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Abstract 

Any power of an n X n matrix can be expanded by a matrix polynomial of the order 
n-1, but the coefficients of expansion are not known in closed form. In this paper, it is 
shown that the coefficients of expansion are given by the solution of a simultaneous equa
tion of the 1st order, whose coefficients compose the Vandermonde matrix. Using the 
properties of a generalized Vandermonde determinant, coefficients of an expansion of a 
power of the matrix are obtained in closed form. As the coefficients thus obtained are 
homogeneous polynomials of eigen-values, and as every term of the polynomial has the 
same sign, the upper bounds of the absolute values of the coefficients can be obtained 
easily, if all the eigen-values are located in a disk centered at the origin. 

If all the eigen-values of a transition matrix of a dynamical system are located in 
a disc with a radius less than 1 and centered at the origin, the dynamical system is ex
ponentially stable. As the reachable subspace of a dynamical system is spanned by 
input constraint vectors, multiplied by powers of the transition matrix from the left, 
the results obtained make a bridge to connect the exponential stability property and 
the structure of the practically reachable subspace of a dynamical system. 

I. Introduction 

To investigate the practically reachable subspace of a discrete-time linear 

dynamical system, it is sometimes necessary to evaluate the higher power of a 

matrix under the condition that all the eigen-values are located in a certain disc 

centered at the origin1>. 
Whittle derived a formula to evaluate the power of a matrix, using a multiple 

Laurent expansion method2>. As his results were expressed by the elements of the 

matrix and were very complex, the regions where the elements of the matrix are 

located are given only in a limiting case. 

If A is an n X n matrix, then the n+k th power of A, An+k, can be expanded 

by the polynomial of I, A, •··, An-i either by the Silvester interpolation formula, or 

by a successive application of the Caley-Hamilton theorem. However, by these 

methods it is not easy to estimate the regions where the coefficients of expansion 

are located. By using the expression presented in this paper, the upper bounds 
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of the absolute values of the coefficients can be calculated when all the eigen

values are located in a disc centered at the origin. 

2. Fundamental Formula 

Suppose that eigen-values of an n X n matrix are distinct. It is well known 

that a power of A can be expressed by a polynomial of an order less than n-1 as 

follows: 

( I ) 

As the eigen-values of A are assumed distinct, A can be diagonalized by a similar 

transformation. Any power of A is also diagonalized by the same transformation, 

so there is no loss of generality where A is assumed diagonal to evaluate coefficients 

of expansion in eq. (I) . 

If A is diagonal, the following equation is obtained by comparing the diagonal 

elements of both sides of eq. ( 1). 

( 2) 

Therefore, 

= [O, ... , OJ 

( 3) 
AT-1' ... ' A:-1 

AT+k, ... , A:+k 

Now denote the Vandermonde matrix and the generalized Vandermonde matrix 

as follows. 
V(A) c, I, ... 

' 
1 Vk(t, A) t:, 1, I, ... 

' 
I 

Ai, ... 
' An t, Ai, ... , An ............... 

An-1, ... , A:-1 en-1 
' 

AT-1, ... , A:-1 

t"+k 
' 

AT+\ '", A:+k 

From eqs. (3) and ( 4), the following equation holds true. 

0 

0 0 Vk(t, A)= 1, 

0 

-1 

4 V(~ 

en-1, 
n-1 ·· 
~ an-a(k)t" -tn-k 0 
a.1 

( 4) 

( 5) 
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Taking the determinants of both sides of eq. (5), we have 

( 6) 

From eq. (6) we can get the following lemma. 

Lemma I 

The coefficient of expansion an-o-(k) is equal to the coefficient of the to- term 

of I Vk(t, 11) I /I V(11) I multiplied by (-l)n- 1• 

3. Expansion Formula of the Vandermonde and 

Generalized Vandermonde Determinants 

In the following sections, expansion formulae of the Vandermonde and gener

alized Vandermonde determinants are used. These formulae are cited below. 

Lemma 2 (expansion of the Vandermonde determinant) 

I V (x) I = ( - I )"<n-lJ/2 II (x;-X -) 
i>i I 

(7) 

This expansion formula is written in almost every book of matrix theory3l. 

The expansion formula of the generalized Vandermonde determinant is given by 

the following lemma4l. 

Lemma 3 

where 

(m:::;;;-l) } 

4. Evaluation of the Coeffcients of Expansion 

By lemma 3, Vk(t, 11) is expressed as 

where 

I V ( t, 11) I 6 I, I, • • ·, I 

( 8) 

( 9) 

(IO) 

( l l) 
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Hk(t, ,l.) = ~ tio)./i. •• ).ni" 
io+···+in=• 

By lemma 2, I V(t, ,l.) I is expanded into the polynomial oft as 

I V(t, ,1.) I 
=(-l)n(n-1)/2±(-1)•-P. ~ ,1ili2" .. A;•-P. ~ (,l.;-Ak)tP. 

p=O i<•••<ln-P. l;&;J<k~• 

. n .. 

'= ~ (-Its._,,.(,l.1, ···, ,l..) I V(A) It,,. 
p=O 

( 12) 

1 (13) 

where sn_,,.(,l.i, •··, ,l.n) is the fundamental symmetric form of the order n-µ, and is 

given by 

From Eqs. (10) and (13), 

Applying lemma 1 to eq. (15), the following relation is obtained. 

Letting n-a=j, µ=a-Y, then 

={ (-I)i- 1{s;Hk-s;+1Hk-1+• .. +(-l)"-isnHk-n+;} 

(-l)i-1{s;Hk-s;+1Hk_1+ ···+(-I)ks;+kH0} 

To evaluate the r.h.s. of eq. (17), the following lemma is used. 

Lemma 4 

(k?:.n-j) 

(k5,n-j) 

(14) 

( 16) 

( 17) 

The product of Sp and H q is a homogeneous polynomial of the order p+q, and 

is given by 

where (i(,l.i, •··, ,l.n) is the number of the non-zero elements of {v1, ... , v.}. 

Proof: 

( 18) 

Being a homogeneous polynomial of the order p+q, sp(,l.)Hq(,l.) has a form 

such as 

(19) 

As sp(,l.) is the sum of the products of p distinct ,l./s, all the non-zero elements of 
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the r.h.s. of eq. (19) have at least p non-zero 11/s. 

Now take a term from the r.h.s. of eq. (19). Without any loss of generality, 

one can assume that 

111, ···, 1111 ::J=O 

1111-n =••·=Jin= 0 } (20) 

Let {ji, ··•,jp} be an arbitrary subset of {I,•··, ,B}. For every subset {j1, •·•,jp}, 

the single term ).;1·••A;p exists in sp().), and at the same time, the single term 

where 

exists in Hq().), and the product of these two terms gives )./1).2"2 ... ).11
1111. 

As there are 11Cp ways of choosing {j1, •·•,jp} from {I,•··, ,B}, and no other 

combination of s, and Hq gives )./i.--).11"11, therefore 

As 

(21) 

Q.E.D. 

(22) 

by substituting eq. (18) into eq. (17), the coefficient of ).1"i. •• )./• as the term of 

the r.h.s. of eq. ( 17) becomes 

Therefore we get the following theorem. 

Theorem 1 

Coefficients of the expansion of An+k in form eq. (I) are given by 

where ,8(111, •··, 11n) is the number of non-zero 11/s. 

Remark: For 11 _10 11 _; to have a non-zero value, ,B must satisfy 

(24) 

j s.,Bs.j+k (25) 

In the above discussion, the eigen-values )./s are assumed distinct. When 
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the eigen-values are not distinct, a slight change of A gives distinct eigen-values. 

As coefficients of expansion vary continuously with the change of matrix A, 

Theorem 1 holds true when eigen-values are not distinct. 

If the minimal polynomial of the matrix is not equal to the characteristic 

polynomial of A, theorem 1 gives a set of expansion coefficients, though the ex

pansion is not unique. Let the minimal polynomail of A be S:OA(l), which is the 

monic polynomial of order m. In this case, it is apparent that An+II can be expanded 

by a polynomial of the order m-1. Also, the coefficients are equal to those of the 

expansion of the n+k th power of an m X m matrix, whose characteristic polynomial 

is equal to s:o A (A). 

5. Upper Bound of Absolute Value of the Coefficient 

Suppose that all eigen-values 4/s are located in a certain disc of radius p 

centered at the origin, i.e. 

(26) 

By theorem 1, the absolute value of a;(k) is bounded by 

(27) 

For a fixed value of j3 which satisfies eq. (25), the number of terms in the 

r.h.s. of eq. (24) is calculated as follows. 

There are nC/1 ways to take a set of /3 kinds of 4/s from {Ai, •··, ,tn}. For every 

set of j3 kinds of 4/s, there are 11H;+k-/l kinds of monomials of the order J+k. 
Therefore, 

a. k -:::;,pi+k minCn,J+k)(n )(J+k-1)(/3-1) 
I ,( )I ~ p· ·+k /3 /3 . 11-1 J - -.1 

=pi+k(j+k-l)min~.+k)(n)( k .) 
k 11-, j3 /3-J 

(28) 

To evaluate the r.h.s. of eq. (28), the following lemma is used. 

Lemma 5 

t(n )( m ) _ (n+m) 
r=o r p-r p 

(p-:::;,n+m) (29) 

~( n )(m)- (m+n) 
r=o a+r r m+a 

(m+a-:::;,n) (30) 

Proof: Eq. (29) is widely known, and is given by the coefficient of xP, in terms 

of the following equation. 
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When m+a:S::n, by eq. (29) 

m ( n )(m) •-u-(m)( n ) (m+n) ~ a+r r = ~ r n-a-r = m+a 

Using lemma 5, the upper bound is calculated as follows. 

i) In case n?:.J+k 

I a;(k) I ::;; pi+k(J+k- l) ~~ ( n )( k . ) 
k tH /3 /3-J 

= pi+k(J+k-1) iJ ( . n )( k) 
k T=O J+T T 

ii) In case n:S::J+k 

la;(k)l:S::pi+k(J+k-l)iJ(n)( k .) 
k 13=; /3 /3-J 

= pi+k(J+k-1) ~ ( n )( ~ ) 
k T=o r n-y-r 

= pi+k(J+k-l)(n+~) 
k k+J 

Both cases give the same results, from which we get the following theorem. 

Theorem 2 

(31) 

(32) 

Q.E.D. 

(33) 

(34) 

Suppose all the eigen-values J;'s of an n X n matrix A are located in a disc 

of radius p centered at the origin, i.e., 

(35) 

Then the absolute value of the coefficient of expansion a;(k) of An+k by the form 

given in eq. ( 1) is 

I a-(k) I < pi+k (J+k- l)(n+k) 
' - k k+J 

(36) 

Remarks: i) Suppose a discrete-time linear dynamical system is given by 

x(r+I) = Ax(r)+bu(r) (37) 

If eq. (35) is satisfied, for any positive c, positive K exists such that 

llx(r) II <K(p+crllx(O) 11 (38) 
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where x('r) is a zero-input response to an initial value x(O). Therefore, if p<l, 

the dynamical system is exponentially stable. 

ii) As the reachable subspace of eq. (37) is spanned by vectors of the form 

Aib (i = 0, 1, ···), eq. (36) makes a bridge to connect the exponential stability 

property, and the structure of the practically reachable subspace of a dynamical 

system. 

6. Conclusions 

The coefficient of expansion of an n x n matrix is evaluated by the form of 

homogeneous polynomials of eigen-values. Using this expansion formula, the 

upper bound of the absolute value of the coefficient is also obtained. As the coef

ficient is expressed by a polynomial of the same sign, this bound is equal to the 

coefficient of expansion in a case where the matrix is non-cyclic, and all eigen

values are equal and real. Therefore, this bound gives the sharpest bound 

knowing that all the eigen-values are located in a disc centered at the origin. 

The results obtained make a bridge to connect the exponential stability prop

erty and the structure of the practically reachable subspace of a dynamical system. 
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