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Abstract 

The problem of estimating some unknown parameters in a dynamical system des
cribed by stochastic differential equations is discussed. A method of estimation based 
on non-linear filtering and maximum of likelihood theories is presented. A numerical 
procedure for the estimation is developed, and the condition for convergence of the 
method is obtained. 

1. Introduction 

Let us consider a river water quality modeP>. The model is represented by 

a system of ordinary differential equations. It has five state variables. Two of 

them are concentrations of bacteria, and the others are those of substrates (am

monium nitrogen, oxidized nitrogen, organic material and dissolved oxygen). The 

model also contains twenty parameters. Two of them are physical and the others 

are biological constants. Measurement of concentrations of substrates is possible, 

but it is almost impossible to evaluate the biomass of a certain class of bacteria 

in a specific area. Moreover, there is little information available concerning 

biological parameters. Therefore, we have to identify biological parameters from 

the observation of the substrates' concentrations. This is a typical difficult problem 

often encountered in the modelling of pollution systems. The characteristics of 

such models are, in gneeral, the presence of non-linearities and rather few state 

variables. Also, the stochastic aspect seems important here because many phe

nomena appear which are difficult to represent in a deterministic framework. In 

this paper a dynamical system is described by stochastic differential equations, and 

we discuss the problem of estimating some unknown parameters in the system. 

We present here a method of estimation based on non-linear filtering and maxi-
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mum of likelihood theories. The limitation of the method is imposed by the size 

of the system (no more than 2 or 3 state variables). On the other hand, we can 

take into account non-linearities. Moreover, a general stochastic model allows 

us the use of a general statistical framework to show the asymptotic properties of 

the estimates. 

2. Computation of Maximum of Likelihood of Bayesian 

Estimates 

2.1 The non-degenerate case 

We assume that the state of the system is given by a diffusion process: 

dx1 = b(x1, 8) +a(x1)dw1 

where 8 is an unknown parameter. 

( 1 ) 

We denote the matrix a(x)a'(x) by a(x) and we assume the usual hypothesis on 

the functions a and b: 

They are supposed to be continuous functions of x·, and .it(x), the smallest eigen

value of a satisfies: .it(x) :2::c>O. 

Then (1) admits a unique "weak" solution. That is, there exsists a probability 

measure P8 and a pair of stochastic processes (x1), (w1), with continuous trajectories 

whereby under P8, (1) holds a.s., and w1 is a Brownian motion. We shall also 

introduce: 

y 1 is a P 8-Brownian motion independent of (x1) • ( 2) 

(This is always possible by replacing P8 by P8 X W, where Wis the Wiener measure). 

Therefore, under P8, the a-algebras Ff=a(x.,s~t) and F{=a(y.,s~t) are in

dependent. We denote F1=F1V Ff. 

We now describe the process of observation: 

( 3) 

h is a continuous function of x, and tD1 is the observation noise, a Brownian motion. 

By the Cameron-Martin Girsanov formula2
), we know that if B'=B+AC, 

where B (resp. A) is the drift term (resp. the diffusion term) of a diffusion process 

P, then the diffusion process Q with the drift term B' and the same diffusion term 

A is absolutely continuous with respect to P, both measures being restricted to F,, 
and 

dQ ~t l it ~ I Ft = exp{ <C(x,), dx,-Bds)-~ (AC, C)(x,)ds 
dP o 2 o 

( 4) 
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(Here, F1 denotes the a-algebra a(x., s=:;;t)). 

The following proposition is then easily derived with: 

Proposition 1: The probability law Q of the process (x1,y1) given by ( 1) and 

(3) is absolutely continuous with respect to P ,with both 

F1 and L1= dQ I Fi is given by 
dP 

it 1 11 L1 = exp h(x,)dy,-~ h2(x,)ds. 
0 2 0 

measures restricted to 

( 5) 

L, is a positive martingale for (F1, P) because for AEF., t?::.s we have 

Moreover, Ito's formula gives: 

( 5)' 

The problem is now to "compute" the probability law of the observed process 

(y1), that is Q IF{ for all t>O. 

Proposition 2: The probability law of the process (y,) given by (3) is absolutely 

continuous with respect to PI F{ and 

dQ IF'= E(L,IF{) = i,. 
dP I p 

(Indeed, if AEF{, Q(A) = f L1dP= f E(L1 I F{)dP) JA LP 
Now we give a recursive equation for L1• For that we introduce a smooth R-

valued function (bounded): 

u1(f) = E(L,f(x1) IF{) . 
p 

Then it is shown in reference (3) that one has: 

(7) 

A is the generator of the Markov process (x1) 

Af (x) = ~ b; 
8 

f (x) +_!_ ~ a;;___!:_. 
; OX; 2 ij OX;OX; 

( 8) 

We remark that L1=u1(1 ), and for the density of the "measure" u1 (also denoted 
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by u,(x)) we have the following: 

J u,(x) = A*u1(x) +u,(x)h(x)dy, 

lu0(x) = µ 0(x) 

µ 0 is the law of the random variable x0 (given). 

Let 1r1 denote the non-linear filter: 

Then we have the Bucy's lemma: 

Proposition 3: 

Proof: If AEF{, we have: 

L 1r,(j)u,(l)dP = L 1r1(f)L1dP 

= L1r,(f)dQ 

= L.t(x1)dQ 

= L.t(x1)L,dP. 

(definition of u, ( 1)) 

( construction of Q) 

( 9) 

(10) 

( 11) 

Thanks to (11) we can give another expression for£,. From (7) withf=l, we ob

tain (Al =0): 

Comparing with (5'), we derive: 

(12) 

Thus we have shown: 

Proposition 4: The probability law of the process (y,) is a weak solution of: 

where w, is a Q-Brownian motion. 

So the statistical structure of the problem of estimation of (} by the observation 

of (y,) can be wrewritten: 

!J = C(O, oo;Rm) 

y 1(w) = w1 

F, = a(y., s~t). 
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Qg is a weak solution of 

dy, = Ji.(0)ds+dw, (13') 

with h,(0) being the function 11:,(h), where 11:, is the non-linear filter of (I) and (3). 

In particular, we have a structure dominated with the Wiener measure as a re

ference measure, and we also have an exponential family. The factorization 

theorem shows immediately that h,(0) is a sufficient statistic of 0. 

Maximum of Likelihood Estimators 

The maximum of likelihood estimator of 0 is given by: 

m:x ~u~(x)dx 

a 1 a2 

du1(x) = - ~- (Mu) (x) +-~ -- (a;;u) (x) +u1(x)h(x)dy1 • (14) 
;; Bx; 2 ;; 8x;8Y; 

This problem can be seen as the problem of controlling the partial differential 

equation (14) with the "control" 0 and the "cost function" iu,(x)dx. 

Remark I: This problem is equivalent to 

(15) 

with the partial differential equation of the non-linear filtering problem satisfied 

by 11:i(x). This last problem seems, from a numerical point of view, much more 

difficult: the cost function (15) and partial differential equations for 11:1 are non

linear. 

Remark 2: We can consider other kinds of state equations instead of (1). In

deed, if (x1) is a Markov process with generator A, we obtain for (7) and (14) the 

same kind of equation with the generator A. This remark will be useful later. 

Problem (14) can be solved by a gradient-like method: 

for instance (for n=l), in the case ofa parameter which appears linearly b9(x)= 

0•b(x) (b a known function): 

a 1 a2 

dv1(x) = - - (b • v) (x) +- - (av) (x) +v1(x)h(x)qy1 
ax 2 8x2 

BJ = f v1(x)dx. 
80 J 
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Bayesian estimate: 

In the Bayesian approach, we are given an "a priori" probability law of 

q(dO) of the parameter 0. The probability law of (y1) is then 1 Q9q(d0), and O is 

estimated at time t by its "a posteriori" mean that is E(O IFn=o,. 
Q 

Then by the Bayes's formula, we have 

1 Ou1(x)dx q(dO) 
U,=------, 1 u,(x)dx q(dO) 

(15) 

u,(x) given once more by (14). 

In this case, we have to solve a family of partial differntial equations indexed 

by 0, and then apply formula (15). 

Remark 3: It is possible to consider an observation such as 

(16) 

instead of (3). However, for our purpose (estimation) 

this is not really an improvement. Indeed, the function f3 can be estimated "along 
the observed trajectory" by the quadratic variation: 

2.2 The degenerate case 

So far we have considered the case of a state equation of type (1), and we 

have supposed that the observation is given by a diffusion Markov process (3). 

In particular, the observation process is in the state equation. Now we release 

this assumption: this corresponds to the case of a 2-dimensional Markov process 

(of a diffusion type), one component of which is observed without noise. To be 

more specific, we consider instead of (1) and (3). 

dx1 = b9 (x1,y1)dt+a(x1,y1)dw1 

dy1 = h(x1,_y1)dt+dm1 • 

(17) 

(18) 

(Remark 3 is also "Valid here. We can modify the reference measure in con

sequence.) 

We now derive the analog of equation (14). 

To simplify the notations we assume n=m= 1. 

As in part l, we consider a reference probability measure P such that, under P, (x1) 

is a solution of (17) and (y1) is a standard Brownian motion independent of (w1). 
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Then we define Q by: 

dQ _ _ {I' 1 i' 2 } -I Ft - L, - exp h(x.,y,) dy,-- h (x.,y,)ds . 
dP o 2 o 

In this way, the Cameron-Martin Girsanov theorem (Prop. 1) claims that, under 

Q, the pair (x,,y,) is a weak solution of (17) and (18). 

It is shown in (ref. 6) theorems 7-12 that (y,) permits the following representation: 

(19) 

where (w,) is a standard Brownian motion (the innovation process) adapted to Ff, 
and 11:,(h) =E(h(x,,y,) I Fr). 

Q 

Letf (x,y) be a bounded R-valued function. 

We introduce: 

u,(f) = E(f (x1,y,)L1 I Fr) . 
Q 

(20) 

In particular, u1(1) gives the density with respect to the Wiener measure of the 

observation process (y1). 

Thanks to ( 19) we also have: 

(21) 

or equivalently (Ito's formula): 

u1(1) = 1 + tu,(1)11:,(h)qy,. (22) 

The generator of the Markov process ( 1 7), ( 18) is: 

Af(x,y) = b 8f +haJ +J_ a a2J +J_ a2J (x,y). 
ax ay 2 ax2 2 ay2 (23) 

We also introduce Nf(x,y) = Bf (x,y). 
ay 

Now we can derive a recursive equation for u,. 

Proposition 5: The "measure" u1 satisfies the following diffusion-type equation: 

(24) 

Proof. From Theorem 8.3 in ref. [8], we have for the non-linear filter 11:,(f) 

the equation: 
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where Nf(x,y) = Bf (x,y). 
8y 

From (22) we have u1(l)=u0(l)+r u,(l)n-,(h)qy,. 
. 0 

We can apply Ito's formula to u1(.f)=u1(l)n-1(f): 

u1(f) = u0(f) + ~: n-,(f)u,(l )n-,(h)dy,+ ~: n-,(I )n-,(Af) (iry,-n-,(h)ds) 

+ tu,(1) [ n-,(hf)-n-,(h)n-,(f) +n-,(NJ)] (dy, -n-,(h)ds) 

+!:<u,(l), n-,(f))ds. 

Now, I:<u,(l), n-,(f))ds=(u,(l)n-,(h) [n-,(hf)-n-,(f)n-,(h)+n-,(Nf)]ds and so we 

obtain 

u1(f) = u0(f)+tu,(Af)ds+tn-,(f)u,(l)n-,(h)qy, 

+ i: u,(l) [ n-,(hf)-n-,(h)n-,(f) + n-,(Nf)]dy,, 

that is: 

We are now in a position to settle the maximum of likelihood and the Bayesian 

estimate. 

By transposition, (24) gives the analog of equation ( 14) : 

du1(x,y) = A*u1(x, y)dt+ N*u1(x, y)dy1+u1(x,y)h(x,y)4Y, (25) 

with 

1 

a a 02 . 1 a2f 
A*f= --[b8f]--[hf]--[af]+--

8x 8y 8x2 2 8y2 

N*f= NJ= of_ 
8y 

The maximum of likelihood estimate 81 is then given by: 

m:,x ~u1(x,y)dx 4Y 

under (25), and the Bayesian estimate ff, is 

~8u1(x,y)dx dy q(dO) 
ff,= ",-------. 

~u1(x,y)dx dy q(dO) 

(26) 

(27) 

We note that in this degenerate case we have to deal with a two dimensional partial 
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differential equation. We also observe that eq. (25) is linear and simpler than 

the non-linear fitlering equation of 1r1(f). 

3. A Numerical Procedure for Computation 

(The Non Degenerate Case) 

In this section, we give an approximation of equation (14). 

First, we recall the definition of a "pure-jump" Markov process with the 

discretestatespaceE={xi,x2, •··}. Such a process is characterized by a family 

of positive numbers {q(x),xEE}, together with a probability transition matrix 

p(x,y) (2]p(x,y) = l,p(x, x) =0). When in state x, the process x1 spends some , 
(random) time T(x) at x, .T(x) is distributed as a geometric random variable 

with the mean 1/q(x), and then jumps to another (random) state y with the 

probability p(x,y). 

For such a process the generator is given by: 

Af(x) = q(x) {2]p(x,y)f(y)-f(x)} . (28) 
'*% 

We consider a mesh of size k, and we discretize the operator in (8). (This is done 

with n= I to simplify the notations. See Ref. [5] for a general case.) 

AkF(x) = b+(x/(x+k)-f(x) b-(x/(x)-f(x-k) 
k k 

+½ a(x/(x+k) + f (~ -k)-2f (x) , 

or equivalently: 

with 

(29) 

We see thath:?:02Jh(x,y)=l, so we can interpret Ak as a pure-jump Markov 
'*% 

process generator. Moreover, it can be shown that the family of measure {Pk} 
generated by the process is tight. (See Ref. [3] for definition.) Now we can 

use as an approximation for (14) the equation: 
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It turns out that this equation gives precisely the "density" of the random "me

asure": 

ut(f) = E(f (x1)L1 I FD 
p 

where (x1) is now a pure-jump Markov process with the discrete state space given 

by the mesh of size k. Equation ( 14 h is an ordinary diffusion process driven by 

(y1), and can be used as an approximation of (14). Note that we in no way 

change the observation process (y1). This very useful method of computation 

cannot be extended to a degenerate case without modifying the observation process. 

Rem.ark 4: It is worthwhile to settle the discrete time version of the previous 

equations introduced for continuous time stochastic processes. Here, Pis a pro

bability measure which makes (Xn) a Markov chain with the transition probability 

p, and (.JYn) is a sequence of the Rm-valued independent and identically dis

tributed random variables with a common distribution p0(y)dy (where dy denotes 

the Lebesgue measure), and also independent of (Xn). Then 

L = IT Po(LtYm-h(xm)) 
n m=1 Po(AYm) 

(30) 

is a (P,Fn) positive martingale and we can define Q by 

dQI =L 
dP F• n • 

With this choice of Ln, Q makes (Yn) a process admitting the representation 

(31) 

where Wn are i. i.d. with distribution p0• In a case where Po is gaussian N(O, v Lit) 

and .JYn=h(xn).Jt+ W,. 

we get: 

a formula like ( 5). 

Now we also introduce: 

(32) 

and the "density" 
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The situation here is different from the continous time case, mainly because it is 

not true that we have 

independence where tt\ admits the same distribution as Wn under Q. 
Because of the P independence of (Xn) and (JYn), the Markov property of Xn 
gives immediately the following recursive equation for un which replaces (14): 

u (x) = "1 u (x') Po(L1Yn-h (x'))p(x' x) 
n+l ";7 n Po(JYn) ' (33) 

u0(x) = the initial law of (Xn). (given) 

and, as in the continuous-time case, if the unknown parameter is in p9 (x,x'), the 

maximum of likelihood estimation is given by: 

4. Properties of Estimates 

We have seen in the preceding section that the statistical structure of the 

problem is given by: d_v1=11:,(h)dt+dw1 where fi\ is a standard Brownian motion. 

The density of the probability law Q of the process (y1) ( on the space of continuous 

function) with respect to the Wiener measure is 

(34) 

where 11:,(h) depends on 8 in a complicated way. It is the non-linear filter of 

the function h computed for a Markov process with a generator depending on 

8. Now we recall some facts about the maximum of likelihood estimators in the 

simplest case of random variables with a discrete parameter time. Let X be the 

sequence of real valued random variables, assumed to be distributed according to 

one particular density (with respect to the Lebesgue measure) in the family {J(x,8), 

8E8}, depending continuously on 8. We assume that 8 is a compact set and 

that the process (Xn) is ergodic. (for example, the Xn are i.i.d.) The method of 

the maximum of likelihood consists in maximizing 

The basic argument to show the convergence of the method 1s the ergodic 
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theorem9>, applied to the family of random process (with a p-dimensional "time" 

0) 

{logf(Xn, 0), n = l, 2, .. ,} . 

By this theorem we have: 

s~p ILn(0)- ilogf(x, 0)p(x)dxl -+ 0 a.s. 

where p(x) is the true distribution of X1• 

Let 0(p) satisfy suf ~logf(x,0)p(x)dx= ilogf(x,0(p))p(dx) =K(O(p), 0). 

Hence, we have K(On,P)-+ K(O(p),p) 

and then by a continuity argument On-+ 0(p) a.s. 

If the observed distribution p belongs to the selected family {J(x, 0)} i.e. p(x) = 
f(x, 00), then by the Information's inequality 0(p) =00 

(~f(x, 00) logf(x, 0)dx reaches its maximum for 0=00). 

This shosw that in the case of an ergodic process the maximum likelihood method 

is consistent. The preceding argument also shows that for 0=l=0', the two prob

ability distributions of the process (Xn), say Pe and Pe', are disjoint. (However, they 

are mutually absolutely continuous when restricted to a(Xi, ... , Xn) for finite n.) 

Ln(0) converges Pe a.s. to ~f(x, 0) log f(x, 0)dx 

and Pe', a.s. to ~f(x, 0') log f(x, o)dx. These two quantities will be different 

unless 0=0'. 

Moreover, Ln(O) converges Pe a.s. to 
L,.(0') 

!J(x, 0) logf(x, 0)dx 
------->l 
~f(x, 0) logf(x, 0)dx 

V0'=l=0. 

This shows that if 0 is assumed to take only a finite number of values {0, 

01, 02, ···,Ok}), then for a (random) N large enough, 0N=0 when P9 is obtained. 

Through these nice prqpoerties do not extend to the case we are interested in, 

the following proposition shows that, "in general" for 0 =l= 0 ', the two probability 

laws asosciated with the observed process (y1) are disjoint and therefore, "in general", 

the maximum of the likelihood estimate converges. 

and Q (resp. Q') a weak solution of 
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dy, = h, ds+dw, 

With these notations, (34) becomes 

(resp. dy, = Ji:ds+dw,) . 

Proposition 6: One has: 

;~ 0 Qa.s. 
L1 

\ Q' --+ = a.s. 

Proof: By the Cameron-Martin formula we have 

dQ(h) I - { ~I< . ' . I !I I 2 ·1 -- Ft - exp h,-h., dx,-h,ds)-- (h,-n,) ds 
dQ · o 2 o 

for all h., Ff-adapted. With h,=_!__ (h,'+h.) we have that 
2 

is a positive martingale for Q. Hence, it admits a Q a.s. limit Z. 
We then note that: 

(35) 

which converges Q a.s- to O on set A. The other convergence is proved by the 

same way. The previous proposition shows that on set A the measures induced 

by Q and Q' are disjoint. This is known to be a necessary condition for the con

vergence of the M.L.E. estimators in a general framework. This result intuitively 

means that if the non-linear filters 1r:1(h) of the function h computed with 0 and 

0' verify almost surely the previous condition, then we can distinguish the true 

parameter between 0 and 0 '. 

Now we compute the conditional Fisher's information given by a trajectory. 

First, we remark that 

d ~ f' - log L1(0) = 1r::(h) (dy,-1r:,(h) ds) 
d0 o 

(37) 

where 1r:;(h) =_<I_ (1r:,(h)). 
dfJ 

Because of the representation (35), the right-hand side of (37) can be written: 

i:1r::(h)dw, 
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with w, is a (Ff, Q) Brownian motion. 
d -It follows that M,=- log L 1(0), is, for Ff and Q(O), a martingale. It is well 

dO 
known that the increasing process associated with M 1, that is the unique con-

tinuously increasing process 11, such that M~ - 11 is a martingale given by 

11= ~: [n-~(h)]2ds. It is the conditional Fisher information and the relation 

L= 00 can be seen as the "derivative" of the condition 

[ (h~-h.) 2ds = oo . 

We now have h,(O+dO)-h,(0),-...,dO 11:~(h) 

The condition [l==oo] implies that for all dO with O'=O+dO we obtain i;(h~-h,)2ds 

=oo. That is, the two measures Q(O+dO) and Q(O) are disjoint. Then, thanks 

to Prop. 6, 

L,(O) --► 00 

L1(0') 

(resp. 0) Q(O) a.s. (resp. Q(O') a.s.). This property implise that the maximum 

of likelifiood estimate 01 converges in a case where O is assumed to take a finite 

number of values. The proof can be achieved for O in a compact set. (See e.g. 

Ref. [2]) The previous argument, which of course requires some additional as

sumptions to be rigorous, emphasizes however the main difference between the 

i.i.d. case, where the information takes the form Ln( 0) =nL1 ( 0), and so always 

diverges to infinity as the sample size increases, and the case considered here where 

such a condition is not always fulfilled. 

Remark 5: In Ref. [4], the problem of the estimation of the drift function b 

has been studied in the much simpler case of complete observation (x----,y). In 

that paper, the case ofa parameter appearing in a multiplicative way is first studied. 

This case would correspond here to the assumption 11:~(h) =Oh,. In this case, a 

direct computation of 01 is possible, and we obtain 

rh,dw, 
Hence, (35) gives: 01=0+-~~ 

h~ds 
0 

and by the convergence theorem for L2-Martingales, (see Ref. [7] prop. 7-2-4), we 
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have: 

01 - 0 Qs a.s. on the set [lz;ds = oo . 

Remark 6: If X, is a stationary process which admits a unitque invariant 

measure, then -n:1 (as a Markov process with values in the set of all probability 

measures II over the state space of X 1) it also admits a unique invariant measure 

¢, and one has 

In this case we have 

1 i' - Jz;ds- oo 
t 0 

because 

In that latter case, by (35) we have: 

l,(O)=- log L 1(0) = - h,(O)[h,(00)ds+dw,]-- h;(O)ds 1 i' - 1 i' 1 !' 
t O t O 2t 0 

and lim l1(0) = l11(h(00)) [11(h(00))- ! 11(h(0))]¢80 (d11)=.K(00, 0). 

It is easily seen that K(00, 0) reaches its maximum value for 0=00• Then we can 

use the same proofs as in the i.i.d. case to show that 01, the maximum of likelihood 

estimate, converges to 00, Q(00) a.s. 

In this case, the equation lim +!:l,(00)ds=l [11(h')]2¢90 (d11) = 1(00) shows that 

/ 1(00)- oo Q(00) a.s.. Also, by the same techniques as in the i.i.d. case, 

vT(01-00) has the asymptotically normal distribution N(O, [/(00)]-1). 
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