
Eigenvalue Problem of Consolidation 

By 

Takeshi TAMURA* 

(Received September 26, 1979) 

Abstract 

Following the preceding paper1>, the discussion in this paper will be that the 
governing equation of the multi-dimensional consolidation expressed in terms of the 
excess pore water pressure alone, can be treated analytically through the eigenvalue 
problem similar to that of the one-dimensional case. Especially, we will emphasize the 
importance of the first eigenvalue for the practical application of this theory. 

The main conclusions of this study are: 
(I) We can find a set of eigenvalues and eigenfunctions of the multi-dimensional 

consolidation quite similar to those derived from Terzaghi's one-dimensional equa­
tion. 

(2) The magnitude of the eigenvalue is proportional to the dissipative energy due 
to the seepage flow. 

(3) The degree of consolidation is mostly determined by the first eigenvalue and 
therefore it can be used to estimate the effectiveness of the sand drain as an 
application. 

1. Introduction 

35 

In the preceding paperll, Biot's equations of consolidation were reduced to a single 

governing equation, with the excess pore water pressure as the only unknown function 

under the assumption of linear stress-strain relations of a clay skeleton. This was 

applied to investigate the mechanism of a multi-dimensional consolination through the 

concept of the Function Space. Meanwhile in the present paper, the mathematical 

treatment of this single equation will be explained by using the theory of the eigenvalue 

problem, just as in the one-dimensional case. Such a method has a remarkable 

importance as regards both engineering and mathematical aspects. 

Indeed, Fig. 1 shows the degree of consolidation - the time factor curves obtained 

according to Terzaghi's one-dimensional equation under the uniform distribution of 

the initial excess pore water pressure. In this figure, the solid line corresponds to the 

rigorous solution while the dotted line corresponds to the approximated solution only 
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Fig. I. Degree of consolidation-time factor curve of one-dimensional consolidation. 

by the first term of the Fourier series. It can be understood from this figure that 

the effects of the second and following terms become negligible after the time factor 

T. attains about 0. l. In other words, when we pay attention to the latter part of the 

consolidation process, it is required not to obtain the complete solution, but to calculate 

the first eigenvalue and its eigenfunction alone. The main purpose of the present 

paper is to apply the above idea to a multi-dimensional consolidation which is subject 

to Biot's equations. 

As originated by Biot himself-!>, the eigenvalue problems of multi-dimensional con­

solidation are broaldy investigated and have been frequently applied to construct the 

closed form solution of Biot's equations. In particular, Mandel's pioneering work31 is 

remarkably evaluated. However, the formulation of the eigenvalue problem in these 

studies remains quite complicated since they treat directly Biot's original equations. 

However, according to the present method, we are able to not only understand the 

meaning of eigenvalue and eigenfunction, but also formulate the mathematical theory 

more simply. 

In this paper, firstly, the single governing equation suitable for the eigenvalue 

problem of consolidation will be introduced, which is equivalent to that reduced in the 

preceding paper. Secondly, the theory of the eigenvalue problem will be explained. 

Finally, we will apply it to the problem of an axi-symmetric circular region and to 

the numerical estimation of the effectiveness of sand drain. 

Several analyses of consolidation have been published recently, but there remain 

several questions concerning the agreement of the calculated values with the observed 

values in the field. In such circumstances, the statistical method41 for prediction of 

ground settlement has made remarkable progress. This is regarded as a method to 

extract several eigenvalues of velocity of settlement from the observed data. Mean­

while, in the present paper, the eigenvalue of the consolidation process will be 
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evaluated from a mechanical point of view, in order to predict the settlement or the 

dominant distribution of excess pore water pressure. 

2. Basic Equation for Eigenvalue Problem of Consolidation 

In this section, the basic equation of multi-dimensional consolidation for the eigen­

value problem will be deduced from Biot's equations. Since all of the assumptions, 

notations and mathematical treatment of this part are almost the same as those of the 

preceding paper, we will explain briefly without a detailed commentary. 

Choosing the final steady state as the reference state, Biot's equations of consolida­

tion are written as 

(1) 

(2) 

in which ,~;=effective stress, u=excess pore water pressure, O=volumetric strain, k;;= 

permeability, r.,=weight of pore water per unit volume and x1=cartesian coordinate. 

Associated with Eqs, (1) and (2), the following homogeneous boundary conditions 

are set up: 

(B.0) boundary condition concerning displacement v1 : 

v1=0 (i= 1, 2, 3) on S. 

(B.0) boundary condition concerning stress traction T1 : 

T 1=0 (i= 1, 2, 3) on S. 

(Bv0) boundary condition concerning drainage: 

:Ek,; ~u n1=0 on Suv, 
UXJ 

u=O on Sv 

in which v1=displacement, T1= (total) stress traction, n1= unit outward normal vector 

and s., S., Sv and Suv denote the displacement boundary, the stress boundary, the 

drained boundary and the undrained boundary, respectively. 

Because of the linear stress-strain relations of the clay skeleton and the homoge­

neous boundary conditions, the relation between the· displacement and the excess pore 

water pressure, which is determined by Eq. (1), is given as 

(i= 1, 2, 3) (3) 

in which U1 (x, X) means the displacement generated by u=o(x, X) (Dirac's delta 

function), the subscript X of dVx means the integral variable and x and X denote 
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arbitrary points in the region. 

Taking the divergence operation on both sides of _ Eq. (3) with respect to the 

variable x (x;), the following equation is deduced: 

tl(x)=LB(x, X)u(X)dVx 

in which 

8(x, X)=:E iJU;(x, X) 
OX; 

(4) 

(5) 

Eq. (4) means the linear relation between the distribution of the volumetric strain 

and that of the excess pore water pressure, observed from the final steady state of 

the consolidation process. This equation has a unique inverse relation: 

u(x) = L <IJ(x, X)O(X)dVx (6) 

which was used in the preceding paper to derive the single governing equation by 

combining it with the continuity condition (Eq. (2)) : 

iJu I C <IJ X k iJ2u d .,(x, t) = --r J (x, )::E ;;~(X, t) Vx 
ut ., V uX,uX1 

(7) 

It is also reasonable to deduce the following single governing equation from Eq. 

(4): 

1 8(x, X) !u (X, t)dVx= __ l :Ek;;" 
02

~ (x, t) (8) 
Jv ut T• uXjUXJ 

Eqs. (7) and (8) are essentially equivalent to each other. The former is useful for 

investigating the structure of Biot's equations through a comparison with Terzaghi's 

equation, since it represents the time rate of the excess pore water pressure explicitly. 

However, we will adopt the latter one exclusively for the consideration of the eigen­

value problem. 

3. Eigenvalue Problem in Consolidation Phenomenon 

3. 1 Equation of eigenvalue problem 
Decomposing the excess pore water pressure u (x, t) into the product of functions 

of space variable x and time t: 

(9) 

and substituting into Eq. (8), we have the following homogeneous equation for u. (x) 

with a scalar parameter .:i.: 

( ,;;, X X dV - l k 02u• (x) .:i. J o (x, ) u. ( ) x- -::E ;; ,,----,,-----
v Tw uX;uX; 

(10) 
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i. and u.(x) are, respectively, regarded as the eigenvalue and the eigenfunction, if 

Eq. (10) has a non-trivial solution under the homogeneous boundary condition (Bn0). 

As is understood from Eq. (9), an eigenfunction u.(x) means a distribution of excess 

pore water pressure which never changes its shape but, decays exponentially with time 

t according to the magnitude of the eigenvalue i.. It is obvious that the eigenfunction 

associated with a large eigenvalue decays quickly and that the reverse is also true. 

Hereafter, Eq. (10) will be used as the equation of the eigenvalue problem, which is 

the basis of the following discussions. 

3. 2 Some properties of eigenvalues and eigenfunctions 
(1) Positiveness of eigenvalue (l.>O) 

Multiplying both sides of Eq. (10) by u.(x) and integrating over the whole region 

V, we have 

( l 1) 

Firstly, the double integral on the left hand side is transformed as follows: 

))/1 (x, X) u.(x) u.(x)dVzdVx= )/•(x) u.(x)dV 

=) :E OVa;(x) u.(x)dVz=) (I:;v.;n;)u.ds-[ :Ev.; ~u. dVZ 
v Xi s.,+s. ; Jv ux, 

(12) 

in which we have used the definition of 8(x, X) (Eq. (4)) for the first equal sign, 

the definition of O.(x) for the second one, the integration by parts for the third one, 

the condition of equilbrium (Eq. (1)) for the fourth one, again the integral by parts 

for the fifth one, the homogeneous boundary conditions (B. 0), (B.0) and the defini­

tion of strain for the sixth one and the definition of strain energy for the final one, 

respectively. o., v.;, r:;1, r;.;1 and E. denote, respectively, the volumetric strain, the 

displacement, the effective stress, the strain and the strain energy caused by the excess 

pore water pressure u. under homogeneous boundary conditions. Therefore, the above 

result shows that the value of the double integral of Eq. (l 1) is always negative. In 

order to simplify the latter explanation, the following inner product is defined here in 

the set of distributions of excess pore water pressure: 
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(13) 

in which u. and u, satisfy the homogeneous boundary condition concerning drainage 

(Bn0). Meanwhile, the right hand side of Eq. (I 1) is transformed through the integra­

tion by parts into: 

(14) 

which means the time rate of the dissipative energy due to the seepage flow. It is 

always negative. Then, the eigenvalue i. is proved to be positive from Eq. (11). 

Rewriting Eq. (11) as 

(15) 

it is understood that 2l. signifies the ratio of the dissipative energy to the total strain 

energy, when the excess pore water pressure u. exists alone. 

It should be noted that the region Vis assumed to be bounded in order to guarantee 

the existence of eigenvalues5>. 

(2) Orthogonality of eigenfunctions 

u. and u, denote the eigenfunctions associated with two eigenvalues i. and i,, i.e., 

i.~ B(x, X)u.(x)dVx= - 1-~k,1 ~u.o(x) 
V r,. X;XJ 

i,~ B(x, X)u1(X)dVx= _rl ~k,; ~u,r) 
V • X; X; 

(16) 

(17) 

Multiplying both sides of these equations by - u1 (x) /2 and -u. (x) /2, respectively, we 

integrate over the whole region. By subtracting them, the following relation is obtained. 

in which Green's integral formula is used. Because of the homogeneous boundary 

condition (Bn0), it can be easily concluded that if i.c1=i,, then 

(19) 

which means the orthogonality of the eigenfunctions associated with the different 

eigenvalues. In other words, the stress state generated by u. produces no work on the 

strain field generated by u1 if i.c1=i,. For the sake of simplicity, all eigenfunctions 

are assumed to be normalized as follows 

(20) 
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which signifies that the amount of strain energy due to the eigenfunction u. is unit. 

If there are more than two eigenfunctions for the same eigenvalue, they are ortho­

normalized by Schmidt's method. Therefore, it is possible to suppose, without loss of 

generality, that the set of eigenfunctions constitutes a system of orthonormal basis, i. e., 

Cu., u,)=J., (21) 

(3) Expression of general solution in terms of eigenfunctions 

By definition, each function u.(x)e-•.• (a= I, 2,··) is a solution of Eq. (8), which 

satisfies the homogeneous boundary condition (Bno). In order to also satisfy the initial 

condition of the excess pore water pressure, it is necessary to superimpose an infinite 

of such solutions as: 

00 

u (x, t) = ~ a.u. (x) e- 1
.• (22) 

a=l 

whereby the (Fourier) coefficients are determined by the following method. The 

initial distribution of excess pore water pressure u0 (x) should be obtained under an 

undrained condition, but it is here supposed to have been already done. Putting t = 0 

in Eq. (22), we have 
1 

u (x, 0) = u0 (x) = f; a.u. (x) (23) 
a=l 

Calculating the inner product (u0, u,) and using the condition of orthogonality (Eq. 

(21)), Eq. (23) yields 

(24) 

Namely, the Fourier coefficient a. is determined as 

(25) 

and the general solution is expressed in the following form: 

00 

u(x, t) =~ (u0, u.)u.(x)e-••• (26) 
cr=l 

Therefore, it is necessary only to obtain the eigenvalues and the eigenfunctions in 

order to construct the solution of the consolidation problem, if the initial pore water 

pressure is known. 

(4) Meaning of Fourier coefficient a. 
Calculating the inner product (u, u) of the solution (Eq. (22)), we have so-called 

Parceval's identity: 

(27) 

which shows that the residual strain energy (u, u) at t is expressed in the form of a 
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summation of the strain energy carried by eigenfunctions, and that their velocities of 

decay are e-21
•

1
• 

The degree of consolidation of the one-dimensional case is usually defined as the 

ratio of the algebraic sum of the residual excess pore water pressure to that of the 

initial one. There is no well-established definition for the degree of multi-dimensional 

consolidation. One reasonable definition is the method which uses the concept of 

strain energy as follows: 

in which E and E0 are, respectively, the residual and the initial strain energy. For 

a large t, it becomes approximately 

which shows that the degree of consolidation at the latter stage depends upon the first 

eigenvalue and the strain energy carried by the first eigenfunction. 

4. Applications 

4. I Consolidation of axi-symmetric circular region 

We will apply the theory explained above to the consolidation of the axi-symmetric 

circular region as a simple example. This problem has been solved by Omaki6>, using 

the Laplace transformation method, but the solution will be presented along the 

eigenvalue problem. The clay material is assumed to be isotropic for simplicity. 

After a little calculation, it is easy to obtain e (x, X) (defined by Eq. (5)) for the 

circular region of radius R as 

B(r, s) = - A}2µ { o(r, s) + ).~µ ~ 2 } (30) 

m which r and s denote arbitrary points in the radial coordinate and J, µ denote 

Lame's constants. Eq. (30) means the distribution of the volumetric strain which is 

generated by the excess pore water pressure on a circle r=s, i. e., u=o (r, s). Substi­

tuting Eq. (30) into Eq. (8), we have the following equation for the axi-symmytric 

circular region: 

(31) 

in which J.1= Poisson's ratio and k=isotropic permeability. 

Before the theory of the eigenvalue problem is applied to Eq. (31), several values 

are modified into the non-dimensional form: 
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20- 11)µ ~_J_--t(time factor) 
1-211 Tw R2 

Then Eq. (31) is simplified as 

au )I au d A2 -+c s- s=a u at o at 
Writing i.= 7)! and substituting 

u (r, t) = u. (r) e-•!• 

into Eq. (32), we have the equation of the eigenvalue problem: 

d2u. + 1 du.+ 2 ·( + /)-O dr2 , Tr 7). u. c • -

in which 

The boundary condition for Eq. (34) is 

u(r= 1) =0 

43 

(32) 

(33) 

(34) 

(35) 

7/« is determined so that u. (x) exists satisfying Eq. (34) and the above boundary con­

dition (Bn0). Noting cl. is a constant, it is easy to understand that the general solution 

of Eq. (34) is constructed by the following two independent solutions: 

in which ] 0 and Y0 denote the first and second kinds of Bessel functions of the zeroth 

order. 

Howerer, the latter is inappropriate because it becomes infinitive if r-O. There 

fore, the solution of Eq. (34) is written as follows because the magnitude of the coef­

ficient is not essential: 

(36) 

in which 7). and I. are unknown, and they are determined by satisfying the boundary 

condition (u. (r= 1) = 0) and Eq. (35). From the former, we have 

(37) 

which is substituted into Eq. (36) to write the eigenfunction: 

(38) 

Further substituting Eq. (38) into Eq. (35) and calculating the integral, the equation 
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to determine the eigenvalue J.(=7J!) is finally obtained as follows: 

m which J, denotes the Bessel function of the first order. 

(39) 

For all 1/. saisfying the above equation, the function u (r, t) defined by Eqs. (33) 

and (38) is a solution of Eq. (32) under the homogeneous boundary condition (BDo). 

It should be noted that Eq. (39) is identical with that obtained by Omaki in the 

other method. We now investigate the values of 1/« practically for several Poisson's 

ratios (v = 0, 0. 33, 0. 5). Fig. 2 shows the curves expessed by both sides of Eq. (39). 

As the simplest case, J. ( = 7J!) is determined by 

(40) 

when v = 0. 5, namely, when Biot's equations are reduced to Tezaghi's single equation. 

For each a, the eigenvalue becomes larger as v-0. 5, but regardless of Poisson's ratio, 

the eigenvalue (therefore also the eigenfunction) approaches asymptotically that of 

Terzaghi's type as a-oo. Table I shows the eigenvalues J. for a= I, 2,· • ·, 5. The 

Table I. Eigenvalue i. in the consolidation of circular region. 

a 
I 11=0 11=0.33 11=0.5 

1 3.390 4.691 5.783 
2 28.424 29.457 30.472 
3 72.868 73.881 74.887 
4 137.030 138.037 139.039 
5 220.927 221. 930 222.932 
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whole set of u. (Eq. (38)) associated with the individual eigenvalues constitute a system 

of eigenfunctions, and saitsfy the relation of orthogonality (Eq. (21)). Taking into 

consideration Eq. (30), the inner product defined by Eq. (13) is written in this case 

as follows: 

(41) 

It is also necessary to normalize the eigenfunction into u./✓Cu., u.) so as to satisfy Eq. 

(20). Representing the normalized eigenfunction by u. (r) again, we then have 

(42) 

Fig. 3 shows a few normalized eigenfunctions for a= l, 2. Fig. 4 shows the degree of 

the consolidation-time factor curves calculated from the solutions (Eq. (26)), assuming 

the uniform initial excess pore water pressure. In this figure, the solid lines correspond 

to the usual degree of consolidation while the dotted lines correspond to that defined 

by using the ratio of strain energy (Eq. (28)). The latter curves show slightly small 
values, but they have a tendency quite similar to the usual ones. Therefore U(t), 

10 

s 

r 
0 

1,0 

(l - 2 

-s 

Fig. 3. Normalized eigenfunctions in the consolidation of 
circular region. 
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t 

defined by Eq. (28), can be used as an index which represents the degree of multi­

dimensional consolidation. 

When the time factor t exceeds 0. 2, the solution can be approximated only by 

the following first term: 

u(r, t):....-1. 96{]0 (2. l7r) -0. 129}e-• 00• .(v=0. 33) (43) 

4. 2 Numerical analysis of eigenvalue 
It is so difficult to obtain the eigenvalues and the eigenfunctions analytically for 

the general region that numerical techniques are unavoidable. Reducing what was 

discussed in 2. and 3. into the numerical a~alysis of the eigenvalue by means of the 

finite element method, we will explain the results of an example concerning the con­

solidation with sand drain. 

4. 2. I Calculation of eigenvalue by means of finifte element method 
Biot's equations, (Eqs. (1) and (2)), cad be converted into the forllowing matrix 

form by the method of Christian and Boehmer7> : 

Kv+Lw=O 
d -V=-Yw 
dt 

in which 

K: stiffness matrix 

v : vector of whole nodal displacements 

w : vector of excess pore water pressures of whole elements 

V: vector of volume changes of whole elements 

(44) 

(45) 
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L : transformation matrix from w to equivalent nodal forces 

Y: transformation matrix from w to V according to Darcy's law 

These values are calculated when the finite element mesh, the boundary conditions 

and the material constants are given. Solving V from Eq. (44) and considering 

V is expressed in terms of w as follows: 

And substituting it into Eq. ( 45), the equation for w is obtained: 

A dw =-Yw 
dt 

in which T means the transpose of matrix, and the matrix A: 

(46) 

(47) 

(48) 

(49) 

has such column vectors which represent the volume changes of elements caused by a 

unit intensity of the excess pore water pressure at an element. It is easy to see that 

Eqs. ( 4 7) and ( 48) correspond to Eqs ( 4) and (8), respectively. When we substitute 

(50) 

into Eq. (48), the equation of the eigenvalue is written as follows: 

(a= 1, 2, ... , m) (51) 

in which m means the total number of all elements in the region. If Eq. (51) has a 

non-trival solution, then i. and w. are called the eigenvalue and the eigenvector of 

consolidation, respectively. The matrices A and Y are proved to be not only symmetric 

but also negative definite. Therefore, the eigenvalue J. is always positive and the 

eigenvectors constitute a set of orthonormal basis, i. e., 

(52) 

in which 

(53) 

For an arbitrary initial excess pore water pressure w0, the solution can be expressed 

as follows: 

w(t) = t (w0, w.) w.e-•.• (54) 
«=l 

The meaning of the Fourier coefficient (w0, w.) is similar to what was explained in 3. 
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4. 2. 2 Estimation of effectiveness of sand drain 
The sand drain method is one of the most popular ways to improve soft clay 

ground. Its major purpose is to obtain the strength of clay during a comparatively 

short time by facilitating the consolidation progress. The effectiveness of sand drain 

is usually estimated by Barron's method which is based upon the multi-dimensional 

Terzaghi's equation, and this method is evaluated to some extent by the model test. 

However, there are few investigations concerning the effects of perneability or stiffness 

of a sand column. As was mentioned proviously, the consolidation process is ruled 

by the first eigenvalue and its function. Therefore, it is reasonable to estimate 

the effectiveness of the sand drain by the magnitude of the first (the smallest) 

eigenvalue 

In this section, the first eigenvalue is calculated for the axisymmetric region divided 

into the finite element mesh as shown in Fig. 5. The pore water is assumed to be 

drained through the upper surface, and the other boundary conditions are shown in 

the same figure. 

Young's modulus and permeability of the clay region are denoted by E, and k., 

and those of the sand column by E, and k,, respectively. Poisson's ratio v is 0. 33 in 

the whole region. Denoting the depth of the region by H, the outer radius by R0 

and the radius the of sand column by R;, the following parameters are defined: 

H 

R­
o 

clay 

R 
0 

• h•-H-

Fig. 5. Finite element mesh and boundary conditions for the sand 
drain model. 

(55) 

(56) 



:,\1 

104 104 
Barron's •thod 

(k8 /kc• m) 

n• 2: 2933 
3: 1393 
4: 979.0 
S: 786.9 

10: 477.5 
20: 335.9 

103 103 

n• 2: 497 .1 
3: 225.2 

10.2 
4: 132.2 

102 5: 88.0 
' ' 10: 25.4 ,, ' ,, \ 20: 8.4 

'~,;, \ ,, \ ,, \ ,, ,, ---~;:;;_,,_ 
·-~~~ ...... 

101 
101 

upp~r : E
8

/Ec• SO 

2.47 
middle: E8 /Ee • 5 

- lower : E8/Ec• 0 2.-47 
k8 /kc• ao 

10° 
k8 /kc.•103 n 

10° 
0 2 5 10 20 0 

(a) h=0.05 

Al ·\ 
104 

Barron's method Barron's aethod 
(k8 /kc• m) (ks/kc• m) 
n• 2: 73S.3 n• 2: 185.6 

Jo 350.2 3: 89.4 
4: 246.S 4: 63.4 
5: 198.5 S: 51.4 

10: 121.2 10: 32.1 
20: 85.8 20: 23.3 

(k8 /kc•l03) 103 (k8 /ke•l03) 
306.2 n• 2: 114. 7 
146.6 3: 60.2 
92.8 4: 42.2 
65 •. 8 5: 32.9 
22.4 10: 15.5 
8.1 20: 7 .1 

102 

101 
;;; __ :_;,, 

~ -...... ~:: 

upper : • 8 /Ee• 50 upper : E8 /Ee• 50 
middle: ;s/Ec• S 2.47 

middle: E,/Ee• 5 
lower : Ea/Ee• o-· ·· lower E8 /Ee• O •·-

--: k5 /kc.• oo ks/kc• ao 

----- : k11 /kc•l03 n 10° 
k8 /ke•l03 

2 5 10 20 0 2 5 10 20 

Cb) h=O. 1 (c) h=0.2 

Fig. 6. First eigenvalue l 1 in sand drain model. 

n 

>-1 
104~~~--~---~ 

Barron's •thod 
(k8 /kc• m) 

n• 2: 31. 7 
J: i16.J 
4: 12.2 
5: 10.3· 

10: 7.2 
20: 5.7 

103>--l-+-f-+--­

• (k6 /ke•l03) -

f-

n• 2: 22.7 
3: 13.4 
4: 10.4 
5: 8.9 

10: 6.2 
20: 4.5 

" 
10

1
1--1-H!'·~~~-~~+-------l ~~---

1 ------:::~ 

2.47--
upper : E8 /Ec'"' 50 
middle: Es/Ee"' 5 

· -··lower £5/Ec= 0 ---

--: ks/kc• co 

10 o::--C:-'-':;'-----_-_-.,.-L=_k_sl_k_c_=_1_o_J _ __,n 

0 2 5 10 20 

(d) h=0.5 



50 Takeshi TAMURA 

The time t in the following figures is replaced by the usual time factor of a one­

dimenesional consolidation of the clay region: 

T=.S... (l-ll)E. t 
• r.. (l-2ll) (l+ll) -W 

(57) 

Comparing the first eigenvalues calculated by the present method with Barron's rigorous 

solutions, the accuracy of the calculation was checked. As a result, its error is proved 

to be practically negligilbe. Fig. 6 shows the variation of the first eigenvalue due to 

the change of n and E,!E. when h=O. 05, 0. 1, 0. 2 and 0. 5, respectively. In this 

figure, the solid lines correspond to the case of k,/k.= oo, and the dotted lines to 

k,/k,= 103 The broken lines denote the first eigenvalue of the original clay ground 

(l,=2. 47). The numerical values in the same figure are calculated values based upon 

Terzaghi's equation, which correspond to those of Barron's method. In order to 

estimate the increase of strength, Fig. 7 shows the mean values of the volumctnc 

strain of the clay region generated by the uniform upper load for each case of Fig. 6, 

(a) h=0,05 (b) h•O, 1 

0,5 o.s 

E/Ec• 5 

E/Ec•50 
o.o o.o 

20 n 
0 2 5 10 20 n 

0 2 5 10 

(c) h=0,2 (d) h=0,5 

Fig. 7. Normalized mean volumetric strain in sand drain model. 
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in which the values are normalized by those of the original ground. Form these 

figures, the following conclusions are remarked. 

(1) The first eigenvalue of Barron's method locates between those of the cases 

E,/E.=0 and 5. 

(2) For the case of n>lO, the stiffness of the sand column does not cause serious 

effects upon the first eigenvalue or the volumetric strain. 

(3) When n<5, the degree of consoiidation becomes remarkably large as E,/ E, in­

creases, but. on the other hand, the value. of compression becomes small. Namely, 

the effect of the sand compaction pile appears considerably for large E,/ E •. 

(4) There can be seen a serious influence of the permeability of the sand column 

upon the rate of consolidation for a small h. 

(5) When h increases to about 0. 5, the lateral drainage distance of the pore water 

becomes comparatively large. Therefore, neither the stiffness nor the permeability 

of the sand column causes a large effect upon the consolidation, since the time 

necessary for such lateral flow of pore water is predominant. 

5. Conclusions 

Using the governing equation expressed in terms of the excess pore water pressure, 

the following conclusions are noted concerning the eigenvalue problems of consolidation 

and their applications. 

(l) There exist a set of eigenvalues ;. and eigenfunctions u.(a= 1, 2, .. ,) in multi­

dimensional consolidation quite similar to those in the one-dimensional case. 

Namely, each eigenvalue ;. is a positive real number, and any two eigenfunctions 

satisfy the orthogonal relation in the sense of the inner product defined by Eq. 

(13). 

(2) The magnitude of the eigenvalue ;. is proportional to the dissipative energy due 

to the seepage flow caused by the excess pore water pressure u •• 

(3) In most stages of the consolidation process, except for the early part, the same 

figure of distribution of excess pore water pressure to the first eigenfunction u1 

is predominant. 

(4) The degree of consolidation is mostly determined by the first eigenvalue. 

(5) As an index of consolidation progress, we can define the degree of consolidation 

by using using the concept of residual strain energy. 

(6) In the consolidation of spherical and circular regions, the total mean stress is 

kept constant in the mean sense over these domains. 

(7) The eigenvalue of the composite ground, such as the sand drain model, can be 

easily calculated by meas of the finite element method. 
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