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Abstract 

This paper considers the problem of designing the mmunum time dynamic 
deadbeat controllers, using an observer or a dual observer. As a preliminary, optimal 
controller and observer are defined and obtained. Then, the existence of a dynamic 
deadbeat controller is examined, and a separation theorem is proved. This theorem 
states that the minimum time dynamic deadbeat controller is given by the optimal 
controller combined with the optimal observer. These results are dualized to yield 
the corresponding result in the case of using the dual observer, i. e., the result on 
the minimum time dual deadbeat controller. Finally, a method is presented for 
finding reduced order controllers by applying the results on linear function observers. 

1. Introduction 

In recent years, much attention has been paid to the deadbeat control problem 

for discrete time linear multivariable systems: namely, the problem of designing a con

troller which drives the system state to zero in a finite number of steps. In 1960, 

Kalman11 solved this problem for single-input systems. The controller obtained there 

can be realized by a constant state feedback, and it drives the state to zero in a 

minimum number of steps. This work was extended to multi-input systems by several 

authors2• 5>. The connection between deadbeat control strategies and quadratic optimal 

control policies is discussed by Leden61 • 

Those works postulate the use of a state feedback control law. In many applica

tions, however, it is not possible to measure all the state variables. Very often, only the 

output can be measured, which consists of a linear combination of the state variables. 

In such a case, an approach to deadbeat control is to utilize the constant output 

feedback. This has been studied by Seraji71 • An alternate approach is to utilize ob-
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servers or dynamic controllers. Porter & Bradshow presented methods of designing 

deadbeat controllers, using full-order and reduced order observers81 • 91 • In their works, 

however, the discussions are not satisfactory as regards the minimality of the control 

steps. Akashi & Adachi10 > defined and obtained a minimum time dynamic controller 

with time variable parameters. However, from a practical point of view, time invariant 

controllers are more desirable. 

In this paper, we consider the problem of designing a minimum time dynamic 

deadbeat controller with constant parameters for general multi-input multi-output 

discrete time linear systems. As preliminaries, the class of optimal deadbeat controllers 

via state feedback is defined, and a method of obtaining an optimal controller is shown. 

Also, the class of optimal observers is defined, and an optimal observer is obtained. 

Then, in section 4, the necessary and sufficient condition is derived for the existence 

of dynamic deadbeat controllers, and a separation theorem is proved. This theorem 

states that the optimal controller combined with the optimal observer yields the mini

mum time dynamic deadbeat controller. Reduction of the order of controllers is a 

matter of practical importance. For this purpose, the use of dual observers11 > is inter

esting. This is considered in section 5. Finally, a method is given for designing 

reduced order controllers by applying the results on reduced order linear function 

observers151 • 

Notation: The set of all the positive integers including zero is denoted by i. If k 

E i, ~ deIJt)tes the set of integers {0, l, ... , k}. R• denotes an n-dimensional vector 

space defined over the field of real numbers. Subspaces of R• are denoted by script 

capitals, e. g., .91, !!I, . . . . The italic capitals denote linear maps or their matrix 

representations. The image (kernel) of a map A is written Im A (Ker A). The set of 

all the n X m matrices is denoted by M., ,.. The (Moore-Penrose) pseudo-inverse of a 

matrix A is written A+. Let .91 and !!I be such that .91(:f)!!I = R•. Then, P .,,,,91 denotes 

the projector on .91 along !!I. The symbol· is used for denoting dual spaces, dual maps, 

or transformed matrices. Let A, BEM •.• and !!)cR•. Then we write A=B (mod!!}) 

if Ax=Bx (mod !!}) for all x3R". 

2. Optimal Deadbeat Controller 

2 .1 Problem Statement 
Consider the system: 

x (i+ l) =Ax (i) +Bu (i) (2, I) 

where x( • ) ER" is the state of the system and u( • ) ER' is the control input to 

the system. It is assumed that B is monic, i. e., rank B=r, and that 
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rank [A : BJ =n. 

A linear map K : R•➔R' is called a controller. The set of all the controllers is 

denoted by I5.:. The purpose of control is to drive the state to zero as soon as possible. 

By substituting u(i) =Kx(i) into (2, 1) we obtain 

x(i+ 1) = (A+BK)x(i). (2, 2) 

It is clear that Ker (A+ BK); denotes the set of all x ( • ) which can be driven to 

zero in i-steps by the controller K. We introduce a sequence: 

with 

Et0 =0 

Et1=A-1 (Et;+1+8l), i=l,2, ... 

where 

The sequence ! is non-decreasing, so that we can define 

It is readily verified that Et I is an upper bound for Ker (A+ BK) 1 i. e., 

Ker(A+BK) 1cEt1, ViEj. 

DEFINITION 1 : A controller K is said to be optimal if 

We write J5:: for the class of optimal controllers. 

(2, 3a) 

(2, 3b) 

The problem to be treated in this section is to find the optimal controller for the 

system (2,1). 

2.2 Solution of the Problem 

First we show that the optimal controllers are closely related to projector matrices. 

This property will be utilized for obtaining the optimal controller. 

LEMMA I : If KE!f:._0
, there exists a complementary subspace W to /JI such that 

(A+ BK) = P w.~A. 

PROOF : If KE,!f:._ 0
, by definition 

Ker (A+BK) =A-1 .%'. 

Since 
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there exists XEM •.• such that 

A+BK=X(I-BB+)A. 

Since K must solve this equation, and since B is monic, we obtain 
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It is readily verified that -B+[X(l-BB+)-IJE~, where B- denotes the set of all 

the generalized inverses of B, and therefore the assertion follows. D 
The problem now reduces to one of finding the direction of projection such that 

Ker (P i&1.aA) '= ~" ViE!J. (2, 5) 

The following lemma provides a sufficient condition for Y to have the property (2,5). 

LEMMA 2 : Let '[If be a complementary subspace to 11, and suppose that '[If has 

the property: 

(2, 6) 

then '[If achieves (2, 5). 

PROOF : Clearly, (2, 5) holds for i=O, and if (2, 5) holds for i=k, it follows 

by LEMMA A (see Appendix) and assumption that 

Ker (P !&'.IJIA) Hi= A-1 (P i&1.a)-1 ~ 1 

=A-1 ('[1/ n ~/3)1') 

=A-'('[lf n 9'',+£f",n 11+11) 

=A-1 (£f",+1') =~Hl• 

Thus the lemma follows by induction. D 
We can utilize LEMMA 2 to solve the problem. For this, we decompose every 

~,E!',, iE!J., as follows: 

£f",= £f",n 1/ffi'[IJ, 

'[l/0C'[l/1C ••• C'[l/
0

• 

Since '!!I• n 1' = 0, we can choose YEM,,. such that 

Ker Y::J'!!/ • 

and 

It is noted that YBEM,., is invertible. On this basis we obtain 

THEOREM 1 : Let YEM, .• be defined by (2, 9)-(2, 10). 

K= - (YB)-1YA 

(2, 7) 

(2, 8) 

(2, 9) 

(2, 10) 

Then 

(2, 11) 
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is an optimal controller for the system (2, l). 

PROOF : It follows from (2, 7)-(2, 10) and the modular distributive rule that 

Ker Yn gc,=<l.!I;, iEfb 

and so we can write 

gr; 1 = 81, n 81(Bg{' 1 n Ker Y, iEIJ: 

Substitution of (2, 11) into A+BK yields 

A+BK=RA 

where 

(2, 12) 

It is readily verified that R is the projector on Ker Y along 81. Thus the theorem 

follows from (2, 12) and LEMMA 2. D 
REMARK l : The statement of THEOREM l involves the existence of the 

optimal controller, because the choice of Y having the properties (2, 7) -(2, 10) is 

possible at any time. 

REMARK 2 : The pair (A, B) is said to be controllable12
> if 

n-1 

Im A•c I; A181, 
i=O 

It is easy to verify that the pair (A, B) is controllable if and only if gc,.=R• for some 

kE'!_, where gr;,. is computed by (2, 3). We call K E!S_ a deadbeat controller if there 

exists kE1!_ such that x(k) =0 for any x(0). A deadbeat controller can be obtained, 

obviously, if and only if the pair (A, B) is controllable, in which case the controller 

given by (2, 11) becomes an optimal deadbeat controller. 

3. Optimal Observer 

3.1 Problem Statement 

Consider the system (2, l) and suppose that the state of the system is measured 

only through the system output: 

y(i) =Cx(i) (3, l) 

where y( · ) ERm. It is assumed that rank C=m. To reconstruct the state we use an 

observer of a rather specific form: 

z(i+ l) =T Ax (i) + TBu (i) 

x(i)=Sz(i)+Vy(i) 

(3, 2) 

(3, 3) 

where £( • ) ER• and z( • ) ER1 with lS::,n. It is assumed that both S and T are of 

full rank and that the observer is unbiased13 >. Since rank (A : B) =n, it 1s readily 
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verified that the observer is unbiased if and only if 

1-VC=ST. (3, 4) 

Denote the estimation error by e( i) ~ x(i) -x( i). Then the error dynamics is 

given by 

e (i+ 1) = (/ - VG) Ae (i) (3, 5a) 

and 

e(O) = (l-VC)x(O)-Sz(O). (3, 5b) 

Since T is of full rank, (3, 4) implies Im (/-VG) = Im S. Thus all the possible e(O) 

span Im (I - VG). In view of this, we write 

1 1 (V) i,, [ (/ - VG) A]• (I - VG) R•. (3, 6) 

The subspace I ,(V) denotes the set of all the possible e(i) when an observer V is 

used for estimating x ( i) . 

We introduce the. sequence Y' : 

Y'o=R• 

Y'1=A (Ker C n Y'1_,). 

Since ~ is non-increasing, we can define 

(3, 7a) 

(3, 7b) 

pl,,min{k: Y'1=Y'.,,, Vi>kEn}. (3, 8) 

It is easy to verify that Ker C n Y', is a lower bound for I 1(V): i. e., 

I 1 (V) ::>Kre C n Y'1, ViEI!_; 

for, clearly C 0(V) =(/-VG) R•::, Ker C::, Ker C n .1/'0, and if I 1(V) ::, Ker C n .1/'1, then 

I i+l (V) = (/-VG) Ali (V)::, (l-VC)A (Kre C n Y',) 

= (l-VC) Y';+i::>(/-VC) (Kre C n Y'1+1) =Ker en Y'Hl• 

DEFINITION 2 : An observer is said to be optimal if 

(3, 9) 

We write £.0 for the class of optimal observers. The problem to be treated in this 

section is to find an optimal observer for the system described by (2, 1) & (3, l). 

3.2 Solution 

Corresponding to LEMMA l we have the following: 

LEMMA 3 If VE £0
, there exists a complementary subspace ;!£ to Ker C such 

that 
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PROOF : If VEf0
, it follows by definition that Im (/-VG) =Ker C. Hence 

C(l-VC) =0, so that VEG"-. Thus, we have shown that (/-VG) is the projector on 
J 

Ker C along ~=Im VG. 0 

The following result is corresponding to LEMMA 2. 

LEMMA 4 : Let ~ be a complementary subspace to Ker C. Then 

lm(PK.,c,.!Z'A) 1PK.,c,$=Ker Cll.9"1, ViEp,_ 

if and only if 

(3, 10) 

(3, 11) 

PROOF : (If) Obviously, (3, 10) holds for i=0. Suppose that (3, 10) holds for 

i=k-1. Then it follows from LEMMA A and (3, 11) that 

(PK.,c.f!EA)•PK,rC,.!Z'R•= (PK.,c,,!Z'A) (9'._,nKer C) 

=PK.,c,f!E.9'.= (~+9',) nKer C 

= (~+9',nKer C) nKer C=.9',nKer C. 

Thus, (3, 10) follows by induction. 

(Only if) If (3, 10) holds, we oftain 

Therefore, 

(PK.,c,,:ZA) 1PK.,c,$=PK.,C,,!Z'A(9';-1 n Ker C) 

=PK.,c,.!Z'.9',=Ker en (~+9';). 

(3, 12) 

To show that (3, 12) implies (3, 11), let sE.9'1• Then, there exist ;:,E~ and xEKer 

C such that 

s=z+x, 

because ~(±)Ker C=R•. It follows from (3, 12) that 

Thus, 

and therefore we have 

as claimed. O 
To give the main result of this section, we decompose every 9',Er as follows: 

(3, 13) 
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(3, 14) 

Clearly such a decomposition is not unique. So, we denote by ,!! the set of all !!£0 

having the properties (3, 13) - (3, 14), and define a set of matrices ? according to 

(3, 15) 

It is noted that if ZEf CZ is invertible. 

THEOREM 2 : VEM .... is optimal if and only if 

(3, 16) 

for some ZEZ. 

PROOF : (Only if) If VE £:0
, (I-VG) is the projector on Ker C along Im 

vc.!z, as noted in the proof of LEMMA 3. Therefore, it follows from LEMMA 4 

and DEFINITION 2 that 

Identifying .9';nfr with :!Z, for every iEl!, we see that ;1£0E,!. Since 

Ker (I - VG) = :!Z = :!Z o, 

V must solve the equation 

(l-VC)Z=O. 

Thus, (3, 16) follows. The proof of the converse follows the same lines as for 

THEOREM 1. 0 
REMARK : The pair (C, A) is said to be reconstructible if the pair (A', C') is 

controllable. The concept of reconstructibility can be characterized in terms of !/ : 

i.e., the pair (C, A) is reconstructible if and only if !/p=014 >. 

4. Dynamic Deadbeat Controller 

In this section we consider the problem of designing a deadbeat controller for the 

system (2, 1), whose state is reconstructed by the observer (3, 2) - (3, 3). Thus, the 

postulated control law is of the form. 

u (i) = Kx (i) = KSz (i) + KVy (i) 

z(i+ 1) =TASz(i) +TAVy(i) +TBu(i). 

(4, 1) 

(4, 2) 

It is assumed that the observer is unbiased. The dynamic system ( 4, 1) - ( 4, 2) is 

called a dynamic controller and denoted by D(K, V). In the sequel, we write x(i : K, 

V) for x(1) to indicate the dependence of x(i) on D(K, V). The purpose of control 

is the same as in section 2. 
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DEFINITION 3 : A controller D(K, V) is called a dynamic deadbeat controller, 

if there exists pE i such that 

x(i;K, V) =0, Vi'?.p 

for any x(0) and z(0). 

(4, 3) 

We denote by t the minimum p for which ( 4, 3) holds. Clearly, t depends on K 

and V. To indicate this dependence explicitly, we may write t(K, V) for t. We 

call D(K, V) a minimum time controller if it minimizes t(K, V). The problem to be 

treated in this section is to find the minimum time deadbeat controller. 

The main result of this section is the following. 

THEOREM 3 : (I) There exists a dynamic deadbeat controller if and only if the 

pair (A, B) is controllable, and the pair (C, A) is reconstructible. 

(II) (Separation Theorem) Under the conditions of (l), every D(K, V) with KE 

K0 and VE V0 is a minimum time controller. 

(Ill) Let ;!: and ,! be the sequences already defined by (2, 3) and (3, 7) 

respectively, and denote by t* the minimum i for which 

Then, 

t*=min t(K, V)sp+q-1. 
K.V 

For the proof we need some preliminary results. 

LEMMA 5 : Let iE i. Then, 

x(i: K, V) =0 

for any x(0) and z(0), if and only if 

(A+BK)'=0 

and 

(4, 4) 

(4, 5) 

(4, 6) 

(4, 7) 

(4, 8) 

PROOF : Substituting (4, 1) into (2, 1) and setting e(i) ~x(i)-x(i), we obtain 

x(i+ 1) = (A+BK)x(i)-BKe(i). (4, 9) 

Iteration of ( 4, 9) and use of (3, 5) gives 

x(i+ 1) = { (A+BK)I+'- ± (A+BK)iBK[ (l-VC)A]H (I-VG) }x(O) 
i=O 

(4, 10) 

Thus, (4, 6) holds for any x(0) and x(0) if and only if 
i-1 

(A+BK)'- ~ (A+BK)jBK[(l-VC)AJ1-1-i(l-VC) =0 
i=O 
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and 
i-1 

:E (A+BK) 1BK[(l-GV)A]'-HS=O. 
1-0 

Since Im S = Im (J - VG), the proof follows at once. D 
The following result provides a necessary condition for the existence of dynamic 

deadbeat controllers. 

LEMMA 6 : If there exists a dynamic deadbeat controller, then for some iE~ 

f£ 1_pf:/" VjE ~ 

PROOF : First we define / 1EM •.• , j= l, 2, ... , i, according to 

]1~A(l-VG) 

] 1 ~ (A+BK)J;-1-BK(l-VC) [A(l-VC)]i-1, j>2. 

It is not difficult to check that 

(4, ll) 

(4, 12) 

(4, 13) 

Suppose that ( 4, 6) holds for any x(0) and z(0). It follows from LEMMA 5 and 

(4, 13) that Im ] 1 =0cfll'0, and if Im ];cfl: 1_ 1, then by (4, 12) we obtain 

Therefore, induction proves 

(4, 14) 

Next, we show that 

/:/1clm];, Vj, l=,;;:j:,;;:l. (4, 15) 

Obviously, Im ] 1 ::iA(I-VG) (Ker G) =A (Ker G) =9'i, To prove the assertion for j>2, 

we rewrite ( 4, 12) as follows. 

Using this recurrence relation, we can establish by induction that 

(4, 16) 

for all kEj- l. In fact, (4, 16) holds for k=0. Suppose that (4, 16) holds for k=k, 

then we have 

Im ]; ::i [(A+ BK) H-1 VG+ J 1_,_1]A (/- VG) (/:/ 1 n Kre G) 

= [(A+ BK) J-.1-
1vG + f1-H1J /:/ Hl 

::J [ (A+BK) j-HVG+ J;-1-1] (/:/Hl n Ker G) 

=lJ-(HD(/:/H1nKer G), 

as claimed. Therefore, by putting k= j- l in ( 4, 16) we obtain 
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and this verifies (4, 15). Since !/0 =:!l' 1=R• by (4, 7), the lemma now follows from 

(4, 14) and (4, 15). D 
As a converse to LEMMA 6 we have the following 

LEMMA 7 : Let KEK 0 and VE.V0
, and suppose that there exists iE i such that 

Then, for any x(O) and z(O) 

x(i; K, V) =0. 

PROOF : If KEK0
, by DEFINITION I 

fl' 1_;=Ker (A+BK)H, 

and if VE .!'.:0 , by DEFINITION 2 

fl';=A (Ker C n !/ ;-,) = [A (I-VG) Ji R•. 

Therefore, it follows by assumption that 

Since 

we have also 

(4, 17) 

( 4, 18) 

(4, 19) 

obviously ( 4, 18) implies ( 4, 7), and it is easy to verify from ( 4, 18) - ( 4, 19) that 

Consequently, ( 4, 17) follows immediately from LEMMA 5. D 
Now, we are ready to prove THEOREM 3. 

PROOF of THEOREM 3 : If there exists a dynamic deadbeat controller, by 

LEMMA 6 there exists iEn such that 

fl',-;=iY';, VjE ~ 

Since :!l'0=0 and !/0=R•, it follows that 

and 

Hence, by REMARK :.l of THEOREM 1, (A, B) is controllable and, by the REMARK 
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of THEOREM 2, (C, A) is reconstructible. Conversely, if (A, B) is controllable, then 

fl';=R•, i2q, and if (C, A) is reconstructible, then .9';=0, i2p. Hence, it is readily 

verified that 

if i::>:.p+q-1. Therefore, it follows from LEMMA 7 that 

x(i;K,V)=0, Vi>p+q-1 

for any x(0) and z(0), provided KEK0 and VE_!:'.'0 • This verifies (l). 

As for (II), let D(K*, V*) be a minimum time controller, and write 

t* ~t (K*, V*). 

Then for any x(0) and z(0) 

x(i; K*, V*) =0, Vi2t*, 

so that by LEMMAs 5 and 6 fl',*-;:J!I';, VjE !· Therefore, by LEMMA 7 

x(i;K0 ,V0 )=0, Vi2t* 

(4, 20) 

(4, 21) 

for any x(0) and z(0), if K0 EK0 and V0 EV0
• It follows from (4, 20) & (4, 21) that 

t(K0
, V0 )~t(K*, V*), 

and since D(K*, K*) is a minimum time controller, we conclude that 

t (K0
, V0

) = t (K*, V*) , 

i.e., D(K0
, V0

) is a minimum time controller. 

The proof of (Ill) is obvious from the proof of (I) & (II). D 
It is apparently sufficient for the existence of a dynamic deadbeat controller that 

the pair (C, A) is reconstructible modulo Ker K15 > for some KEK0
, provided the 

pair (A, B) is controllable. But THEOREM 3 provides a stronger condition that (C, 

A) is reconstructible. The following corollary states that these two statements are 

equivalent. 

COROLLARY l : Let KEK0
, and suppose that the pair (A, B) is controllable 

and the pair (C, A) is reconstructible modulo Ker K. Then, (C, A) is reconstructible. 

PROOF : Let ,? be the sequence defined by (3, 7), and suppose that the pair 

(C, A) is reconstructible modulo Ker K, KEK0
• Then, there exists iEn such that151 

Since KE!S_0 and the pair (A, B) is controllable, we obtain 

(A+BK)•=0. 
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Thus, 

0= (A+BK)"(S";nKer C) = (A+BK)•-1A(S",nKer C) 

= (A+BK)•-1S";+1::J (A+BK)•-1(S";+1nKer C), 

so that 

Next, suppose 

and note that 

Then we obtain 

(A+BK) •-(Hl)A (S" +An Ker C) = (A+BK) •-CHl).9'/+(Hl)=O, 

so that 

Thus, induction proves Y'.+;nKer C=O, and so the proposition follows. 

The procedure developed in sections 2-4 is illustrated by the following example. 

EXAMPLE 1 : Let 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 

A= 
1 - 1 2 0 0 0 B= 0 1 0 

1 0 0 1 0 0 0 0 0 

0 0 2 0 0 2 0 0 0 

0 0 2 0 0 

C= [ ~ 0 0 0 

~ l· 0 0 0 

Optimal Controller: By (2, 3) we obtain 

0 0 

1 0 0 

.:¥'1= Im 0 0 0 
f¥'2=R6 

• 

0 0 -1 

0 0 

0 0 0 

so that q = 2 and the pair (A, B) is controllable. Since .:¥' 1 n PA= 0 and .:¥' 2 n PA= PA, (2, 

7) yields 
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0 0 

1 0 0 

W,=<?Y' 2=1m 0 0 0 

0 0 -1 

0 1 0 

0 0 0 

Therefore, by (2, 9)-(2, 10) we get 

1

1 0 0 1 0 0 

Y= 0 0 1 0 0 0 . 

0 0 0 0 0 1 

Thus, the optimal controller KEK0 is obtained as follows: 

2 0 

0 2 

Optimal Observer: We obtain 

0 

0 0 

Ker C=lm 0 

0 0 

0 0 

0 0 

o o l 0 0 . 
1 1 

0 0 

0 0 

0 0 

1 0 

0 0 

0 

The algorithm ( 3, 7) gives fl'o=R6
, 

0 0 0 0 

0 0 0 

fl',= Im 2 0 0 

0 0 

0 2 0 2 

0 0 2 

0 0 

0 

f/'2=1m 2 0 

1 

2 4 

2 4 

fl's=O. 

so that P=3 and the pair (C, A) is reconstructible. It follows that 

0 0 

0 0 

Ker Cnfl'0 =Ker C, Ker C n fl' 1 = Im 0 Ker Cnfl'2=0. , 
1 

0 0 

0 2 

Therefore, by (3, 13) - (3, 14) we have 

321 
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0 0 

0 

~o=~,=~2=lm 2 0 

1 1 

2 4 

2 4 

Thus, the optmial observer VEV0 can be obtained as follows: 

[ 
0 I 2 0. 5 0 0 l V'-
0 0 0 0.25 l l 

Minimum Time Dynamic Controller: We obtain 

l 0 0 0 0 0 
0 0 0 0 0 0 

/- VG= 0 -2 l 0 0 0 
0 -0.5 0 l -0.25 0 

0 0 0 0 0 0 

0 0 0 0 -1 

A full rank factorization of (/ - VG) yields 

0 0 0 

0 0 0 0 0 

S= 0 l 0 0 T= 0 -2 

0 0 0 

l 0 0 

0 

0 

0 0 0 0 -0.5 0 l -0. 25 0 

0 0 0 0 0 0 0 0 -1 

0 0 0 l 

Consequently, by ( 4, l) - ( 4, 2) the following minimum time dynamic controller can 

be obtained: 

0 l : l z(9-

l.5 0.25 

u(i) = - 2 0 3 0 y(i) 

0 0 2 2 2.5-

0 0 0 0 l 0 0 0 

z ( i + l) 0 0 0 
z(i) + -1 0 y(i) + 0 0 u( i). 

l -1 -1 -0. 5 -l. 5 -0. 25 0 0 0 

0 -2 2 -1 -2 0.5 0 0 

In this section, we have developed a procedure of designing a dynamic deadbeat 

controller with an observer under the assumption that the observer is unbiased, so 

that the resultant controiler is of order, at least, n-m. Further reduction of the 

order may be possible, because the assumption of unbiasedness may not be necessary, 
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but K-unbiasedness15 > for some KE!S._0 may be sufficient for controllers to have the 

required property. This will be shown in section 6. 

5. Dynamic Deadbeat Controller with Dual Observer 

In the last section we showed that a dynamic controller of order n-m can be 

designed to achieve a deadbeat performance. On the other hand, it is known11 > that 

a dynamic controller of order n-r can be constructed such that the 2n-r eigen

values of the closed-loop system take any preassigned values. Such a controller is 

called a dual observer. This idea is applied to the design of deadbeat controllers in 

what follows. 

We consider the dual observer, written D(K, V), of the form: 

u(i) =Ke(i) 

e(z) = Vy(i) + (A+ VC)Sz(i) 

z(i+l) =Te(i) 

(5, la) 

(5, 1 b) 

(5, le) 

wherez( ·) ERP and ec ·) ER•. The dual observer (5, I) is said to be unbiased if 

J-BK=ST. 

It is assumed that the dual observer is unbiased and that both S and T are of full 

rank. We shall call, in the sequel, the dynamical system Da(K, V) a dynamic dual 

controller rather than a dual observer for consistency with the dynamic controller 

D(K, V). The symbol t and the notations x(i; K, V) and t(K, V) are used for 

purposes similar to those in section 4. 

DEFINITION 4 : A map K : R•-+R' is called an optimal dual controller if 

Ker [(I-BK)A] 1 (1-BK) =f£1+P4, ViE.!J 

where P£ 1 is already defined by (2, 3). 

DEFINITION 5 : A map V :R'"-+R• is called an optimal dual observer if 

Im (A+VC)'=.9'., ViE/!_ 

where .9'; is defined by (3, 7). 

(5, 3) 

(5, 4) 

We shall write [i/ and .!'.:'a0 for the classes of optimal dual controllers and 

observers, respectively. 

DEFINITION 6 : A dynamic controller Da(K, V) is called a dynamic deadbeat 

dual controller, if there exists pE i such that 

x(i; K, V) =0, Vi~p (5, 5) 

for any x(O) and z(0). Furthermore, we call Da(K, V) a minimum time controller if 

it minimizes t (K, V). 
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The problem to be treated in this section is to find the minimum time deadbeat 

dual controller. 

To begin with, we obtain the optimal dual controller and observer. 

THEOREM 4 : Let YEM, .• be defined by (2, 9) -(2, 10). Then 

K=(YB)-1Y 

is an optimal dual controller. Let ZE? where ~ is defined by (3, 15). Then 

is an optimal dual observer. 

The proof of THEOREM 4 is about the same as those for THEOREMs l and 2. 

The following theorem is the main result of this section. 

THEOREM 5 : There exists a dynamic deadbeat dual controller if and only if 

the pair (A, B) is controllable, and the pair (C, A) is reconstructible. Under these 

conditions, every Dd(K, V) with K3K/ and VE,!:'."/ is a minimum time controller. 

The proof of THEOREM 5 is based on the following three lemmas. 

LEMMA 8 : Let i E i. Then 

x(i;K,V)=O 

for any x(O) and z(O), if and only if 
i-1 

[(l-BK)A] 1+ I:; [(l-BK)A] 1BK(A+VC)H=O 
i=O 

and 
i-1 

I:; [(l-BK)A] 1BK(A+VC)HS=O. 
i=O 

PROOF : We write 

Then, by (5, l) -(5, 2) we obtain 

e(i+l)=(A+VC)e(i) 

e(O) = (A+VC) [x(O) +Sz(O)J 

and 

x(i+ l) = (/-BK)Ax(i) +BKe(i). 

Iteration of (5, 11) and use of (5, 10) yields 

x(i+ l) = [ (1-BK)A]l+1x(O) + ±[ (1-BK)A] 1BKe(i-k) 
i=O 

=[(1-BK)A]l+1x(O) + ±[(I-BK)A]1BK(A+VC)He(O) 
i=O 

= {[(I-BK)A]H1 + ±[(I-BK)A]1BK(A+ VC)H+i}x(O) 
i=O 

(5, 6) 

(5, 7) 

(5, 8) 

(5, 9) 

(5, lOa) 

(5, 10b) 

(5, 11) 
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i 
+:E [(I-BK)A]"BK(A+VC)H+iSz(O). ,,_, 

Thus, (5, 7) -(5, 8) follow at once. 

LEMMA 9 : If (5, 6) holds for some iEi and for any x(O) and z(O), Then 

:?E,_pfl'1, VjE ~

PROOF : We define 

No~I 

N1 ~[(1-BK)A] 1+f[(I-BK)A]"BK(A+VC)H, j=l, 2, ··•,i, 
i=O 

and observe that N 1, jE i:_, satisfies the following recurrence relations 

and 

We show first tlaat ( 5, 7) implies 

(5, 12) 

(5, 13a) 

(5, 13b) 

(5, 14) 

(5, 15) 

(5, 16) 

Obviously, N,=0, so that Ker N1-::Jf/'0 =R•, and if Ker N,_1-::Jf/'1, then by (5, 15) we 

obtain 

0=N,_19'1 -::JN,_1(9'1nKer C) =N,_1_,A(9'1nKer C) 

=N,-1-,fl';+" 

proving Ker N,-c;+ll-::J fl' ;+1, and hence, induction proves ( 5, 16). Next, it will be 

shown that 

:?£ 1-::JKer N1, VjE ~ 

For this it suffices to verify that 
-1 -1 

N1_,. :?£,, C N1-u+1> :?£ Hh 

-1 

(5, 17) 

Let xEN1_,,:?E,,. Then N1_,,xE:?£,,, and hence, by (5, 14) we get AN1_1,-1xE:?E,,+:JI, or 
-I -1 

xEN1_,,_,A-1(:?£,,+:JI) =N1_,,_,:?EH, 

as claimed. The lemma now follows from ( 5, 16) & ( 5, 17). D 
LEMMA 10 : Let KE.!f.d0 and VE!::'./. Suppose that there exists i E i such that 

( 5, 18) 

Then x(i ; K, V) =0 for any x(O) and z(O). 

PROOF : By definition we obtain 

VjEi:_ (5, 19) 
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Ker [(l-BK)A]l-i(l-BK) =ff;-;+!1.1, VjEi_ 

and so 

Ker [(l-BK)A]1-J=A-1(X;-;-1+!1.I) =f£ 1_;, 

It follows from (5, 18) - (5, 21) that 

[(l-BK)A]l-l(A+ VC)i=O, 

Thus, the lemma follows from LEMMA 8. D 
The proof of THEOREM 5 is obvious from LEMMAs 8-10. 

REMARK 1 : It is obvious that 

t*4=min t(K, V) =min {i: ff;-;-::Jf/;, VJE 1} s;;: p+q-1, 
~v -

(5, 20) 

(5, 21) 

i. e., the minimum of t(K, V) is independent of the choice between D(K, V) and 

Dd(K, V). 

REMARK 2 : Since rank ([-BK) =n-r if KEJi/, it follows from (5, 2) that 

the dynamic dual controller can be designed with order µ=n-r. 

REMARK 3 : We denote the system (2, 1) & (3, 1) by S, and by S' the dual 

system to S : i. e. 

x(i-1) =A'x(i) +C'y(i) 

u(i) =B'x(i). 

We can formulate for S' the problems corresponding to those which have been 

treated in sections 2-5 for S. These problems can be easily solved by dualizing the 

corresponding results. Then the following dualities are readly verfied. Let KEM,. 

and VEMn,m• Then K is an optimal (optimal dual) controller for S if and only if K' 

is an optimal dual (optimal) observer for S1
• V is an optimal (optimal dual) observer 

for S if and only if V' is an optimal dual (optimal) controller for 8 1
• Furthermore, 

for 8 1 we define the dynamic controller D 1 (V1
, K') 

z(i-1) =S'A'T'z(i) +S'A'K'u(i) +S'C'y(i) 

y(i) =V'T'z(i) +V'K'u(i), 

and the dynamic dual controller D/ (V', K') 

z(i+ 1) = T'W) 

~(i) =K'u(i) +(A'+K'B')S'z(i) 

y(i) =V'W). 

Then, if KE!i_0 and VE ~0
, D(K, V) (D/(V', K')) is a minimum time dynamic 

(dynamic dual) controller for S (S'). If KEfia° and VE.Vd 0
, then Da(K, V) (D' 
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(V', K')) is a minimum time dynamic dual (dynamic) controller for S(S'). 

EXAMPLE 2 : Consider the same system as in EXAMPLE l. We have already 

obtained 

1

1 0 0 1 0 0 

Y= 0 0 1 0 0 0 

0 0 0 0 0 1 

Applying THEOREM 4 we get 

K~ l: 0 0 1 0 0 

0 1 0 0 0 

0 0 0 0 1 

so that 

0 0 0 -1 

0 0 0 

I-BK= 0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 0 

A full rank factorization of (I - BK) gives 

0 -1 0 

1 0 0 

r~ l: S= 0 0 0 

0 0 

0 0 

0 0 0 

V'= - [ ~ 2 3 o. 5 4 

~- 5], 0 0 o. 25 2 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Consequently, by (5, 1) we obtain the following controller with order µ=n-r=3: 

[ 
o. 5 0 o. 25 11. 5 o. 25 l 

u ( i) 4 1 0 z ( i) - 3 0 y ( i) 

1 -2 1. 5 . 2 2. 5 

z(i+ 1) = - l ~- 5 ~ 
4 0 

0 

0.25 

2 

6. Rednced Order Dynamic Deadbeat Controllers 

In the preceding two sections,· it was shown that dynamic deadbeat controllers 

can be designed with order n-m or n-r. It is possible, however, to design deadbeat 

controllers with order less than either n -m or n -r, if the results15 >, 18> on the reduced 
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order linear function observers are applied. This will be shown in this section. For 

simplicity, it is assumed in this section that the pair (A, B) is controllable and the 

pair (e, A) is reconstructible. 

Observer based controller 

Let KEK0 and write 

£'~Ker KnKer C. 

Let if" be a subspace of£' such that Ker eAnir=O and 

Ker en I!} kc£' 

for some kEn, where I!}• is computed sequentially by 

l!Jo=R• 

l!J;+1 =A(Ker en l!J;) +Air. 

Since l!J ~ { I!} 0, I!} 1, • • ·} is non-increasing, we can define 

p~min{k: Ker en l!J,c.!l'}. 

Compute J(. according 

.,/(o=.!l' 

.,1(;+1 = .!l' n A-1.,l(;(Bir 

and put 

Then we can choose the 3-tuple (V, S, T) so that151 • 161 

(/-Ve)A.,,ttc.,l(c.!l'cKer K 

K(l-VC) [A(/-VC)]•=O 

J-Ve-ST=O (mod .,I() 

(6, 1) 

(6, 2) 

(6, 3a) 

(6, 36) 

(6, 4) 

(6, 5) 

(6, 6) 

(6, 7) 

and we obtain the observer of order l =n-m-dim .,I(, which reconstructs the 

control law Kx(i) in at most p-steps. It is now enough to note that (6, 5) and (6, 

7) implies 

BK[(l-Ve)A]i(l-VC)ST=O, i E i 

and hence ( 4, l 0) yet holds, in order to verify that the observer having the property 

(6, 5) -(6, 7) actually achieves deadbeat control. A procedure is given by Akashi 

and Imai151 , 171 for obtaining such an observer. This is summarized below. 

We note first that there exists a sequence ~,:.{£t"0, £t"1,-••, £r,} such that 

l!J;=Ker en 0;(±)£r;(±)Air 

£r ,c £r ,-1 C ··· C £co. 
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We can choose ZEM.,., so that 

Im Z ~ fc 0(±)Air. 

It is readily verfied that CZEM.,,,. is invertible, and so we can define 

V~(J-P.,1)Z(CZ)-1 

and choose S and T of full rank so that 
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(6, 8) 

(6, 9) 

(6, 10) 

where PM is the orthogonal projection on Jt. The 3-tuple (V, S, T) actually has 

the property (6, 5)-(6, 7) as shown in 15)- I 7). 

Summarizing the above argument we have the following result. 

THEOREM 6 : Let KE.!5.0 and let (V, S, T) be given by (6, 9)-(6, JO) with S 

and T of full rank. Then the 4-tuple (K, V, S, T) provides a deadbeat controller 

of order 

l=n-m-dim Jt. 

REMARK 1 : The controller obtained in THEOREM 6 drives the system state 

to the origin in at most (q+p)-steps. 

REMARK 2 : Nothing has been mentioned about how to choose ir so that (6, 

2) is satisfied. It is shown in 16) that when dim L<m, an arbitrarily chosen ir 

generically has the property (6, 2). On the other hand, when dim L>m, an arbit

rarily chosen ir satisfies (6, 2) generically only if dim ir~m-1. 
EXAMPLE 3 : Consider the system treated in EXAMPLE 1. We have already 

obtained a KEK0 in EXAMPLE 1. Thus it is easy to check that 

2'=Im [ -2 0 1 2 0 -4]', Ker CAn2'=0. 

Therefore, we can choose ir=2'. Then by (6, 3) we get 

0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 -2 

(!)1=Im 2 0 0 (!) 2=1m 2 0 1 (!Js=lm 0 -4 
' 

so that 

0 0 

0 2 0 2 

0 0 2 

(!) sn Ker C= (!) c2'. Therefore, by 

l 4. 08 1. 3. 96 -5. 58 o. V'= o. 68 o. o. 66 -0. 93 1. 

2 

2 

4 6 

4 3 

(6, 9) and (6, 

-3. 84) 
-0. 64 ' 

o. 08 -3. 96 o. 96 -0. 08 -0. 66 o. 16 

T= o. 16 5,58 -0.08 0.84 o. 93 o. 32 , 
-0.32 3. 84 o. 16 o. 32 0.64 o. 36 

0 1 

-6 8 

0 8 

10) we obtain 

S= 

o. 5 1 -2 

0 0 0 

0 0 

0 1 0 

0 0 0 

0 0 
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Cosequently, we obtain the following third order controller: 

[

-0 5 -2 2 [ o. 5 o. 25 l 
u(i) = -2. 5 -1 2 z(i) + -11. 0 -2. 0 y(i) 

-0 -2 -1 14.0 1.5 l _,,, 1. 12 -2. 92 1-7 32 -0 94 
z(i+ 1) = 7. 66 2. 24 o. 66 z(i) + 15. 86 2. 87 y(i) + 

5. 68 1. 52 0.68 11. 28 2. 26 

o. 08 o. 96 o. 16 

+ o. 16 -0. 08 o. 32 u(t). 

-0.32 o. 16 o. 36 

We observe that t(K, V) =5 for this reduced order controller while t*=4 for the 

minimum time controller. Although the order of controller can be reduced by one, 

the number of control steps increases by one. 

Dual observer based controller 

The above result can be readily dualized to yield a dynamic dual controller with 

an order less than n -r. To show this we need the following preliminary result, 

which will later be dualized. 

LEMMA 11 : Let KEJS. 0 and .,It denote the subspace defined by (6, 4). Sup

pose that there exists irE i such that 

<V. n Ker Cc.,ltc!R 

where (V .E ~ is defined by (6, 3). with Z given by (6, 8) let 

V= (J-P ,.,1)Z(CZ)-1 

Then 

ST= (J-P ,.,1) [J-Z(CZ)-'CJ. 

K(J-VC--ST) =0 

TA(J-VC-ST) =0, 

and for some i E i 
i-1 

[A(J-VC)]'+~ (A+BK)HVC[A(J-VC)]'=0 
i=O 

i-1 

T{~ (A+BK)HVC[(J-VC)]'} =0 
1-=0 

PROOF : We obtain 

J-VC-ST=P ,.,1. 

(6, 11) 

(6, 12) 

(6, 13) 

(6, 14) 

(6, 15) 

(6, 16) 

(6, 17) 

(6, 18) 

Thus, (6, 14) follows. Since V, as given by (6, 12), satisfies (I-VG) A.,ltc.,lt, we 

obtain 
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STAM=(l-P .A) (l-VC)AM=0, 
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(6, 19) 

and since Sis of full rank, (6, 15) follows from (6, 18)-(6, 19). As to (6, 16), we 

first obtain 

(A+BK)'=0, 

Also we see by (6, 11) that 

Im (I-VG) [A(l-VC)]•c.Ac.!e', 

Hence, 

Vk?:.rr. 

H4 = (A+BK)"BK(l-VC) [A(l-VC) JH-•=0, 

if i?:.q+rr. From (6, 20) (6, 22) we claim that if i?:.q+ir 
i-1 

kEi-1 

(A+BK) 1 - ~ (A+BK)•BK(l-VC) [A(l-VC)]'-'-'=0 . 
.i:=O 

(6, 20) 

(6, 21) 

(6, 22) 

(6, 23) 

It is not difficult to verify that (6, 23) is equivalent to (6, 16). Finally, we have 

from (6, 19) and (6, 21) that 

STA(l-VC) [A(l-vcn-1 =0 

for some i E i, and since S is of full rank, 

T[A(I-VC)]'=0. 

Therefore, (6, 17) follows immediately from (6, 16) and (6, 24). O 
Then we obtain 

THEOREM 7 : Let VE_!ji0 and define 

J 
M'={M': Ker B'nA'.A'c.A'cKer B'nKer V', 

:;JkE n, (!} .' n Ker B' c.A'} 

where (!} .' is computed sequentially according to 

(!} o'= (R•)' 

(!}.'=A' (Ker B' n (!) 1_/) + A'ir' 

where if'"' is such that 

.A'= Ker B' A'~.A'(j)ir'. 

Let ;!' be the sequence such that 

l!J .'=Ker B' n l!J ;'(j),qz'/(+)A'ir' 

with Y0 EAi,,,. such that 

Im Y0 '=fZo' +A'ir', 

(6, 24) 

(6, 25) 

(6, 26a) 

(6, 26b) 

(6, 27) 

(6, 28) 

(6, 29) 
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K' ~ (l-P .I(') Y0 '(B'Y0
')-

1 

T'S'~(I-P J') [/-Yo'(B'Y1
)-

1B']. 

(6, 30) 

(6, 31) 

Then, the quadruple (K, V, S, T) supplies a deadbeat dual controller with order 

µ=n-r-dim .,It'. (6, 32) 

PROOF : By dualizing (6, 14)-(6, 17), i. e., by replacing (A, B, C, K, V, S, T) 

by (A', G', B', V', K', T', S'), we get 

or 

V'(I-K'B'-T'S') =0 

S'A'(I-K'B'-T'S') =0 
i-1 

[A'(I-K'B') ];+}:; (A'+G'V')HK'B'[A'(I-K'B') ] 1 =0 
1:0 

i-1 

S'}:; (A'+ C'V') HK' B'[A' (I - K' B')] H = 0, 
1=0 

(I-BK-ST) V=0 

(I-BK-ST) AS =0 

It follows from (5, lb) and (6, 33)-(6, 34) that 

(1-BK-ST)~(i) =0, 

and hence 

e(i+ 1) =Ax(i+ 1) +W+ 1) =(A+ VG) [x(i+ 1) +SzCi+ 1) J 
= (A+ VG) [Ax(i) + (BK +ST) ~(i) J = (A+ VG)e(i). 

(6, 33) 

(6, 34) 

(6, 35) 

(6, 36) 

Thus, LEMMA 8 can be applied to this case as well. Therefore, we see by (6, 35) 

-(6, 36) that the dual controller (5, 1) achieves deadbeat performance if VE.!'.:d 0 

and if (K, S, T) is given by (6, 30)-(6, 31). The proof of (6, 32) follows about the 

same lines as for THEOREM 4 in Akashi and lmai18 >. 

EXAMPLE 4 : Consider the same system as in EXAMPLEs 1-3. We have 

already obtained VE,!:'."/ in EXAMPLE 2. It is readily verified that 

.,//'=Im [0 0 0 -2 0. 25 0]'=if"' 

has all the required conditions of THEOREM 7, i. e., .,/t'E.,/t'. Then by (6, 26)

(6, 28) we obtain 

[ 
1 o o 1 o o 

1
, 

!!Z '= Im 0 001000· 
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Thus, 

and hence, by (6, 30)-(6, 31) we get 

-1/65 0 
[ ~ 

0 0 8 ~ ]. T= 
0 0 0 0 

S= 0 0 

1/65 0 0 0 1/65 8/65 n 8/65 0 K= 0 0 I 0 0 

0 0 0 0 0 0 0 

Consequently, we obtain the following dual deadbeat controller with order µ=n 

-r-dim .A'=l. 

1. 5 0,25 2/65 ._ 5 I 
u(i) = - 3 0 y(i) - 1. 65 ~ z(i) 

2 2. 5 2/13 

[ 
32, 5 16. 25 ) l 2 32. 5 ) z(i+l)=-
2 0 

y(i) -
0 2 

z(i). 

7. Conclusion 

This paper has considered the design problem of dynamic deadbeat controllers 

using an observer and a dual observer in discrete time linear multivariable systems. First, 

we defined and obtained the optimal controller and observer. Then we formulated 

and solved the problem of designing the minimum time dynamic deadbeat controller, 

and proved the separation theorem which states that the minimum time dynamic 

deadbeat controller can be obtained by combining the optimal controller and obser

ver. All these results were dualized to derive the corresponding results on the 

design of the dynamic dual controller. Finally, an algorithm of designing a linear 

function observer was applied to the design of reduced order controllers. It was 

shown in an example that the reduction of the controller order was indeed attained, 

but that the number of control steps may increase. The problem of designing the 

minimum order minimum time deadbeat controller is unsolved, but it is an interesting 

problem for the future. 
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Appendix 

LEMMA A: Let .9', 9f, r be subspaces such that 9f(Br=R• and P flf,"f" denote the projection 
on Bil along r. Then 

P.<W.f.9'=91! n (.9'+ r) 
(Pflf. f )- 19' = Bil n S"(Br. 

The proof can be found in Akashi and Imai18 '. 

(A,1) 

(A,2) 


