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Abstract 

An algorithm for solving mixed-integer linear programming problems with an 
angular structure is proposed. The basic idea is to decompose the original problem in 
the same way as the Dantzig-Wolfe decomposition principle in the linear programs, and 
to solve a restricted master program and subproblems iteratively. The subproblems 
are mixed-integer problems of smaller sizes than that of the original one. The termina­
tion of this algorithm is checked in two stages. If the optimality test is satisfied, the 
procedure terminates with the optimal solution. If not, the search for improvement is 
continued within a restricted extent. If the search terminates with no improved solution, 
the best solution obtained so far is given as a suboptimal solution. The numerical results 
making comparisons between the present method and the branch and bound method 
are shown. 

I. Introduction 

Although a number of combinatorial optimization problems may be formulated 

as mixed-integer programs, solving them is often hampered by size1l. In dealing 

with large-scale systems in the real world, large problems almost always have a 

special structure, such as the so called angular structure. In such a case, it may 

be efficient to devise the computational procedure in due consideration of that 

structure. 

The purpose of this paper is to develop a method for solving mixed-integer 

linear programming problems with an angular structure. The integer variables 

are contained separately in their respective block constraints, but have interrela­

tions among them through the coupling constraint for the continuous variables. 

An example of such problems is a dynamical planning problem over several periods 

of time, in which the planning for single time period is given as a mixed-integer 

problem. 

The Dantzig-Wolfe decomposition principle has been already proposed for 
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solving linear programming problems with an angular structure. The method 

proposed in this paper can be viewed as an extension of the Dantzig-Wolfe de­

composition principle to mixed-integer problems. The solution is obtained by 

solving a restricted master program and subproblems iteratively. One is a linear 

programming problem, while the others are mixed-integer problems of smaller 

sizes than that of the original problem. 

The termination of the present algorithm is checked in two stages. If the 

optimality test is satisfied, the procedure terminates and the optimal solution is 

obtained. If not, the search for improvement is continued within a restricted 

extent of the search region. The procedure is finite. If the procedure terminates 

with no improved solution, the best solution obtained so far is provided as a sub­

optimal solution. Accordingly, this algorithm can not necessarily give any 

guarantee for obtaining the optimal solution, but, if not, it may be expected to 

obtain a good suboptimal solution quickly. 

Benders3l has presented a partitioning approach for solving mixed-integer 

problems. In this approach, the original problem is partitioned into a relaxed 

pure-integer problem and a linear programming problem. Then the two prob­

lems are solved iteratively. The pure-integer problem has the same size as the 

original problem. Consequently, this approach seems to be effective only for a 

problem with a relatively small number of integer variables. On the other hand, 

the size of the mixed-integer problem to be solved in the proposed algorithm is 

smaller than that of the original, as the result of decomposition of the original 

problem based upon the structure of the constraints. In view of this, the proposed 

algorithm seems to be promising for the problem mentioned above. 

With an application to the optimal planning of blending raw coal in the iron 

industry, the present algorithm compares favourably with the conventional branch 

and bound method. 

2. Problem Statement 

Consider the following mixed-integer linear programming problem: 

T 
(Pl) min z = ~ c(t) y(t) 

x(t),y(t) 1=1 
subject to 

T 

~ A(t)y(t) = b ( I ) 
1=1 

B(t)_y(t) +D(t)x(t) "?;,d(t)} 

y(t) "?;,0, x(t) EX1 

( 2) 

t = I, 2, T 
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where, 

( 3) 

In (Pl), y(t) is an n1 X 1 continuous vector, while x(t) is an m1 X 1 integer 

vector. The vectors c(t), d(t) and b are of the dimension n1 X 1, l1 X 1 and l0 X 1, 

respectively. A(t), B(t) and D(t) are the matrices of appropriate dimensions. A 

prime denotes transposition of a vector or a matrix. 

The constraints of this problem have a special structure, called angular. 

The integer vector x(t) for each t is contained in the t-th block constraint (2) 

alone, but has interrelations among x(t) for all other t through the coupling con­

straint (1) imposed on the continuous vector y(t). 

In this paper, we propose an efficient algorithm for solving (Pl) with special 

regard to the angular structure of the problem. In the way similar to the Dantzig­

Wolfe decomposition technique for the linear programming problems, the solution 

is obtained by solving a restricted master program and subproblems iteratively. 

One is a linear programming problem, while the others are mixed-integer prob­

lems of small sizes. 

3. Construction of the Restricted Master Program 

The t-th block constraint (2) gives the feasible region for the continuous 

vector y(t), if the integer vector x(t) is assigned at an appropriate value in X 1• 

Then, the feasible region for y(t) consists of the convex polyhedrons in Rn, de­

fined by 

s: 6. {y(t) I B(t)y(t) ~d(t)-D(t)xk(t), y(t) ~o, xk(t) EX,} 

k=l,2,···,k1 (4) 

where k1 is the number of feasible points of x(t) in X 1• We also define the union 

of the polyhedrons as 

Then the problem is to choose xk(t), or equivalently S~, for each t so that the re­

sultant combination of s: can attain the satisfaction of the coupling constraint (1) 

and the minimization of the objective function z. 

Let s: be bounded for simplicity, and let tYn be the set of its extreme points. 

The convex combination of all the extreme points of the t-th block forms the convex 

hull of Y1, i.e. 

( 6) 
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which contains the feasible region for y(t). 

In the same way as the conventional Dantzig-Wolfe decomposition principle, 

we construct the master program in terms of all extreme points of all blocks. Sub­

stituting y(t) E f, into the objective function z and the coupling constraint (1) 

gives the following linear programming problem: 

(P2) min z =f'J. subject to 
A 

FJ. = b 

EJ.=e 

). ~ 0 

( 7) 

( 8) 

( 9) 

where J. and fare the vxl vectors whose components are iµ~ and c(t)'".Y~ re­

spectively, 11 being the number of all the combinations among the superscripts 

j, k and the subscript t. Fis the [0 XII matrix with the columns A(t)".JI~, and E 
denotes the Tx II matrix given by 

EL"'>diag (ef, e~, •··, ej) (10) 

In (8) and (10), e1(t=l,2,··•,T) and e denote the vectors all the components of 

which are equal to unity. 

Problem (P2) is called the master program. In the case of linear program­

ming problems, the master program is completely equivalent to the original one2l. 

In the present case, however, (P2) is not equivalent to (Pl) because the set f, 
gives a larger region than the feasible region for the t-th block. In order to hold 

the equivalence between (Pl) and (P2), we impose the following condition on the 

basic feasible solution of (P2): 

Cl. The extreme points of the t-th block, which form the basic feasible 

solution of (P2), must belong to the same polyhedrons:. 

Since II is large, solving (P2) directly may be impossible. Therefore, we 

deal with the restricted master program (RMP, for short) whose variables are 

restricted to candidates for the basic variables in (P2). 

4. Optimality Test 

Assume that an initial basic feasible solution for the master program (P2) is 

available by choosing l0+ T points out of II extreme points of all polyhedrons 

S~(k=l,2, •·•,k,; t=l,2, •··, T). Let 1r be the simplex multipliers associated with 

this basis. Partition 1r as 

(11) 
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where the l0 XI vector ir0 corresponds to the constraint (7) and the Tx I vector 

(ir1,ir2,··•,irT)' to (8). Then, the relative cost factor for the nonbasic variable;µ~ 

is given by 

( 12) 

If f_n;;;;;;o for all nonbasic variables, no change in the nonbasic variables can 

cause the objective function z to decrease. Consequently, the current basic fea­

sible solution is optimal. However, since Y1 is larger than the feasible region for 

the t-th block, the optimality test for the current solution need not be checked for 

all nonbasic variables corresponding to the extreme points in Y1• Thus, it follows 

that the condition mentioned above is sufficient for the optimality, but not neces­

sary. 

The procedure for checking the optimality test is as follows. Solve the follow­

ing subproblem for each block: 

(P3) min z 1 = [c(t) '-ir~A(t)]y(t) subject to (2) 
r(l),y(t) 

Let the minimum objective value for the above be zf. If 

for all t (13) 

then the current basic feasible solution is optimal. 

Note that (P3) is a mixed-integer problem of a smaller size than that of the 

original (Pl). 

5. The Procedure for the Case of Negative 

Relative Cost Factors 

In this section we consider the case where, as the result of solving (P3), the 

relative cost factor J(t) is negative for some t. Let the solution of (P3) be (xk*(t), 

y*(t)), where y*(t) ES1*. Assume that the current basic feasible solution of 

RMP belongs to S1 for the t-th block. 

First, if S~* =St the solution y* (t) can enter the basis of RMP because the 

condition Cl is satisfied by doing so. Then, the procedure due to the Dantzig­

Wolfe decomposition principle is permissible and consequently, the solution of 

RMP is necessarily improved. 

Second, if SJ*=f:=S7, the solutiony*(t) can not enter the basis of RMP keeping 

the current basic solution for the t-th block as the basis. Therefore, by replacing 

S7 by S7* according to Cl, a new RMP is constructed with variables corresponding 

to the extreme points obtained by the new combination of polyhedrons. In this 

case, the RMP does not necessarily have any improved solution, because the cur-
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rent basic solution is replaced. 

Therefore, we must find out a new combination of polyhedrons, if it exists, 

which assures the improved solution of RMP. The search procedure for this 

purpose, however, may be tedious, if not impossible. We confine the search for 

improvement to the following restricted extent: 

C2. If](t) <0 and S!* =l=S! for some t, the exchange of S1 for S1* is made for 

one block at a time. 

The search procedure is continued in the following way. Assume that the 

polyhedron for the t*-th block is replaced by sf:. Then, solve the following linear 

programming problem: 

(P4) 
'I' 

mm z = 2] c(t) y(t) subject to (I) and 
:1(1) 1=1 

B(t)y(t) ~d(t)-D(t)x(t) } 

y(t) ;;;;o 
t= 1,2, ··•,T 

In this problem the integer vectors of (Pl) are fixed as follows: 

A {xk*(t*) 
x(t) -

x(t) 

for t = t* 

for t =I= t* 

(14) 

(15) 

where x(t) is the integer solution associated with the current basic feasible solu­

tion ofRMP. 

The solution of (P4) is obtained by the Dantzig-Wolfe decomposition technique. 

If the solution of (P4) improves the current solution of RMP, proceed to the op­

timality test and check the solution of (P4) thus obtained. If not, the search pro­

cedure, i.e. solving (P4) is continued by replacing the polyhedron for another t 

with](t) <0. 

We consider the strategy for choosing the number t* for which block the 

polyhedron is replaced. The block numbers t; with ](t;) <0 are listed, by ar­

ranging them in the increasing order of the relative cost factor, as 

(16) 

Then the block number t* should be chosen according to the order listed in H. 

If the search procedure does not succeed even for the last block listed in H, 

return to the first block in H and solve (P3) again, excluding the values of x(t) 

obtained so far by solving (P3). That is to say, solve the following mixed-integer 

problem: 



468 Nobuo SANNOMIYA 

(P5) min z1 = [c(t)'-ir6A(t)]y(t) subject to (2) and 
z(t),y(t) 

(17) 

where xk(t) (k=k1,k2, •··,k,.) denote the integer solutions of (P3) which has failed so 

far to improve the solution of RMP. 

If ](t*) <0 holds for the solution of (P5), proceed to solving (P4) by sub­

stituting the integer solution thus obtained into the xk*(t*) in (15). On the other 

hand, if](t*)~0 holds for the solution of (P5), remove the number t* from the 

list H. 

The procedure mentioned above is terminated when the list H becomes empty. 

Since the number of the solutions of (P3) with f(t) <0 is finite, the procedure is 

completed in a finite number of iterations. 

In the case of exchanging the polyhedrons based upon condition C2, the 

polyhedrons, or equivalently the basic feasible variables, for the block withf(t) ~ 0 

Solve RMP and store 
the objective value z 1• 

Does the condition 
(13) hold? 

no optimal 
solution 

suboptimal 
solution 

Remove t* from H 

Does the integer solution 
of (PS) satisfy Cl? 

yes 

no Update z* 1------___, 

Fig. 1. Flowchart of the proposed algorithm 
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need not be replaced. Accordingly, the above algorithm gives a procedure ex­

amining all possibilities for improving the current basic solution of RMP by re­

placing a single polyhedron one by one. However, the simultaneous replacement 

of multiple polyhedrons is not considered in this procedure. Therefore, if the 

procedure terminates with H=</J, the best solution obtained so far is called a 

suboptimal solution. 

The entire procedure of the algorithm mentioned above is shown by the 

flowchart in Fig. I. Since the subproblem (P3) corresponds to (P5) without the 

constraint (17), both subproblems are solved by the same procedure due to the 

branch and bound method. 

6. Application to Optimal Planning of Blending Materials 

As an example of problems formulated in (Pl), we consider a problem of 

scheduling the use of raw materials in order to manufacture a certain product. 

The quantities of the supply and the requirement of the materials are given in the 

time period [I, T]. Assume that there are N kinds of materials with various 

qualities and different costs, to be substituted for one another. Then some of N 

materials are chosen and blended so that the resultant qualities may be acceptably 

close to the specific levels. There is a physical constraint on the number of equip­

ments that can be handled at one period to blend the materials. Then, the goal 

of our planning is to determine the quantity of each material so as to produce 

the specific product with a minimum cost, under the constraints mentioned above. 

(P6) 

The above problem may be written as follows: 

subject to 

u,.(t+ I) = un(t) +an(t)-yn(t) 

~y,.(t) = W(t) 
• 

(18) 

(19) 

q)W(t)~ ~ Q;,.y,.(t)~q~W(t) i = I, 2, ···, I (20) 

where 

. 
r!W(t)xn(t) ~Yn(t) ~r;W(t)xn(t) 

~x,.(t)~L 
• 

y,.(t) ~O, x,.(t) = 0 or I 

u,.(t) ~o 
t = 1, 2, ···, T; n = I, 2, ···, N 

u,.(t) = quantity of the n-th material in stock at the beginning of period t 

(2 l) 

(22) 

(23) 

(24) 
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Yn(t) = quantity of the n-th material used in period t 

an(t) = quantity of then-th material supplied in period t 

cn(t) = cost coefficient of then-th material in period t 

W(t) = total amount of material required in period t 

I = number of qualities of material 

Q;n = level of the i-th quality for the n-th material 

q} = lowest permissible level of the i-th quality 

q~ = highest permissible level of the i-th quality 

r! = minimum permissible rate of use, imposed when the n-th material is used 

r~ = maximum permissible rate of use for the n-th material 

L = maximum number of kinds of materials used at one period 

Equations (19)-(23) give the constraint for each period, which is independent 

of those for other periods. On the other hand, we obtain from (18) and (24) 

(25) 

t = l, 2, ···, T; n = l, 2, ···, N 

Since hn(t) is a known quantity, the relation (25) gives a constraint interconnected 

with the whole period. By introducing the Nx l vectors as 

x(t)L\(x1(t), x2(t), •·•,xN(t))' } 

y(t) L\ (y1(t),Y2(t), ···,YN(t))' 

the problem mentioned above is rewritten in the form of (Pl). 

(26) 

There have been some studies on the blending problems of raw materials4
•5>. 

Of these, Tabata4> deals with an oil-blending problem with the constraint on the 

number of available pumps, and proposes an algorithm based upon the branch 

and bound method. However, his approach is confined to the planning for single 

time period. In that case, it may be difficult to treat the planning over a long 

time period. 

In this paper, we investigate the optimal problem of blending raw coal in order 

to produce coke in an iron industry, with special regard to the dynamic planning 

over several periods of time. 

7. Numerical Results 

The numerical results are shown in order to make comparisons between the 

present algorithm and the conventional branch and bound method (BBM, for short). 

For simplicity, we treat the problem with N=5, though some forty kinds of raw 

coal are used practically. Three cases are considered for the time period; namely, 
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T=2, 3 and 4. In this case, the size of the problem is, corresponding to (Pl), as 

follows: 

for all t 

l0 = 5T(= 10, 15 and 20) 

Table I compares the size necessary for the present algorithm with that for 

BBM for various values of T. Table 2 summarizes the comparison of the com­

putational results for fifteen problems prepared by giving the various values of 

T, Land hn(t). 

(a) 

(b) 

(c) 

Table I. Comparison of the present method with BBM 

Number of constraints 

T The present method 
RMP Subproblem 

2 12 24 
3 18 24 
4 24 24 

Number of variables 

T The present method 
RMP Subproblem 

2 13 10 
3 19 10 
4 25 10 

Storage requirements (byte) 

T 

2 
3 

4 

The present method 

67584 
87308 

103144 

BBM 

58 
87 

116 

BBM 

20 
30 
40 

BBM 

30776 
68044 

119904 

Referring to Table 2, both algorithms require nearly the same computing 

time for T=2. However, as T increases, the present algorithm tends to have 

less computing time than BBM. Further, the solution obtained as the suboptimal 

solution in the present algorithm seems to be optimal in practice, as compared 

with the result obtained by BBM. 

8. Conclusion 

A new algorithm has been developed for solving mixed-integer linear program­

ming problems with an angular structure. The original decomposition tech-
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Table 2. Comparison of the computational results 

(a) T=2 

Problem No. 

The present method 

BBM 

(b) T=3 

( i) 

( ii) 

(iii) 

( i) 

(ii) 

(iii) 

Problem No. 

The present method 

BBM 

(c) T=4 

(i) 

(ii) 

(iii) 

( i) 

( ii) 

(iii) 

Problem No. 

The present method 

BBM 

( i) 

(ii) 

(iii) 

( i) 

( ii) 

(iii) 

2.5900* 

76 
6.32 

2.5900 

3 

3.26 

6 

4.1997* 

65 

5.48 

4.1999 

11 

41.54 

11 

5.3558* 

170 
19.04 

5.3557 

5 

56.25 

2 

2.7973 

155 

13.07 

2.7972 

3 

3.13 

7 

4.2972 

201 

19.76 

4.2972 

3 

10.01 

12 

5.1165 

460 

43.03 

5.1164 

9 

118.32 

3 

2.5987 

163 
22.44 

2.5987 

17 

16.68 

8 

3.8192* 

82 
20.84 

3.8192 

25 

66.38 

13 

5.1974 

566 
18.54 

5.1974 

35 

443.26 

4 

2.7000* 

71 
6.35 

2.7000 

13 

12.66 

9 

4.2000• 

121 
9.30 

4.1999 

25 

80.09 

14 

5.3999* 

140 

23.11 

5.3998 

21 

276.04 

5 

2.5724 

97 

17.78 

2.5724 

25 

24.58 

3.9631 

139 

13.94 

3.9630 

25 

80.62 

15 

5.4000* 

160 

38.81 

5.3998 

33 
447.85 

Notes: ( i) Objective function. The value with an asterisk indicates that the optimality condi­
tion (13) holds. 

(ii) Number oflinear programming problems actually solved. 
(iii) Computing time in seconds. 

nique due to Dantzig and Wolfe is confined to solving linear programs with the 

continuous variables alone. However, by modifying this technique, the present 

method can be applied to the mixed-integer problems given by (Pl). In this 

paper, the admissible values of the integer variables are restricted to O and 1, as 
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shown in (3). But the present method is also applied, without any difficulty, to 

the problem with bounded integer variables. 

By examining illustrative examples, the present algorithm is expected to be 

efficient from the standpoint of computing time. This feature is demonstrated 

especially for the planning problem over many periods of time, or the problem 

with many integer variables. The strict procedure for the case of failing in the 

optimality test (13) is being investigated with applications to other case studies. 
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