
Unit Resolution for a Subclass of the
Ackermann Class

By

Susumu YAMASAKI*, Toshihiko ISHIBASHI* and Shuj1 DOSHITA *

(Received September 29, 1979)

Abstract

The Ackermann class and the Godel class are typical subclasses of pure first-order
logic. The unsatisfiability problems for the Ackermann class and the Godel class of
formulas are decidable and resolution strategies to the unsatisfiability problems for the
Ackermann class and the Godel class were constructed by W. H. Joyner.

Applying unit resolution of C. L. Chang, we construct a preprocessor to Joyner's
resolution strategy for a subclass of the Ackermann class, since his strategy may neces
sitate too much time and space from the practical point of view.

In this paper, we describe an algorithm to decide whether there is a unit resolu
tion refutation from a set of clauses in a subclass ACK2 of the Ackermann class, in
which at most two literals with variables appear in each clause. In this algorithm, we
represent the unit clause resolvents generated by unit resolution by means of finite
automata. Also, we transform the decision problem of a unit resolution refutability for
ACKi to the emptiness problem of intersections of two regular languages. We give the
time complexity and the space complexity of the constructed algorithm.

This result is an extension of the result by N. D. Jones namely that it can be
decided in deterministic polynomial time whether or not ther is a unit resolution
refutation for the propositional logic. _

1. Introduction

63

Pure first-order logic is a subclass of the first-order logic in which no function

symbols appear in prenex normal form, where the prenex normal form consists of

the prefix containing quantifiers and the matrix without quantifiers.

The Ackermann class, the Godel class and the propositional logic are its typical

subclasses for which the unsatisfiability problems are solvable.

The Ackermann class consists of formulas having the prefix such as :l * V :l * (*

denotes arbitrarily many times of occurrences of quantifiers) in prenex normal form.

The G5del class consists of formulas having the prefix such as :l * V V :l * in prenex

* Department of Information Science.

64 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DOSHITA

normal form. The halting problem for the class of program schemes, in which only

one program variable appears and function symbols but variables must be one-place,

can be transformed to the unsatisfiability problem for the Ackermann class. The

halting problem for the class of program schemes, in which only two program variables

appear and function symbols but variables must be two-place can be transformed to

the unsatisfiablity problem for the Godel class.

Resolution strategies are constructed in [7] as decision procedures to solve the

unsatisfiability problems for the Ackermann class and for the Godel class. Since it

seems impossible that those 'complete' resolution strategies work in deterministic polyno

mial time, more effective means are necessary.

On the other hand it, was shown in [6] that unit resolution refutation (proof) by

C. L. Chang works in deterministic polynomial time for propositional logic.

In this paper, we apply unit resolution to a subclass of the Ackermann class as a

preprocessing of the unsatisfiablity problem for the class, which properly includes

propositional logic.

The terminology on the resolution in the first-order logic is used according to [4].

The resolution is applied to a set of clauses which corresponds to a formula in Skolem

standard form. The Skolem standard form of a formula is obtained from its prenex

normal form, the existential quantifiers being replaced by the Skolem functions. The

Ackermann class is abbreviated to ACK after this.

We assume that no common variables are contained m distinct clauses for the

unification algorithm to be effective. The Skolem functions are either constants or

one-place functions for the set of clauses in ACK. The subclass ACK2 of ACK is

defined as the class of formulas which take the form of the set of clauses each of

which contains at most two literals with a variable.

We discuss the unit resolution refutation for ACK2 and construct an algorithm to

decide the unit resolution refutability in O (n9) time and O (n3) space for a set of

clauses of length n in ACK2• In constructing the algorithm, we utilize regular expres

'sions to represent unit clause resolvents generated by unit resolution for ACK2•

2. Unit Resolution Refutability for a Subclass (ACK2) of the Ackermann Class

Definition] [4] A unit resolution is a resolution in which a resolvent is obtained by

using at least one unit parent clause or a unit factor of a parent clause. A unit

deduction is a deduction in which every resolution is a unit resolution. A unit

(resolution) refutation is a deduction of (the empty clause).

Definition 2 The Ackermann class, abbreviated to ACK, is the subclass of the pure

first-order logic which consists of formulas having the prefix such as :3 * V :3 * in

prenex normal form, where* denotes arbitrarily many times of occurrences of quanti-

Unit Resolution for a Subclas1 of th, Ackermann Class 65

fiers.

Each clause contains at most one variable in any set of clauses in ACK.

Definition 3 The subclass ACKa of ACK is defined as the class of formulas which

take the form of the set of clauses each of which contains at most two literals with

a variable.

We suppose in this section that the variable in the non-unit clause is not substitu

ted in obtaining resolvents as long as there are resolvensts from the parent clause by

unit resolution keeping its variables unchanged. Cleary this assumption does not

influence the existence of unit refutations at all. The following remark is taken

into considerations. Unit factors from a clause can be obtained after the variable

in the clause being unified to constnts, since there is at most one variable in a clause

in ACK (ACK2).

Infinitely many resolvents can be generated by unit resolution, only for the reason

that the function nesting of resolvents may be arbitrarily deep. The unit clause resol

vent in ACK2 has a term prescribed by the term in another unit clause resolvent.

Also, unit clause resolvents whose terms constitute periodic relations each other will be

generated by unit resolution. To check this case, we will represent the predicate

symbol and a part of the terms in the unit clauses as the state of an automaton and

the generated unit clause as the transition in the automaton from the intial state to

the state which consists of the predicate symbol and a part of the terms in the unit

clause. The transition from one state g1 to another state g2 in the automaton corres

ponds to the relation between a part of the terms in the unit clause for g1 and a

part of the terms in the unit clause for g2• The relation is expressed by an addition

or deletion of function symbols.

Based on the above considerations, we cons.truct a finite automaton simulating unit

resolution for ACK2 and represent unit clause resolvents by regular expressions. Then

we transform the decidability problem of unit refutablity for ACK2 to the emptiness

problem of intersections of two regular languages.

2.1 Representation of Sets of Clauses in ACK2

For further discussions, the input set of clauses in ACK2 are represented as follows.

Parentheses are sometimes omitted.

Definition 4 (1) For a literal L, let L be in PrXT1oT2 : (a) Pr is a set of predicate

symbols with or without negation signs. (b) T1oT2 is a decomposition form of terms

such T 2cFn*o (VU Ct), and T 1 is a set of tuples consiting of prefixes of terms, where

Fn is a set of function symbols, Fn• denotes e U Fn U FnoFn U ••• (e denotes the identity

function), V is a set of variables, Ct is a set of constants and the operation 'a' is as

follows, being identified with the concatenation; aoa=a, eoa=a,foa=f(a), (jUg)oa

=Joa LJgoa, and J· 10Joa=a for a in Ct, f and gin Fn, a in Fn*o (VU Ct). (ai, aa, ••• ,

66 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DOSHITA

a.)o (,BUr) = (a 1o,8LJa 1or, a 2o,8LJa2or, ... , a.o,BLJa.or), and P(aU,8) =P(a) UP(,8) for a

and ,8 in T 1oT2, and P in Pr.

The part T 1 oT2 of L is defined as follows. The part T 2 is related to the substitutions

in the unification of terms.

The part T 1 is an invariant of terms. (i) e is not contained in T 2• (ii) If a term of

L contains the function symbol and the variable (the variable x is regarded as e(x)),

the terms of L are decomposed so that the part T 2 consains a variable and as many

function symbols as possible. The constants are contained in T 1• (iii) If the terms of

L contain no function symbols and no variables, and L=P (a 1, a2, ••• , a.) for P in

Pr and each a1 (l:s;;:i:s;;:n) in Ct, then the part T 1oT2 of L can be decomposed as (ai',

a2', ••• , a.') o (b) for each constant symbol b where only the occurrence of the common

constant symbol b among a1, a2, ••• , a. is replaced by e. The other constant symbols

are left unchanged. (L is represented as a subset of PrxT1oT2).

(2) The clause is represented as a union of representations of all literals in the clause.

(3) The set of clauses is represented as a set consisting of clauses represented by (2).

Example 1 For L=Q(j(x), g (x), x) in whith Q denotes a predicate symbol, J and g

denote function symbols, and x denotes a variable, Lis represented as Q(f, g, e) 0 (x).

For L=Q(a, f (x)) in which Q denotes a predicate symbol, f denotes a function symbol,

x denotes a variable and a denotes a constant, Lis represented as Q(a, e)o(fx).

For L=R(a, a, b) in which R denotes a predicate symbol, and a and b denote con

stants, Lis represented as {R(e, e, b)o(a), R(a, a, e)o(b)}.

The following property is easily derived.

Lemma 1 In the literal represented by Definition 4, the length of the part T 2 is at

most 2, and the length of each element of tuples belonging to the part of T 1 is at

most one. The expression by Definition 4 is obtained in time 0(n2) and in space

O(n) for the set of clauses of length n in ACK2 , where the time complexity and the

space complexity are defined by multitape Turing machines.

2. 2. Construction of a Finite Automaton Simulating Unit Resolution

We construct a finite automaton simulating the generation of unit clause resolvents

by unit resolution from a set of clauses in ACK2 as is already expressed in Definition

4.

To represent unit clause resolvents by regular expressions, we define the following

operation on languages.

Definition 5 Let I and s- 1 be alphabets scuh that a one-to-one mapping In from I

into 1:-1 is defined. Let In (a) in 1:-1 for a in I be denoted by a-1• The operation

Op consists of such a reduction on concatenations as follows.

(1) aoa- 1 =e(empty string) for any a in I.
(2) aob- 1 =\=e for d,=\=b in };.

Unit Resolution for a Subclass of the Ackermann Class 67

(3) b-1oa~e for a and b in I.

If w in };* is a reduced string by using Op repeatedly from w 0 in (}; U .:r-1) *, such a

representation as Op (w0) = w is used. Let L be a language over (}; U 1;-1) and Red

(L) be {w in I*\ w 0 in L, Op (w0) =w}.

The next theorem is easily obtained from the following algorithm.

Theorem 2 Let L be a regular language over (IuI-1), where I and J;- 1 are alphabets

as in Definition 5. Then Red (L) is also a regular language.

We can construct an algorithm to provide a finite automaton accepting Red (L)

from a finite automaton accepting L over (I U .:r-1).

Algorithm 1 (An algorithm to provide a finite automaton accepting Red (L) from a

finite automaton accepting L over (}; U 1;-1))

Input : A finite automaton A0 accepting L (the transitions of A 0 are given as the

set Inp of the forms (P, J, q), where p and q are states and f is a transition).

Let the length of the input be n.

Output: A finite automaton A accepting Red (L) (the set of initial states and set of

final states are the same as those of A0).

Method: Execute the next steps. The procedure is represented by means of Pidgin

ALGOL in [l].

procedure Red (Inp):

begin

Out-Inp

for k-1 step I until n do

end

for each (P, J- 1, q) in lnp containing a symbol J- 1 in

.:r-1 do

begin

Out~Out-{(P, J- 1, q)};

for i-0 step I until k do

begin

end

end;

return Out

S1-{all the states reachable to p with e1
};

S2-{all the states reachable to some state in S1 with j};

Out-Out U {r, e, q) I rES2}

Next we provide an algorithm to construct a finite automaton simulating the

generation of unit clause resolvents by unit resolution from an input set of clauses in

ACK2 , which has the form in Definition 4.

68 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DOSHITA

The set of parts Pr X T 1 of literals with some indications corresponds to the set of

states of the above automaton. Function symbols, inverse function symbols, constants

and variables in T2 form an input alphabet for the transitions of the automaton. We

will represent a unit clause resolvent C by a state g for the part Pr X T 1 of clause C

and the part T2 of terms, which is a reverse string from an initial state to the state

g. Therefore, we recognize that a unit clause C can be generated by detecting a

string r from an initial state to the part Pr x T 1 of the clause C, such that rR•• is

the part T 2 of the terms of C.

The outline of constructing a finite automaton is as follows:

(1) For the unit clause C, construct a transition by the part T2 of the terms of C

from an initial state to the part Pr X T 1 of C.

(2) For the unit clause resolvent C which subsumes its parent clause C0(CcC0),

construct a transition from an initial state to the part PrxT1 of C. This is the case

that C0=CUC1 and......,C/ exists for eachj such that C1=C/ u1 for some substitution u1•
J

(3) For the unit clause resolvent C2 whose part of the term is a function or an

inverse function of the part of the term of another unit clause Ci, construct a

transition by the function between the parts of the terms of C1 and Ca from the

part PrxT1 of C1 to the part PrxT1 of C2• This is the case that there is a clause

.......C1' UC2 U ,C, such that (a) Ci' and Ca contain a variable, (b) c, exists for each

i, and (c) C1 exists and C1'u=C1 for some non-empty substitution u.

In (2) or (3), we will decide whether there are ~C'., ~C' ;, and CI by detecting

the transitions from an initial state to the specified states of the constructed automaton.

The construction of 3 is not necessary for the clause which contains at most one

literal with a variable.

The detailed construction algorithm is given below. The domain of 'Red' is exten

ded to FnUFn- 1 UVUCt.

Algorithm 2 (A construction of a finite automaton As from a set S of clauses m

ACK2)

Assume that S is in the form by Definition 4.

(Notation) Let As= (GUG0 UG 1 , I', o, G0, G1) be a finite automaton, where G0

denotes an initial state, GcPrxT1 X{O, l} and G1 cPrXT1 are sets of states, I'=FnU

Fn- 1 U VU Ct for Fn, V, Ct in Definition 4 and Fn- 1= {j-1 (inverse function) I [EFn},

oc(GUG0 UG 1)X(I'U{e})-2<GUGI> is a mapping and G1 denotes a final state. T(As,

G1) denotes the language accepted by a finite automaton with {G1 } as a set of final

states. DgT(As, G1) for gEGUG 1 denotes the language {u\vluET(As, g), vET(As,

G 1) and '\' is a left derivative}. T2 (L) denotes the part T2 of L for a literal L

represented by Definition 4. By [PrxT1] (L) we mean the part PrXT1 of a literal

L.

Unit Resolution for a Subclass of the Ackt1mann Class 69

(Construction of an automaton)

(1) For each literal L represented by Definition 4 such that T2(L) =t1t2 or t2, con

struct the following transitions.

(a) In case that t, is in Ct (the length of T2(L) should be one): If T2 (L) =ti, then

let o(G0, t1) 3[PrXT1] (L) x {0}. (b) In case that t2 or t1 is in V: (i) If T2 (L) =ti, t2

then let o(G0, t2) 3G1 ([PrxT1](L)) and let o(G 1 ([PrxT1](L)), t1) 3[PrxT1](L) x

{0} for G1 ([PrxT,J(L)) EG1 • (ii) If T2(L) =t1, then let o(G0, t 1) 3[PrxT1](L) x {0}
=G, ([Pr XT1] (L)).

(2) For each clause S,. represented by Definition 4, construct the following transi-
• tions. (a) In case that S.,= U P,.(j,.x) U { URJ(a~)} for R,. and R} in PrXTi, J,. in

•:::::1:1 j i

Fn U {e}, a; in Ct and x in V. (i) For each k execute the next steps. (i-1) If xj,. E

Red (T(As, ,_.p,. x {0})) e,. (k' ~k and e,. is some substitution) and (\;/ 1) C:l ,){ajERed

(T(As, --R; X {0}) 7)}} (7J~ is some substitution), then let o (G0, x) 3G1 (P,.) and o (G1 (P,.),

f,.)3P,.x{0} for J,.~e, or let o(G0, x)3G1 (P,.)=P,.x{0} for J,=e. (i-2) Red(T(As,

,_.p, x {0}))/j1 nRed(T(As, ""'P2X {0}))/f2 U {Red(Dc,c-P>T(As, ,_.p,x {0}))/ J,nRed
6EGUG I 1

(D
6
T(As,""'Pa X {0}))/J2 URed(Da,c-P

2
iT(As, ,_.pa X {0}))/f2 n&d (D6T(As, ,_.p, X {0}))/j,}

~t/> and (::!;0)(\;/ 1) C:L){(j~j0) na;E Red(T(As, -R}x{0})M}(7J} is some substitu·

tion), then let o (G0, a1~) 3R;~ X {0} for each i.

(ii) If (\;/ 1) (:3 ,) {a{ERed (T (As, -R; X {0}))7))}(17j is some substitution) and Red (T(As,

,_.p,,x{0}))-{x, xj,,}e,.4¢> (k'*k and e,. is some substitution), then let o(......,P,,x{0},

fp" 1)3P,x{l} and o(P,.x{l},j,)3P,x{0} for J,.1*e or let o(-..P,,x{0}, j,)3P,x

{0} for J,.,=e.

(b) In case that S,.=P(jx)U{UR;(a})} orU{URJ(a;)} for P and Rj in PrXTi,jin
j i j i

Fn U {e}, a; in Ct and x in V.

(i) If (V ,) (:3 1) {a}ERed (T(As, -..R} X {0}))7Jj}(171 is some substitution), the let o (G0,

x) 3G1 (PX {0}) and o (G 1 (PX {0}), j) 3P X {0} for j ~e, or let o (G0, x) 3G1 (P x {0})

=PX {0} for J =e.

(ii) If Red(T(As, --Px {0}))e=xf for some substitution e, or U Red(D
6
T(As, -..P

1EGUG1

x {0})) nJ ~t/> and (:3 10) (V 1) (:3 1) (j ~ j 0) {Red (T(As, R; X {0})) 17}3a}} (7J} is some substi-
tution), then let o (G0, a}) 3R;~ X {0} for each i.

Repeap the step (2) until any new transition cannot be defined.

The following properties hold for a finite automaton As constructed by Algorithm 2.
Theorem 3 Let As be a finite automaton constructed by Algorithm 2 for a set of

clauses in ACK2• For any r in Red(T(As, P)) such that Pis in PrXT1 X{0}, PorR••

can be generated from S, where 'Rev' denotes the reverse string. PorR•• denotes a
literal consiting of a predicate with or without negation sign corresponding to the part

Pr of P, and a term composed of the part T 1 of P and rR••.

Proof The theorem evidently holds for r in Red(T(As, P)) with Pin PrXT1 X {0}

70 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DOSHITA

defined in (l) of Algorithm 2. For r in Red (T(As, P)) with P in Pr X T 1 x {0} defined

in (2) (a) (i) or (2) (b) of Algorithm 2, a unit clause whose term is the same as

that in its parent clause corresponds to PorR••. If some ro in Red (T(As, P)) and o (P,

/3) 3Q is defined for P and Qin Pr x T1 X {0}, then there is a resolvent ,.._,p(jx) U Q

(hx) for a variable x and function symbols f and h such that hoJ-1 = f3. Thus Qo

Red (/3r1) Rn) can be generated by unit resolution for any r1 in Red (T(As, P)). There

fore we can claim that the theorem holds for r in Red (T(As, P)) including the

transitions defined by the procedure (2) (a) (ii). Q, E. D.

Theorem 4 Let As be a finite automaton constructed by Algorithm 2 for a set S of

clauses in ACK2. For any unit clause in S or generated from S, there is P=[Prx

T1] (L) in Pr X T1 X {0} and r in Fn* such that P 0 rR'" =L.

Proof If there is a clause C in S such that LcC, then L can be represented in

such a way as above, because the procedures (l), (2) (a) (i) and (2) (b) are defined

in Algorithm 2. If there is a unit clause L 1 such that T 2 (L) can be obtained from

T 2 (L1) and L1 can be represented in such a way as above, then L can be represented

by means of the mapping defined in (1) (a) (ii) of Algorithm 2. Thus the theorem

holds. Q, E. D.

There is a procedure in Algorithm 2 to decide the emptiness of (intersections of)

languages operated by 'Red'. To avoid using 'Red', we provide another construction

of an automaton in which equivalent mappings are defined one after another for the

mappings by Fn- 1 U {e} in As.

Algorithm 3 (A construction of a finite automaton Bs from a set S of clauses in

ACK2)

(Notation) Let Bs= (GUG0 UG 1 , I's, os, G0, G1) be a finite automaton, where G0

denotes an initial state, G and GI c Pr x T1 being sets of states, GI denotes a final

state, I's=FnUVUCt, and osc (GUG0 UG 1) XI's_,,2wuGo>(a mapping). T(Bs, G1) de

notes the language accepted by Bs with {G1 } as a set of final states. D
8
T(Bs, G1) for

gEGUG 1 denotes the language {u\v\uET(Bs, g), vET(Bs, G1) and '\' is a left

derivatives}.

(Construction of an automaton)

(l) For each literal L represented by Definition 4 such that T2(L) =t1 t2 or t2,

construct the following transitions.

(a) In case that t1 is in Ci: Let os(G0 , t1) 3[PrXT1](L).

(b) In case that t1 or t2 is in V. (i) If T 2(L) =t1t2, then let os(G0, t2) 3G 1 ([PrxT1]

(L)) and os(G, ([PrxT1](L)), t1) 3[PrxT1](L) for G1 ([PrXT1](L)) EG 1 • (ii) If

T2(L) =t1, then let os(G0, t1) 3[PrXT1](L) =G1 ([PrXT1](L)).

(2) For each clause Sm represented by Definition 4, construct the following transitions.
2

(a) In case that Sm= UP, (j,x) U { U Rj(aJ)} for P, and RJ in Pr X Ti, J. in Fn U {e},
A=l j i

Unit Resolution for a Subclass of the Ackermann Class 71

a} and x in V: (i) For each k excecute the next steps. (i-1) If xfj,ET(Bs, ,..,_,p1,)

r;1,(k'*k andr;, is some substituion) and(\f;)(:3;){ajET(Bs;,..,_,R;)r;j}(r;j is some

substituion), then let os(G0, x) 3G1 (P,) and os(G 1 (P,), J,) 3P, for f,~e, or let os(G0,

x)3G 1 (P,)=P, for J.=e. (i-2) If T(Bs, ,..,_,p1)/J,nT(Bs, ,..,_,p2)/Jz U {DG <-P>
gEGUGI I 1

T(Bs, -P,)/f1nDgT(Bs, -P2)/J2uD.T(Bs,-P1)/J1nDG1<~P2>T(Bs, -Pz)lfz}*<fi and

(:3 ;o) (V ;) (:3 1) { (j * j 0) n a}E T (Bs, -R;) r;}} (r;; is some substitution), then let os (G0, aj)

3R;~-

(ii) (V;)(:3;){a}ET(Bs, -R{)r;~}(r;j is some substitution) and T(Bs, ,..,_,p,,)-{x, xf1,}

r;1, *<fi (k' *k and r;., is some substitution), then construct the following transitions.

(ii-1) Let os g,f,)3P, for f,*e andf1,*e, where g is in GUG0 UG 1 such that os(g,

J,,) 3,..,_,pl•· (ii-2) Let os(-P,,, J,) 3P, for f,*e and J,,=e. (ii-3) Let os(gi, j)

3P, for J,=e and J,.*e, where g1 is in GUG0 UG1 such that os(gi,j)3g and os(g,

J,,) 3,..,_,p,, for fin Fn. (ii-4) Let os(g, j) 3P, for f,,=e and J.=e, where g is in

GUG0 UG1 such that os(g,j)3,..,_,p•· for fin Fn.

(b) In case that S.,=P(fx)U{URj(a})} or U{URj(a})} forP andRjin PrXTi,J
j i i j

in Fn U {e}, a} in Ct, and x in V: Construct the same transition as in (2) (b) of

Algorithm 2, where the indication {0} is dropped out.

Repeat the step (2) until any nuw transition cannot be defined.

The properties similar to Theorem 3 and Theorem 4 hold for the finite automaton
Bs.

2. 3 Algorithm to Decide Unit Resolution Refutability

We can obtain the following algorithm, by means of constructions of finite automata
in the previous section.

Algorithm 4 (A decision algorithm of unit resolution refutability for ACK2)

(1) Obtain a representation of a given set of clauses in ACK2 by Definition 4, and
denote it by S.

(2) Obtain As or Bs by Algorithm 2 or Algorithm 3.

(3) Decide whether there is a complementary pair of unit clauses by means of the

following decision of emptiness of intersections of regular languages

Decide whether Red(T(As, g)) nRed(T(As, g')) U {Red(D11T(As, g)) nRed (D
62

g1EGUG I ,g 2EG I

T(As, g')) URed(D12T(As, g)) nRed(D11 (T(As, g'))}=rp for g and g' such that g and

g' are in PrxT1 X {0}, and [PrXT1](g) =-[PXT1](g'). Or decide whether T(Bs, g)

nT(Bs, g') U {D11T(Bs, g) nD.,T(Bs, g') UD6,T(Bs, g(nD
61

T(Bs, g')}=<p ifor
g1EGUG I ,g2eG I

g and g' such that g and g' are in PrXTi, and [PrXT1](g) =-[PrXT1]g'). If some
intersection is not empty, then there is a unit resolution refutation.

Otherwise there is no unit resolution refutation.

Example 2 Let {P(a), -P(x) UQ(f(x)), ~(y) UR(g(y)), -R(g(;:,)) UQ (f(;:,)), ,..,_,Q

(a), Q(u) UT(f(u)), -T(f(s)) UU(f(s)),,..,_,U(w) UV(J(w)), -V(t) u-Q(f(t))} be

72 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DOSHITA

a set of clauses in ACKa, where P, Q., R, T, U and V denote predicate symbols, f and

g denote function symbols, x, y, ;:,, s, t, u, and w denote variables, and a denotes a

constant. It can be represented by Definition 4 as { {P (e) (a)}, ,.._,p (e) (x) U Q. (e) (j x),

-Q.(e) (y) UR(e) (gy), -R(e) (g;:,) UQ.(e) (j;:,), {Q.(e) (a)}, Q.(e) (u) UT(s) (fu), -T(e)

~T(E,)X !0}

~U(l)X!O}

-I
f

~V(£) X (0}

Q(l) x\11 c;r'

Fig. I. A finite automaton As for Example 2.

a

f

g

R(E.) X lO)

a

T (l) x IOI

U(e,) X {O}

-I
f

Fig. 2. A finite automaton Bs for Example 2,

g

Unit Resolution for a Subclass of the Ackermann Class 73

(js) UU(e) ({s), -U(e) (w) UV(e) (jw), -V(e) (t) u-Q(e) (jt)}, which we denote by

S ('o' is omitted in S).

An automaton As by Algorithm 2 can be constructed as shown in Fig. l. An auto

maton Bs by Algorithm 3 can be constructed as shown in Fig. 2.

We can conclude that Red(T(As, Q(e) X{O}))=T(Bs, Q,(e))=af* and Red(T(As, ,.._Q

(e)X{O}))=T(Bs,,.._Q(e))=af*. Thus Q(j*a) and-Q(j*a) can be generated by

unit resolution. Therefore there is a unit resolution refutation.

3. Computational Complexity of Deciding Unit Resolution

Refutablility for ACK2

In this section we discuss computational complexity (time complexity and space

complexity) of deciding a unit resolution refutability for a set of clauses in ACK2•

Computational complexity in this section is defined by means of multitape Turing

machines.

Lemma 5 Algorithm 3 is of O(n9) time complexity and of O(n3) space compleity for

the input length n.

Proof The size of the constructed algorithm is at most O(n3), since the size of states

is at most O(n) and the number of transition symbols is at most O(n). Evidently Step

(l) can be excuted in O (n2) time and in O (n) space. Step (2) (a) (i) is a procedure

to represent a unit clause subsuming its parent input clause. Step (i-1) can be

excecuted in O(n6) time and in O(n3) space for a mapping to be detected, since in

this step it is decided whether there is a transition from an initial state to a specified

state at most O(n3) times. Step (i-2) can be excecuted in 0(n6) time and in O(n3)

space for a mapping to be detected, since in this step it is decided whether there is

a common transition between sequences or subsequences from an initial state to two

specified states at most O(n3) times and it is decided whether there is a transition

from an initial state to a specified state at most O(n3) times.

Step (2) (a) (ii) can be executed in O(n6) time and in O(n3) space for a mapping

to be detected, since in this step it is decided whether there is a transition from an

initial state to a specified state at most O(n3) times. Step (2) (b) is similar to Step

(2) (a) (i-1). A transformation from a mapping with inverse function symbols or e

to a mapping without inverse function symbols and e can be executed in O (n6) time

and in O(n3) space for each mapping, since transitions of length at most 2 are exami

ned in constucting the automaton.

O(n3) mappings are constructed by Step (2).

The above considerations lead us to the conclusion. Q.. E. D.

Theorem 6 It can be decided in O (n9) time and in O (n3) space whether there is a

unit resolution refutaion from a set of clauses of length n in ACK2•

74 Susumu YAMASAKI, Toshihiko ISHIBASHI and Shuji DosHITA

Proof We consider computational complexity of decidaility on the basis of Algorithm

4.

Step (1) can be exceuted in 0(n2) time and in O(n) space.

Step (2) to obtain Bs can be executed in O(n9) time and in O(n) space (Lemma 5).

The I ength of Bs is O (n3) •

Step (3) can be executed in O (n6) time and in O (n3) space, since it can be decided

in O(n6) time and in O(n3) space whether the intersection of two regular languages

accepted by two finite automata of length O(n3) is empty. Thus the theorem holds.

Q. E. D.

4. Concuding Remarks

In this paper we provided an algorithm to decide a unit resolution refutability for

a subclass ACK2 of the Ackermann class by constructing finite automata.

We showed that the algorithm is of O (n9) time complexity and of O (n3) space

complexity for an input set of length n on multitape Turing machines.

The algorithm works in deterministic polynomial time and therefore it is applicable

to the preprocessing of the unsatisfiability problem for a subclass ACK2 of the

Ackermann class.

Utilizing [8], we can conclude that the decidability problem of a unit resolution

refutability for the Ackermann class is P-space hard. That is to say all the problems

in polynomial space can be transformed to the decidability problem of a unit resolution

refutability for the Ackermann class.

We discussed the decidability problem of a unit resolution refutability for ACK2•

For what subclasses of the Ackermann class, other than ACK2, the decidability problem

of a unit resolution refutability can be solved in determinitic polynomial time, is left

for a future study.

It is not of advantage to apply unit resolution to the Godel class, since a unit

resolution refutability for this class is not decidable.

References

1) Aho, A. V., Hopcroft, J. E. and Uliman, J. D., "The Design and Analysis of Computer
Algorithms", Addison-Wesley Publishing Company, (1974).

2) Aspvall B. et al., "A linear time algorithm for testing the truth of certain quantified boolean
formulas", Information Processing Letters, 8, 3, \.1979), p. 121-123.

3) Brzozowski, J. A., ,,Regular-like expressions for some irregular languages", IEEE Conference
Record of the 9th Annual Symposium on Switching and Automata Theory, (1968), p. 278-
286.

4) Chang, C. L. and Lee, R. C., "Symbolic Logic and Mechanical Theorem Proving", Academic
Press, (1974).

5) Hopcroft, J. E. and Ullman, J. D., "Formal Languages and Their Relation to Automata",

Unit Resolution for a Subclass of the Ackermann Class 75

Addison-Wesley Publishing Company, (1969).
6) Jones, N. D. and Laaser, W. T., "Complete problem for deterministic polynomial time", Proc.

of the 6th Annual ACM Symposium on Theory of Computing, (1974), p. 40-46.
7) Joyner, W. H., Jr., "Resolution strategies as decision procedures", J. of ACM, 23, 3, (1976),

p. 398-417.
8) Lewis, H. R., "Complexity of solvable cases of the decision problems for the predicate calculu

lus", IEEE Conference Record of the 19th Annual Symposium on Foundations of Computer
Science, (1978), p. 35-47.

