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Abstract 

Reducing the linear Biot's equations into a single governing equation, the mechanism 
of multi-dimensional consolidation is considered by means ofa variational principle. Par
ticularly, the investigation is made for the geometrical meaning of the linear relation 
between the distribution of excess pore water pressure and that of deformation, which 
is obtained by observing the consolidation process from the final steady state. 

As the results of the present study, we can conclude that (1) Biot's equations of 
consolidation are reduced into a single governing equation with the excess pore water 
pressure as the only unknown function, ifwe choose the final steady state as the reference, 
(2) the consolidation process is interpreted as a series of minimum norm problems in a 
metric vector space, i.e., the Function Space, and (3) the equilibrium condition of con
solidation is equivalent to determining a point in some subset which has the shortest 
distance from the origin of the Function Space. 

I. Introduction 

Compared with a one-dimensional case, the behavior of a multi-dimensional 

consolidation is remarkably complicated. The former is governed merely by a heat 

conduction type of equation, whereas the latter is considered to be governed strictly 

by Biot's equations1> which consist of simultaneous partial differential equations, 

with both displacement and pore water pressure as the unknown functions. 

Several analytical solutions of consolidation can be detected as the boundary 

value problem, but we have few studies concerning the mechanism of consolida

tion2>,3> based upon the mathematical structure of Biot's equations. 

The purpose of the present paper is to give a geometrical interpretation of the 

consolidation mechanism, contrasting one of the simple theorems in the theory of 

the minimum norm problem. This paper is composed of the following three 

parts. 

Firstly, Biot's equations will be expressed as a single equation only in terms of 

the excess pore water pressure, by using a unique linear relation between the dis-
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tribution of excess pore water pressure and that of residual volumetric strain. The 

most important point for this reduction is to observe the consolidation process from 

its final state, i.e., to choose the final state as the reference. 

Secondly, some fundamental variational principles will be briefly reviewed with 

the concept of the Function Space in order to clarify the geometrical meaning. 

Finally, the mechanism of consolidation will be investigated through a single 

Biot's equation in the Function Space, in which the Lagrange multiplier plays an 

important role. 

We should note that all of the discussions are based upon Biot's equations, 

assuming the linear elasticity of clay skeleton and the incompressibility of pore 

water. Therefore, the results in this paper never exceed the range ofBiot's theory. 

2. Biot's Equation in Terms of Excess Pore Water Pressure4) 

Biot's equations of multi-dimensional consolidation are generally written as 

(i=l,2,3) ( l ) 

( 2 ) 

in which afj=effective stress tensor, P=pore water pressure, ./;=body force, v= 

volumetric strain, r w=weight of pore water per unit volume, k;j=permeability 

tensor, J'J=potential of position, X;=cartesian coordinate and t=time. 

Associated with Eqs. ( l) and (2), the following boundary conditions (Bu), 

(Bo-) and (B0 ) are set up: 

(Bu) boundary condition concerning displacement U;: 

U;=fl; (i=l,2,3) 

(Bo-) boundary condition concerning stress traction T;: 

on Su 

(B0 ) boundary condition concerning drainage: 

p = p on S0 , 

in which fl;=prescribed displacement on the displacement boundary Su, T;= 
prescribed (total) stress traction on the stress boundary Su, fi=prescribed pore water 

pressure on the drained boundary S0 and n;=unit outward normal vector on the 

undrained boundary S00 . 
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As a particular case of consolidation, the problem of the undrained state is 

often considered. For this case, the equation of equilibrium (Eq. (1)) remains 

unchanged but that of continuity (Eq. (2)) must be replaced by the following 

restriction on the volumetric strain: 

V=O ( 3) 

Therefore in the analysis of the undrained state, we have no boundary condition 

directly concerning the pore water pressure. 

Meanwhile, at the ultimate state after completion of consolidation, there may 

exist a steady seepage flow, of which pore water pressure p I is governed by 

( 4) 

with (Bn)- The displacement at this state u1; can be determined by substituting 

Pt into Eq. (1). Namely, the deformation and the pore water pressure at the final 

state are solved separately as uncoupled problems. 

Choosing this final steady state as the basic reference state, i.e., observing the 

consolidating process from the final state (a[;=aJ;; P=P,, v=v1, U;=tt1;), Biot's 

equations are rewritten in the same form as Eqs. (1) and (2) in appearance: 

(i=l, 2, 3) 

in which 

( 5) 

( 6) 

(7) 

( 8) 

( 9) 

(10) 

These are the residual values which will disappear with the progress of consolida

tion. Particularly in this paper, u as defined by Eq. (8), refers to the excess pore 

water pressure. 

It is, however, considerably noteworthy that Eqs. (5) and (6) are accompanied 

with the following homogeneous boundary conditions (Bu0 ), (B.,.0 ) and (Bn0 ), which 

signify U;=O, T;=O, p=O in (Bu), (B.,.) and (Bn), respectively. The boundary 

conditions (Bu0 ) and (B.,.0 ) indicate that the displacement V; determined by Eq. (5) 

is exclusively due to the existence of excess pore water pressure u alone. In other 

words, assuming u as known, the displacement V; can be obtained through Eq. (5) 
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under the boundary condition (B00) and (Bero). Because of the linearity of the 

stress-strain relation of clay skeleton, there must be a unique linear relation 

between the distribution of such a displacement and that of excess pore water 

pressure. We can obtain this linear relation by the following consideration. 

Firstly, let U;(x, X) be the Green function of Eq. (5), i.e., the displacement 

determined by 

~ a-r~;+ ao(x, X) = O 
J ax; ax; 

(i=l,2,3) (11) 

with (B00) and (Bero) in which o(x, X) denotes Dirac's delta function. Eq. (11) 

means the equilibrium condition when a unit amount of concentrated pore water 

pressure is applied at a point X. Using the principle of superposition, it is possible 

to write down the displacement V; in an integral form: 

(i=l,2,3) (12) 

in which the subscript X of dVx means the integral variable. In the above and 

following descrpition, there is not noticed any distinction between the points x or 

X and their cartesian coordinates X; or X;. Eq. (12) is equivalent to the follow

ing ones: 

in which 

7/;;(x) = L H;;(x, X)u(X)dVx 

O(x) = L 8(x, X)u(X)dVx 

(i= 1, 2, 3) 

(i,j= 1, 2, 3) 

(i,j= I, 2, 3) 

0 = ~ 7/;; 
i 

We will consider, then, the inverse relation of Eq. ( 14) : 

u(x) = L <lJ(x, X)O(X)dVx 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Of course, there is little possibility to determine <lJ(x, X) directly from Eq. (14), 

but it is easy to understand the meaning of the integral kernel <lJ(x, X). Namely, 

<lJ(x, X) signifies the distribution of excess pore water pressure, which is caused in 

a case where a unit amount of concentrated volumetric strain is imposed at a point 
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X, with no volume change at any other points under (Bu
0

) and (Bo-o). In other 

words, 0(x, X) is the excess pore water pressure u determined by 

with (Bu0 ) and (Bero). 

\

. ~ a-r:; + au = O 
j ax; ax; 

0 = o(x, X) 

(i=l,2,3) (20) 

(21) 

Taking the time derivative of Eq. (19) and substituting it into Eq. (6), the 

single governing equation of a multi-dimensional consolidation is finally obtained, 

with the excess pore water pressure as the only unknown function: 

(22) 

which assumes the form of the equation of evolution just like the equation of heat 

conduction. With the boundary condition (B00), Eq. (22) can be solved for the 

excess pore water pressure u independently of the displacement v;, if the initial con

dition of u is given. 

3. Variational Principles and Concept of Function Space 

Using the concept of the Function Space proposed by Prager and Synge5 >, we 

will explain the way to intrepret several variational principles of linear elasticity by 

means of simple geometry. Before going to the subject, let us define a few vector 

notations to simplify the description. 

displacement U;, V;, U; - u, v, u 
strain c;;, 7/;; -e,'IJ 
stress af ;, d; _,,. a', -r:' 

body force J; _, 
surface traction T;, T; -T, T 

{ stress-strain a:; = ~ D;;klck1 _,,. q' = De 
relation c;; = ~ F;;k1af,, _,,. e = Fa' 

Although it is not necessary for the time being to distinguish the effective stress 

from the total stress, the prime (') is attached to the stress to avoid confusion. 

a) Principle of minimum potential energy 

Among the whole set of geometrically admissible displacement fields (satisfy

ing (Bu)), the unique solution of the given boundary value problem makes the 

following total potential energy minimum: 
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(23) 

in which s=the strain derived from u and (,) denotes the usual inner product: 

b) Principle of maximum complementary energy 

(24) 

(25) 

Among the whole set of mechanically admisisble stress fields (satisfying Eq. 

(1) and (Bo-)), the unique solution of the given boundary value problem makes the 

following complementary energy maximum: 

n*[q'] = - f _!_ (Fq', q')dV + f ( T', u)dS Jv 2 Jsu (26) 

c) Concept of Function Space5 l 

Prager and Synge introduced the concept of the Function Space in order to in

terpret geometrically the above principles, and to give a method of error estima

tion for the Rayleigh-Ritz approximation (Hypercircle Method). We will define 

the following set of strain fields E and its subsets E, E*, E0 and E! for the expla

nation of this idea. 

E 

E 

E*: 

set of all strain fields which are distributed over the domain 

{s I sEE, c;; =_!_(Bu;+ au;) U; = fl; on su} 
2 ax; ax; , 

{s*( = Fq*') I c*EE, 2J 8
;;~ +J. = 0, Tr= T; on s0"} 

1 

{solsoEE, co;;=_!_(Bu;+au;) U;=O on su} 
2 ax; ax; , 

Et: {st(= FO"t') I st EE, 2J a;;'.';= O, Tf = 0 on so-} 
1 

Fig. 1 shows the conceptual view of the correlation between E, E, E0, E* and Et. 
0 means the origin of space E, of which the strain distribution is equal to zero 

identically. Set E is equivalent to the admissible set in the principle of minimum 

potential energy, while Set E* is equivalent to the admissible set in the principle 

of maximum complementary energy. Any element in set E0 is defined as the dif

ference of some two elements in E(=s1-s2, s1, s2EE), while any element in 

set Et is defined as the difference of some two elements in E*(=sf-sf, sf, 

sf EE*). 



524 Takeshi TAMURA 

Fig. 1. Set of strain distributions J::: and its subsets E, E*, Eo and Ef 

The following inner product is introduced in the linear space E: 

(27) 

Using this inner product, the norm of strain: 

llell = v<e, e) (28) 

and the measure of two elements in E: 

(29) 

are defined. It is easy to prove the following geometric relation among sets E, E, 

E*, E0 and Et (refer to Fig. 1). 

( 1) The theorem of existence and uniqueness of solution in the linear elasticity 

implies that sets E and E* possess a unique common point e 1 ( =the point 

of solution). 

(2) Similarly to (1), sets E0 and Et contain the origin Oas a unique common 

point. 
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(3) Because of the homogeneity of the boundary conditions, any element e0 of 

E0 is perpendicular to all the elements et of Et in the sense of the inner 

product defined by Eq. (27), i.e., 

(30) 

(4) Similarly to (3), the difference of any two elements in E is perpendicular to 

the differences of all the pairs of elements in E*, i.e., 

(31) 

As a special case, (e1-e1) and (ef-e1) are perpendicular to each other. 

If the variational principles are considered in space E, we can say that the 

principle of minimum potential energy is to seek after a point e in E which has 

the smallest distance from an arbitrary point e* fixed in E*. Furthermore, the 

principle of maximum complementary energy is to seek after a point e* in E* 

which has the smallest distance from an arbitrary point e fixed in E. (Refer to 

Figs. 2, 3) It is also obvious that these minimum distances are given by the point 

e I in both cases. 

Fig. 2. Principle of minimum potential energy. Fig. 3. Principle of maximum complementary energy 

d) Sakai's principle6> 

It has been said that the two fundamental variational pricinples are reciprocal

ly related to each other, but that they are independent in themselves. Sakai, 
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however, proved recently that these principles are deduced as the sationary con

ditions of the following single functional: 

by showing 

lle-e*112 = _!_ f (D(e-e*), (e-e*))dV 
2 Jv 

lle-e*ll2 = ir[e]-ir*[e*] 

(32) 

(33) 

m which ir[e] and ir*[e*] are the functionals defined by Eqs. (23) and (26), 

respectively. In other words, Sakai's principle verifies the fact that the two varia

tional principles are equivalent to the minimization of the distance from e to e* 

by moving e and e* at the same time. (Refer to Fig. 4) 

Fig. 4. Sakai's principle. 

From the above explanation, it is understood that several variational principles 

can be interpreted by means of a simple geometrical concept in space E. 

4. Consolidation Mechanism and Minimum Norm Problem 

In this section, the mechanism of consolidation will be investigated through 

the variational principle, particularly by using the concept of the Function Space. 

As a practical procedure of disscussion, we will firstly explain that the meaning 

of Eq. ( 13), ( 14) or ( 19) can be understood by a simple theorem of the minimum 

norm problem. Also, the (excess) pore water pressure can be defined as the 

Lagrange multiplier which is concerned with the restriction of the minimum norm 

problem. Secondly, the meaning of the condition of continuity (Eq. (2) or (6)) 
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will be explain in detail. 

4.1 Variational principle with restriction on volunietric strain 

As was discussed in 3, the equilibrium condition is equivalent to minimizing 

the total potential energy in the usual boundary value problem of elasticity. Then, 

let us investigate the problem accompanied with the restriction that the volumetric 

strain v(x) must be equal to a given function v(x). The deformation state, even 

in a consolidation process, is analysed by regarding it as this type of problem since 

it is quasi-static. Therefore such a problem as is accompanied with some restric

tion, is essentially fundamental in the present investigation. 

When several restrictions exist among the independent variables, the varia

tional principle is generally formulated by introducing the so-called Lagrange 

multiplier .1.(x). Namely, the total potential energy ir[u] must be modified into 

the following form: 

ir[u, il] = ir[u] + L .1.(x) (v(x)-v(x) )dV (34) 

Indeed, the first variation of the functional ir[u, il] yields the following Euler's 

equations (stationary conditions): 

1 
~ Baf;+~+J; = 0 
; Bx; Bx; 

V-tJ =0 

with the natural boundary condition: 

(i=l,2,3) 

(i=l, 2, 3) on S,,. 

(35) 

(36) 

(37) 

If the Lagrange multiplier ,1. is regarded as the pore water pressure p, Eqs. (35) 

and (37) become identical with the equilibrium condition of Biot's equations (Eq. 

( 1)) and the stress boundary condition (B,,.), respectively. Hence, it is concluded 

that the equilibrium condition with the restriction on the volumetric strain is equi

valent to that of consolidation. 

Then, we will consider what is discussed above in set E. In subset E (CE), 

a new subset E, is further defined, such that all elements ofE, satisfy the constrained 

condition v=V (refer to Fig. 5): 

E, = {eleEE, v(= ~ e;;) = v} 

Then, the following minimum norm problem is set up: 

"Determine an element e in E, such that the norm lle-e*II becomes 

minimum when e* is fixed in E*." 
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Fig. 5. Subset E, and principle of minimum potential energy 
with constrained condition. 

This problem is formulated by defining a functional n-'[s, l]: 

n-'[s, l] = (s-s*, s-s*>+L l(x)(v(x)-v(x))dV (38) 

in which (s-s*, s-s*) is the functional to be minimized, and the second term 

is an additional one to take into consideration the restriction; sEE,. Using the 

method of Prager and Synge or Sakai, it can be easily proved that the stationary 

conditions of n-'[s, l] are the same as those of n-[u, l]. Indeed, n-'[s, l] is de

veloped as follows: 

n-'[s, A]= n-[u, l]-n-*[s*] (39) 

As is understood from Eq. (39), the stationary conditions of n-'[s, l] and n-[u, l] 

are coincident ifs* is fixed. Therefore, the problem wi,th the constrained con

dition concerning the volumetric strain can be regarded as a problem of determin

ing an elements in E, which makes lls-s*II minimum. (Refer to Fig. 5) 

It should be noted here that the vector (s-s*) does not generally satisfy 

the compatibility condition. Namely, an element (s-s*) is not necessarily 

derived from some displacement field. For such a condition, it is required to 

choose the solution of the usual problem st as s*. In relation to the consolida

tion problem, st means the final state of the process. Hence St is fixed as s* and 

is regarded as the reference point of set E. In order to simplify the description, 

the vector (s-·st) will be denoted by q. Consequently, E;; is replaced by E8 
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Fig. 6. Subset Ejj and element 71. 

in which lJ=v-v1 and all consideration is confined in E0• (Refer to Fig. 6) This 

alternation corresponds to choosing the final state as the reference and making the 

boundary conditions homogeneous in 2. 
From the above explanation, if we 

( 1) select the final state of consolidation e 1 as the reference point of set E, and 

(2) replace the Lagrange multiplier A(x) by the excess pore water pressure u(x) 

( =P(x)-PJ(x)). 
then , the functional 1r'[e, A] defined by Eq. (38) is modified into 

II ['I, u] = ('I, 'l)+L u(x)(O(x)-lJ(x)dV (40) 

4.2 A simple theorem of minim.um. norm. problem.7> 

The stationary conditions of the functional II [ 'I, u] can be interpreted from a 

different point of view. Firstly, one of the simple theorems in the minimum norm 

problem (optimal control theory) in then-dimensional Euclidian space Rn (or more 

generally in a Hibert space) is explained. S denotes a subspace of Rn defined by 

m-linear equations: 

• 
~ a;;Z; = C; or (a;, z) = c; 
j=l 

(i=l, 2, ···, m) (41) 

in which z means an n-dimensional vector expressed by the components of the 

orthogonal coordinates (zi, .z:i, ... , zn), a;(= (a;1, a;2, •··, a;n)) and C; denote the vector 

of coefficients and the constant of the i-th equation, respectively. Without a loss 

of generality, a; is assumed to be a unit vector: 

(i=I, 2, ···, m) (42) 

The subsapce S is the (n-m)-dimensional intersection of the m-hyperplanes ex

pressed by Eq. ( 41). a; and I c; I mean the unit normal and the distance from the 

origin O to each hyperplane. 

The following minimum norm problem is, then, considered: 
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"Determine a point Pin subspace S which has the shortest distance from the 

origin 0." 

Fig. 7 shows a schematic view of the above circumstance in the case of n=3, m=2. 

Fig. 7. Subset S and solution point P (n=3, m=2). 

This problem can be easily solved as follows. In order to minimize the distance 

llzll=v(z, z) from the origin under the constrained equation (41), it is required 

to obtain the stationary conditions of the following functionf(z, A.): 

(43) 

in which A-= (.,11, ..l.2, ... , ..l.m) are the Lagrange multipliers. Therefore differentiating 

f(z, A.) with respect to z and A., we have 

(a;, z) = c; (c; = 1, 2, •··, m) (45) 

Eq. ( 45) is simply identical with the constrained equation ( 41), but the form of 

Eq. (44) is quite remarkable. This equation indicates that the position vector of 

solution z is expressed as a linear combination of m vectors a;(i= 1, 2, ···, m) which 

define subspace S itself, and that their coefficients are coincident with the Lagrange 

multipliers. Such a fact results from the particularity of the minimum norm 
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Fig. 8. Vector a and solution point P (n=2, m= !). 

problem. Fig. 8 shows what is explained above in the simplest case (n=2, m=l). 

Substituting Eq. (44) into Eq. (45), the simultaneous linear equations for A; are 

obtained: 

(i=l,2,···,m) 

Determining A; by Eq. (46), the position vector z of point P is settled. 

4.3 Mechanism. of consolidation 

(46) 

Let us apply the above simple theory of the minimum norm problem to the 

interpretation of the consolidation mechanism. It should be noted that the func

tional II [11, u] (Eq. (40)) and the functionf(z, A.) (Eq. (43)) are written in similar 

forms. Both were introduced to minimize the distance from the origin O under 

some restrictions. A great difference found between them is the form of their second 

terms which are related to the constrained conditions. Namely, the second term of 

f(z, A.) is expressed in the form of an inner product of z, while that of II [11, u] is 

not in such a form. Yet, it is possible to rewrite it in the inner product form of u 

as follows. Let A denote a function which maps a strain distribution 11( E E0) 

into the volumetric strain at a point X i.e., O.,,(x=X): 

A: TJ(x) - O.,,(x = X) 

It should be noted that this function A can be expressed in the following inner 

product form if a particular element Ex is chosen in E0 : 

(47) 

The above equation becomes valid when Ex is equal to the strain distribution 
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H(x, X), which can occur by a unit amount of concentrated excess prer water 

pressure at X under the homogeneous boundary conditions (Eq. (15)). Induced 

we deduce 

-2<H, 'I)= - ( 2J ,[j1J;jdV = ( 2J a,:j vidV- f 2J ,[jnjv;dS 
Jv i,j Jv i,j axj Js i,j 

= f 5(x, X) 2J avidV- f 2J Mj+5(x, X)5ij)njv;dS 
Jv ; 8x; Js i,i 

= O(x, X) . (48) 

Using the inner product expression obtained above, II [ 'I, u] (Eq. ( 40)) is rewritten 

in the same form asf(z, A) (Eq. (43)): 

in which the integral variable in the second term is X. Of course, Eq. (5) and the 

condition 0-lJ=0 are naturally obtained as the stationary conditions by taking 

the first variation of II [ 'I, u] in the usual sense. However, concerning the sta

tionary condition with respect to 'I, II ['I, u] can be treated as ifit were a quadratic 

form. II [ 'I, u] is differentiated under the topology of E defined by the inner 

product < , ) (Frechet or Gateaux differentiation) 8>, and the following condition 

is deduced: 

q(x) = L H(x, X)u(X)dVx or 7Jij(x) = L H;ix, X)u(X)dVx (50) 

which is the same as Eq. (13). This procedure is quite similar to the method 

used to obtain Eq. (44) fromf(z, A). It is of particular interest to note that we 

can directly obtain Eq. (50), which is usually obtained from a part of the stationary 

conditions Eq. (5) and the homogeneous boundary conditions (Bu0 ), (B.,.0 ). In 

other words, even the form of solution can be determined as a part of the stationary 

conditions in some sense. Substituting Eq. (50) into the other stationary condi

tion: 

lJ <'I, H)+~ = 0 or 0-lJ = 0 
2 

(51) 

we have the following relation between u(x) and lJ(x): 

lJ(x) = L 8(x, X)u(X)dVx (52) 

which is identical with Eq. (14) and has a meaning similar to Eq. (46). 

As is understood from the above explanation, it is possible to interpret the 

geometrical meaning of the functional II['I, u] in E0 through the function f(z, A) 
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in R". Then, let us consider the mechanism of the consolidation process using the 

geometry of E0• At the beginning of the consolidation process, the distribution of 

the volumetric strain v(x) is restricted to be identical to zero, i.e., v(x) =0. But since 

the final state of consolidation is chosen as the reference in the present study, v(x) = 
0 means O(x) =IJ(x) ( = -v1 (x) =!=0), which is equivalent to the following equation 

expressed in the inner product form: 

1 
<11(x), H(x X)) = --IJ(X) 

2 
(53) 

This equation defines an infinite of hyperplanes in E0 for all X. H(x, X) and 

I -O(x)/2 I represent its normal vector and the distance from the origin in an 

abstract sense, respectively. The common intersection of hyperplanes forms E8• 

(Refer to Figs. 6 and 9.) The position of the equilibrium point P1 in this state 1s 

Fig. 9. Mechanical model of consolidation in subset E0• 

expressed in the linear combination of the vectors H(x, X) (Eq. (50)), of which the 

coefficients (the excess pore water pressure) are determined by Eq. (52). In other 

words, point P1 becomes the nearest point in Ee to the origin O (the final state of 

consolidation). As the consolidation process progresses, the value of the volumetric 

strain IJ varies at all points, namely, set Ee begins to move in E0• It is the con

dition of continuity (Eq. (6)) that determines the direction and velocity of such a 

movement. Since all normal vectors H(x, X) are kept unchanged, all hyperplanes 

and also Ee itself are subject to parallel translation. Therefore, after a small 

amount of time Jt, IJ changes into 

(54) 

and according to Eq. (54), E8 changes into E/. The condition of equilibrium at 

this moment is satisfied at P2, which is the nearest to the origin O among all points 

of Ee', and also the excess pore water pressure is obtained as the Lagrange multiplier 

at the same time. Repeating the above procedure, P3, P4 •·· are determined sue-
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cessively until set Ee moves so as to contain the origin O (the final state of con

solidation process). (Refer to Fig. 9.) 

Eq. (52) can be inverted to write the excess pore water pressure explicitly as 

shown in Eq. (19). Eq. (22), which is obtained by substituting the condition of 

continuity (Eq. (6)) into Eq. (19), represents the mechanism of consolidation just 

mentioned above in a single equation. 

5. Conclusions 

Using the concept of the Function Space, the mechanism of consolidation was 

studied from the viewpoint of a variational method. The following conclusions 

were made. 

( 1) Riot's equations are reduced into a single equation with the excess pore water 

pressure as the unknown function. 

(2) The excess pore water pressure can be regarded as the Lagrange multiplier 

accompanied with the restriction on the volumetric strain, and it means the 

potentiality of volume change. 

(3) The condition of equilibrium at each stage of consolidation process is satisfied 

at a point P, which becomes located nearest the final state in the strain set 

Ee. 
( 4) The position of P is expressed as a linear combination of vectors H (x, X) 

which define set Ee. Each coefficient (Lagrange multiplier) coincides with 

the excess pore water pressure. 

(5) The condition of continuity plays a role in determining the direction and 

velocity of the translation of E8 according to the distribution of the excess 

pore water pressure. 

(6) The process of consolidation can be interpreted as the trace of P in set E0, 

determined by the repetitive procedures of (3) and (5). 
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