

a1 (E) = 3.519 X 10-16h(E) , ( 8) 

h(E) = l.(z-!)
312

(1 +~(1-l.) In (2.7+v z-1 )) , 
z z+ 1 3 2z where 

with z = E/E0 , E 0 = 13.605 eV. 

For the charge-exchange, the cross-section is given by 
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a (E) = 0.6937xl0-14(1-0.155log10 E) 2 (g) 
2 

l-+-0.1112xl0- 14E 3•3 

For the ionization by ions above 10 kcV and below 150 keV, we use the formula 

a3(E) = l OY(E) , (10) 

where y(E) = -0.8712(log10 E)2+8.156 log10 E-34.833, 

Above 150 keV, we use 

( 11) 

In formulas (8) through ( 11), the cross-section a and the relative energy E 

are expressed in cm2 and eV, respectively, The cross-sections calculated with these 

formulas are shown in Figs. 1-3, as a function of the relative energy E. 

We take the average of the product av with respect to the one-dimension al 

Maxwellian velocity distribution of electrons or ions, and call this the rate 

coefficient after Riviere, 5> 

<av);= (--mi) 112 r= a(lv-vol) Iv-vol exp[-mjv2 ]dv. 
27':kTj Loo 2kTj 

( 12) 

In Eq. (12), j indicates the species of the plasma particles concerned, i.e. j= 1 

indicates the electron whilej=2 indicates the ion. Figures 4 and 5 show the rate 

coefficient of ionization by electrons and that of the charge-exchange as a function 

of temperatures of the plasma particles, respecitvely, with the energy of the neutral 

particles as a parameter. 

-16 
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E(eV) 

Fig. I. Cross-section of ionization of atomic hydrogen by electrons. 
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Fig. 2. Cro~s-section of charge-exhrnnge between atomic hydrogen and protons. 

H0 
+ H+ = H·• H0 

H0 
+ H'= 2H•• e eq_(5) 

eq_(5/ 

Fig. 3. Cross-sections of charge-exchange and ionization of atomic hydrogen with 
and by protons, respectively. 
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Fig. 4. Rate coefficient of ionization of atomic hydrogen by electrons as a func
tion of the electron temperature. 
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Fig. 5. Rate coefficient of charge-exchange between atomic hydrogen and 
protons as a function of the ion temperature. 

3. Transport equation for neutral particles 

The plasma is assumed to be a symmetrical slab with a thickness of2a (Fig. 6). 

The distribution functions of the neutral particles are written asj±(x, v), with the 

sign ± indicating the particles moving in the ±x-direction. According to the 

symmetry of the modeI,j+(x, v)=J-(-x, v). 

The distribution function of the j-species of the plasma particles is assumed to 
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wall 
Plasma 

na,u)" k·((a,u) 

-a 0 a X 

Fig. 6. Geometry assumed. 

be n(x)g;(x, v), 

where ( m. )1/2 [ -m.v2] 
g;(x, v) = 2rckT;(x) exp 2kT/(x) ' 

is the one-dimensional Maxwellian distribution with the space-dependent tem

perature T;(x). 

Sinceg;(x, v) is defined in half-infinite velocity space O<v<=, the distribu-

tion of ions moving in the ±x-direction is equal to _!__n(x)g;(x, v). 
2 

We also assume that the slow neutrals outside the plasma slab are the external 

source of neutrals which immerge into the plasma slab from two surfaces of the 

plasma. The slow neutrals have an energy of 2.2 eV with an equivalent thermal 

velocity v0• Thus, the distribution of the slow neutrals in the plasma slab is given 

by 

,;,,+(x, v0) = ,;,,p(-a-+ x, v0) 

,;,,-(x, v0) = ,;,,p(a-+ x, v0) 

where p(-a-+x, v0) and p(a-+x, v0) are the probabilities for a neutral particle 

immerging into the plasma from a or -a to reach x without undergoing any 

collisions, respectively. Because of the symmetry, ,;,,+ and ,;,,- are related by 

,;,,+ (x, v0) =V"-( -x, v0). The probability p can be expressed as 

where 1/J.=n(x)(av)/v0, ). is the mean free path for the sinking process of the 

slow neutrals in the plasma, and (av) is the total rate coefficient for the same 
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process. 

The sinkagc of the neutrals in the plasma is considered to be due to the ioni

zation by electrons and the charge-exchange with the ions. Ionization by ions is 

neglected here. Because the charge-exchange between the neutrals and the ions is 

a so-called symmetrical resonant reaction, there is no energy transfer in the reac

tion. 6> Therefore, the neutrals generated in this reaction will acquire the ion 

energies. With the above assumptions, we can write down the steady-state trans

port equation for the neutrals in the plasma as follows: 

+ [ a2 ( I v=fv' I) I v=fv' I j+(x, v')dv'} 

±__!__ ~ g;(x, v) {,;r-(x)a2 ( I v±v0 I) I v±v0 I 2 V 

( 13) 

The boundary condition at the centre of the plasma slab x=O is derived from 

the symmetry of the model, 

(14) 

Another boundary condition is assumed at x=a. This condition depends on 

the reflection of neutral particles by the wall (see Fig. 6). Since the reflection 

picture of the wall has not yet been clarified, we assumed that the energy distribu

tion of the reflected neutral particles is not changed by the reflection, i.e. 

(15) 

Usually, the reflection coefficient k does not exceed unity. 

The transport equation ( 13) can be solved numerically under the boundary 

conditions (14) and (15), if the plasma density n(x), the ion temperature T;(x), 

and the electron temperature T,(x) are given. In this paper, the spatial distri

butions of the plasma parameters mentioned above are assumed as follows 

(I) n(x) = n(l-,;2) 

T;(x) = T;0(l-,;4) 2+10 

T,(x) = 2T;(x) 
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and 

(II) 

where 
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n(x) = n(I -e2
) 

T;(x) = T;0(I-e
2

) + 10 

T,(x) = 2T;(x) 

e = x/a. 

4. Numerical solution of the transport equation 

4.1 Derivation of the infinite difference equations 

For the sake of simplicity, in addition toe, we introduce another dimensionless 

variable 

Moreover, we use the following substitutions 

(av)= (va)1+(va)2 

q(e) = [T;(e)/T;o]l/2 

F±(e, u) = exp[-u2]j±(e, u) 

h(e, u) = exp[u2]g;(e, u) = v 1 
exp[-u2(1/q(e)-I)]. 

7r: v,q(e) 

Then the transport equation (13) can be written as 

8F±(e, u) = =f an(e) (av)(e)F±(e, u) 
ae uv1 

±an(e)h(e, u) {r~exp[-u'2Ja2(v,lu±u'i)(v1lu±u'i)F-(e, u')du' 
2u Jo 

+ [ exp [ -u12]a2(v1 I u=fu' I) (v1 I u=fu' I )F+(e, u')du'} 

± an( e) h( e, u){,Jr-( e)a2(V1 I u±uo I) I u±uo I 
2u 

+r+(e)a2(v,l=fuol)lu=fu0 I}. (16) 

We will derive the finite difference approximation of Eq. (16). Firstly, we 

apply the quadrature formula of the Gauss-Hermite type 

[_ exp [ -u2]f(u)du = ~ wJ(u;) (17) 

to the integrals on the right-hand side of Eq.(16). The quadrature points U; 

and the weights W; are given in reference 7). 
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Then we integrate Eq. (16) with respect to ,; in the range (<;;+1, ,;;) and use 

the formula 

(18) 

where .:l;=,;;+1-f;, The mesh points ,;;'s are numbered from the centre toward 

the outer boundary: at ,;=0, i=l; ,;=l, i=IMAX. 

If we write F±(i, j) instead of F±(e;, u;), then the finite difference equations 

for F- and F+ may be written as follows: 

F-(i,j) = [.!F-(i+l, j)+ ij {A(i,j,j')F-(i,j') +A (i + l,j,j')F-(i+l,j') 
Ji J1=1 

(j' = j excluded) 

+B(i, j,j')F+(i,j') +B(i+ 1, j,j')F+(i+ 1, j')} 

+C(i+ 1, j),;,-(i+ 1) +D(i+ l,j)y,+(i+ 1) +C(i,j),f,-(i) 

+D(i,j)y,+(i) J[ !_-A(i,j,j) rl (19) 
I 

and 

F+(i+l,j) = [.!F+(i,j)+± {B(i,j,j')F-(i,j')+B(i+l,j,j')F-(i+l,j') 
Ji J'=l 

where 

+A(i, j,j')F+(i,j') +A(i+ 1, j,j')F+(i+ 1, j')} 

(j' = j excluded) 

+C(i+ 1, j)y,+(i+ 1) +D(i+ 1, j),f,-(i+ 1) +C(i,j)y,+(i) 

+D(i, j),;,-(i, j) J[ !.-A (i+l. j,j) r1

• (20) 
I 

A(i, j, j') = an(i) h(i, j)a2 (v1 I U;-U/ I) (v1 I U;-U/ I) W/-8 ;/ an(i) (av), 
4~ 2~~ 

B(i, j, j') = an(i) h(i, j)a2(v1 I u;+u/ I) (v1 I u1+u/ I) W/ , 
4u; 

C(i,j) = an(i) h(i,j)a2(v1 lu
1
-u0 1) lu;-uol, 

4u; 

D(i,j) ~ an(i) h(i,j)a?(v1 lu
1
+u0 I) lu1+uol • 

4u1 

4.2 Iterative solution of the difference equations 

The iterative solution is started from i=lMAXwith the initial guess F-(i,j) =0 

for allj. Using the backward difference Eq. (19), F-(i,j) is found for i=IMAX-1 

through i= 1. Then the boundary condition (14) gives the starting value for 
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the forward difference Eq. (20), i.e. F+(I,j)=F-(1,j). Hence F+(i,j) can be 

calculated from x=O (i= I) toward x=a (i=IAJAX). The iteration is repeated 

with starting value F-(JMAX, j) =k•F+(JMAX, j) until it converges. 

For judging the convergence, we define a ratio c by 

v~ ~ W;u;F+(JMAX,j) 
C= -- J -------- --

Voifr-(a, v0) +v~ ~ W;u;F-(IMAX,j) · 
(21) 

J 

This ratio represents the probability that the neutrals immerging into the plasma 

ultimately escape from the surface in the form of neutral particles. The con

vergence criterion is 

(22) 

where en is the value of c after n-th iteration. The convergence of this problem 

was rather rapid. When c = 10-3, the number of the iteration was only 3 or 4. 

4.3 Energy spectrum of neutral paticle flux 

The energy spectrum of neutral particles emerging from the plasma coulmn is 

measured by using a multi-channel energy analyzer in practice. The counting 

rate of the analyzer is proportional to the intensity of the outward flux at the 

surface (x=a) of the plasma. The energy spectrum of the neutral particle flux 

</>(x, E) is obtained from the distribution functionf(x, v) by the relation 

dv I 
¢ (x, E) = vf (x, v)- = - f (x, v) . 

dE m; 
(23) 

The energy spectrum of the neutral particles emerging from the plasma is 

given by ¢+(x=a, E). The spectrum ¢+(a, E) determined numerically from the 

transport equation (13) is apparently described by the following equation 

log¢+ (a, E) = transient term _ __§_+b, 
T* 

where b is a constant. The transient term decreases rapidly, and for energies 

above 5E0 (E0 = T;0), the spectrum can well be represented by the asymptotic 

form 

which is a Maxwellian distribution with the temperature T*. We call T* an 

asymptotic temperature. The asymptotic temperature has been calculated at 
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the energies E 1 and £ 2, which are about 6.6 and 9 times as high as the maximum 

ion temperature, respectively, i.e. 

T* = _____ E--=-2-_E~1,___ ___ _ 
log </J+(a, E1)-log </J+(a, E2 ) 

(24) 

As mentioned earlier in Section l, the asymptotic temperature T* is considered 

to have a close correlation with the ion temperature Ti(O), the density n(O), and the 

half-thickness a of the plasma. It should be noticed that the transport equation 

(16) contains the product a•n, but not the individual factor a or n. Numerical 

results will be shown in the next section. The emerging neutral flux is normalized 

with respect to the immerging slow neutral flux by the relation 

5. Numerical nesults 

5.1 Influence of the reflection coefficient of the wall on the neutral den

sity profile and the spectra of the emerging neutral flux 

The influence of the wall condition on the neutral density profile and the 

spectra of the emerging neutral flux has been studied by changing the reflection 

coefficient of the wall. Figure 7 shows the neutral density profiles in a plasma 

0 ... 
'S 

1610 Q) 
C 

Q) 

~ 
0 

1611 'ii a:: 

0 

n (0) .. 3x 1o'3cm3 

Tj(0)" 2000eV 

Solid lines 
Broken lines 

a" 50cm 
a" 100cm 

0.5 
x/a 

Fig. 7. Spatial distribution of neutral density with the 
reflection coefficient of the wall as a parameter. 
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whose density and maximum ion temperature are n(0) = 3 X 1013 cm-3 and T;(0) = 
2000 eV, respectively. The solid lines in Fig. 7 are for the plasma of a=50 cm 

(a•n(0)=1.5xl015 cm-2), while the broken lines are for a=l00cm (a•n(0)= 

3 X 1015 cm - 2
). In both cases, we assumed three distinctly different values of the 

reflection coefficient of the wall: 0, 0.5 and 1. We can see from Fig. 7 that the 

neutral density shows a slight increase with the increased reflection coefficient. 

However, no important changes have been noticed in their profiles. 

Figure 8 shows the effect of the reflection coefficient of the wall to the emerging 

neutral spectra. In Fig. 8, curves 1 and 2 represent the spectra of neutrals emerg

ing from a plasma whose parameters are a=25 cm, n(0) = 1013 cm-3 (a•n(0) =0.25 X 

1015 cm-2) and T;(0)=300 eV. For the reflection coefficient of the wall, the ex

treme values zero and unity are assumed. The asymptotic temperature calculated 

10
5 

0 5 10 

o•25cm 
n• 1.0 · rd3/cm3 

Tj(0)•300eV Eo•290eV 

I ) k • 0 Tr col• 268 eV 
2) k • I Tj col• 280 eV 

15 20 
E/E0 

Fig. 8. Spectra of emerging neutral flux from a plasma with the reflection coefficient 
of the wall as a parameter. (Tica!= T*) 

from curve 1 is about 268 eV which is 89 % of the maximum ion temperature of 

plasma T;(0), while that from curve 2 is about 280 eV which is 93 % of T;(0). 

Hence, we can say that for the parameter of the plasma shown in Fig. 8, the effect 

of the wall reflection coefficient to the emerging neutral spectra is not significant. 

It influences the estimation of T;(0) from the emerging neutral spectra within a 

changing range of about 5 %- However, as we can see from Fig. 8, the intensity of 

the outgoing neutral flux spectrum 2 (k= l) is 2-3 times greater than that of 

spectrum 1 (k=O). 

Since the reflection coefficient of the wall does not contribute any significant 

effect to the emerging neutral spectra nor to the asymptotic temperature calculated 
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from the slope of the spectra, we mainly show the results obtained under the wall 

condition of zero-reflection. 

5.2 lnftuence of the plasma density and the spatial distribution of ion 

temperature on the spectra of emerging neutral flux 

Figure 9 shows the emerging neutral flux spectra from a plasma whose half

thickness a is 50 cm and whose maximum ion temperature T;(0) is 5000 cV, with 

the plasma density as a parameter. The wall reflection coefficient is assumed to 

be zero. We can sec from Fig. 9 that the intensity of the emerging neutral flux 

decreases with an increasing plasma density. Moreover, the asymptotic tempera

ture also decreases with an increasing plasma density. 

-s 
10 

0 5 10 15 

a=50cm 
T1(0)•IOOOeV 
k • 0 E0 •990eV 

I) n = 1.5 x I013cm·3 

2) n =3.0 X io'3cm3 

3) n •5.0xl013cm·3 

20 
E/Eo 

Fig. 9. Spectra of emerging neutral flux from a plasma with the plasma density as 
a parameter. 

Figure 10 shows the emerging neutral flux spectra from a plasma whose para

meters are a= 100 cm, n(0) =3 x 1013 cm-3 and T;(0) =5000 eV, for two different 

spatial distributions of ion temperatures. Spectra l and 2 in Fig. 10 are the 

emerging neutral flux spectra from the plasmas whose parameter distributions 

are, respectively, (I) and (II) as mentioned in Section 3. Namely, for spectrum 

l in Fig. 10, the spatial distribution of the plasma density is parabolic, and that of 

the ion temperature is proportional to (l -,;4)2, while for spectrum 2, all these 

spatial distributions are parabolic. It is obvious that the difference in the spatial 

distribution of ion temperatures just slightly influences the emerging neutral 

spectra. 
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w ~----·---~------------ ---- ---
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n=3.0· I013cm 3 
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Fig. 10. Spectra of emerging neutral fluxx from a plasma for the parabolic and 
non-parabolic profiles of the ion temperature . 
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Fig. I J. Density profiles of the right-ward neutral particles with several repre
sentative energies. 
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Figure 11 shows the density profiles of the right-ward neutral particles with 

some representative energies in a plasma whose parameters are a= I 00 cm, n(O) = 
!Oxl013 cm-3 (a•n(0)=1016cm-2), T;(0)=5000eV, and the reflection coefficient 

of the wall k= 1. We can notice from Fig. 11 that the spatial distribution of the 

low energy neutral particles decays rapidly from the surface toward the centre of 

the plasma. However, the higher energy neutral particles distribute more uni

formly, because of their longer decay lengths. 

5.3 Asymptotic temperature calculated from the spectrum of emerging 

neutral flux of a plasma 

As mentioned previously, the asymptotic temperature T* is calculated by 

Eq. (24). Figures 12 and 13 show some correlation between the asymptotic tem

perature T* and the maximum ion temperature T;(O). 

Figure 12 shows the ratio r; as a function of T; (0) with the wall reflection 

coefficient k as a parameter, and the product a•n(0) is assumed to be 0.375 X 1015 

cm-2• Within the ion temperature range shown in Fig. 12, the ratio r; is almost 

constant. 

Figure 13 illustrates the asymptotic temperature as a function of T;(O) with the 

product a•n(0) as a parameter. It is obvious that the asymptotic temperature 

is generally less than the maximum ion temperature of the plasma, and decreases 

with the increasing product a• n(O). 

Figure 14 shows the escape probability c of Eq. (21) as a function of the 

maximum ion temperature T;(O), with the product a•n(0) as a parameter. The 

1.0 

0.9 

0.8 
a= 25cm 
n= l.5·id

3cm3 

0.7 
I) k= 0 
2) k=05 

0.6 3) k = I 

500 1000 
T1(0) eV 

Fig. 12. Asymptotic temperature as a function of the maximum ion temperature of the 
plasma with the reflection coefficient of the wall as a parameter. 
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5) 15 

i 
I 

i 
,Li •• 

¼,/ 

4 . 
~ 

Fig. 13. Asymptotic temperature as a function of maximum ion 
temperature of the plasma with the product a•n(O) as a 
parameter. 

o=50cm 

1000 Tj(0) (eV) 
10000 

Fig. 14. Escape probability of the immerging neutral particles as a function of the 
maximum ion temperature of the pla~ma with the product a•n(O) as a 
parameter. 
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probability c incresaes with a increasing ion temperature of the plasma, but dt 

creases with the increasing product a•n(O). Within the ranges of the plasma 

parameters assumed, c does not exceed 20 %- In view of the particle conservation 

in a plasma of stationary state, the remainder of the incoming neutrals must be 

ionized by the plasma particles and be diffused from the plasma in the form of 

ions. 

6. Discussion 

The cross-section for ionization of atomic hydrogen by protons is given by 

Eqs.(10) and (11) and shown in Fig.3. The threshold of this interaction seems 

to be very high. In fact, there are no experimental data for energies below 7 keV. 

For instance, if Eq. ( 10) is still sound at 1 ke V, the cross-section is of the order of 

10-19 cm2• Since this cross-section is much smaller than that of the charge

exchange, we have not considered it in the present calculation. 

However, above 10 keV, the cross-section for the ionization of atomic hydrogen 

by protons becomes comparable with the charge-exchange cross-section or even 

larger. Therefore, it is worth estimating the effect caused by this interaction on 

the emerging neutral flux. Figures 15(a) and (b) illustrate the effect of the ioni

zation of atomic hydrogen by protons on the spectra of emerging neutral flux. 

Figure 15(a) shows the spectra of emerging neutral flux from a plasma whose 

parameters are a •n(O) =3 X 1015 cm-2 and T;(O) =2 keV, the reflection coefficient 

of the wall being zero. Curve 1 in Fig. 15(a) is obtained by taking only the reac

tions of Eqs. (5) and (6) into account, while curve 2 is the result including the 

reaction of neutrals being ionized by protons. Spectrum 1 is a little larger than 

spectrum 2 in the higher energy region, but they coincide below 6 keV. The 

difference between the respective asymptotic temperatures is within 3 %• There

fore, it is tolerable for us to ignore the ionization of neutrals by protons in determin

ing the asymptotic temperature. 

7. Conclusions 

1) Figure 13 shows that the asymptotic temperature T* of the fast neutral par

ticles emerging from a high temperature plasma slab depends primarily on the 

central ion temperature T;(O), and secondly on the product of the half-thickness a 

and the central plasma densfty n(O). The ratio r;= T*/T;(O) is not significantly 

influenced by the profile of the ion temperature distribution. 

2) For T;(O) less than about 4 keV, the ratio r; decreases with an increasing 

a•n(O), while for T;(O) above about 4keV, it increases with an increasing a•n(O). 
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Figs. 15(a) and (b). Effect of the ionization of atomic hydrogen by protons on the 
spectrum of emerging neutral flux. 
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3) For practically realizable values of plasma parameters, the ratio 7/ is within the 

the range of 0. 7 to 0.95. 

4) By experimentally determining the asymptotic temperature, and using its 

correlation with the plasma parameters, we can estimate the maximum ion tem

perature of a plasma. 

5) The reflection coefficient of the wall does not play an important role for the 

spectrum of the emerging neutral flux. However, it can effectively influence the 

intensity of the emerging neutral flux. 
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