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ABSTRACT 

The Fourier transform of Green's formula is utilized to obtain analytical solutions for half-space 
problems in the theory of elasticity. Mindlin's problem and its counterparts in transversely isotropic 

elastostatics and isotropic steady-state elastodynamics are solved. It is concluded that the present 
method is general enough to solve all these types of half-space problems. 

Green's tensors thus obtained may be used effectively as kernel functions of the Boundary In­
tegral Equation Method, 

1. INTRODUCTION 

Application of the computational Boundary Integral Equation Method1> to boundary 

value problems seems to be one of the recent trends in solid mechanics. This method 

is summarized as a potential representation of the sought solution, discretization of 

unknown potential densities, and numerical solution of the resulting system of algebraic 

equations. Although the evaluation of singular integrals is required, many techniques 

have been proposed to overcome this difficulty, which made this method quite practi­

cal. 

On the other hand, only a few analytical works2>, 3> applying potential theory to 

solve particular boundary value problems have been undertaken. Indeed, such a 

method may be generally considered impractical. However, we find it not to be the 

case for half-space problems, which we will discuss in what follows. 

In§ 2, we present the Fourier transform of Green's formula. Boundary conditions 

yield a system of integral equations, which reduces to algebraic equations for half-space 

problems. Solving these eqations, we express solutions of half-space problems in the 

form of Fourier integrals. 

In§ 3, we construct half-space Green's tensors of the 2nd kind (displacements 

induced by concentrated loads acting in the interior of the half-space with a traction-
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free surface) for three cases, i.e., isotropic and transversely isotropic elastostatics and 

isotropic steady-state elastodynamics. 

2. FOURIER TRANSFORM OF GREEN'S FORMULA 

Let D be a domain bounded by the smooth surface an. It is well-known that any 

solution u, of elasticity satisfying some regularity requirements is expressed in the 

from11 • 21 

xED 

(I). 

which is known as Green's formula, or Somigliana's identity. In eq. (I), t;, b;, I',; and 

I' 11; stand for the surface traction with respect to the externally directed unit normal 

vector n., body force, fundamental solution of elasticity and double layer kernel, res­

pectively. I' 11; is written as 

-I' 11;(x, y) =I'11,(X, y) J;' yjmin,.( v), ( 2) 

where I,;1 is the stress operator expressed by using the elasticity tensor Cliu and the 

del operator a, as 

( 3) 

The superposed arrow and subscript y in eq. (2) show that the differential operator 

I,;1 should be applied to I',; with respect to y. By definition, we have 

( 4) 

where J*,1 is the operator of elasticity, or Navier's operator (see eqs. ( 18), (38) and 

( 46)), o,; Kronecker delta, and o Dirac delta. 

It can be shown, using eqs. (1)-( 4), that the Fourier transform of eq. (I) is 

written as 

( 5) •• 

where A and ~ are defined as 

* Summation convention is employed for repeated indices. The Latin indices range from 1 to 3, 
whereas the Greek indices range from 1 to 2. 

** i is used for ✓ ( -1) instead of the usual notation i in order to avoid confusion. 
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( 6) 

J"'"'i} (ie), Eu;(ie) are matrices obtained by replacing fJ1 m their original forms by 

ie" and 121 is a function defined as 

xED 
xe:.fJ. 

( 7) 

On the other hand, ;;;;i, is given by 121 as 

where 

= (2;)3 5a/-lf;Yin,(y) 5B:'•1z1u.(a,) dwdSy 

= 1 k1 (w-e) u4(w) dw, J.3 ( 8) 

( 9) 

In the calculation deriving eq. (8), we should be aware of the discontinuity of 121• 

From eqs. (5) and (8) follows a system of integral equations 

Xz 

u~W = - S.sk, (w-e) [ J"''i}(iw) l;(w) + J"''i}(iw) Em.;(iw) u~.(w) 

(10) 

which is intractable in general. 

~::.._---;,.L---7i"'-~7"''--;--:;::,,..,,_ __ X1 For half-space problems, eq.(10) 

simplifies considerably. Take the 

cartesian coordinate system as in 

Fig. l. Then, D= {xi xs>0}, fJD= 

{xi xs=0} and n= (0, 0, -1). Fol­

lowing the calculations mentioned 

at eq. (8), we have 
Fig. I ; Cartesian coordinate system used for 

half-space problems. 

(11) 

so that eq. (5) yields 

u,= --
1-5 J"'"'i}(i.;) des l;+-

1
-( J"'"'i}Ue)Eu;Ue) desu•- -

1-5 J"'"'i}Ue)b;des. (12) 
tr: p tr: ), tr: p 
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In eqs. (l l) and (12), the path of integration /J, which extends from - oo to oo, 

should be taken in the complex plane, such that the integral 

gives exactly I',; at x3= 0. Also, it may be useful for some calculations to note that 

eq. ( l l) can also be written as 

which follows directly from the definition ( eq. (7)). 

If either U; or t1 is prescribed on aD, the other is obtained from eq. ( 12) by 

algebraic calculations, so that all the terms appearing on the right hand side of eq. 

( 5) are known. 

After these calculations, the solution of the half-space problem is found m the 

from 

U; = i'I!: F;::H - ~p elf3Z3J*,}(ie) deal;+ ~p e'f3Z3J*,l(ie)I;a;(ie) deau; 

- ~ e''azsJ*,}(ie) 6;deaJ, 
p 

where F,J stands for the Fourier inverse transform with respect to e1 and e2: 

3. GREEN'S TENSORS 

(14) 

(15) 

The theory presented in § 2 is applied to obtain Green's tensors of the 2nd kind 

for isotropic static, transversely isotropic static and isotropic harmonically oscillating 

elastic half-spaces. 

We assume 
(j) 

l;=0, b;(y) =ii;;ii(y-y0), y0 =(0, 0, c). (16) 

Then, we have 

(17) 

3.1 ISOTROPIC ELASTOST ATICS 

Equations of isotropic elastostatics are listed as follows: 

(18) 
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1:,s;=lo,so1+ u(o,;os+o;so,), (19) 

where ). and u are Lame constants. Using eqs. (18) and ( 19), we have 

,a•--:~(ie) = _ (l+2u) I e i 20,;- 0+ u) e,e; (20) 
., ..- u().+2µ) 1e1· ' 

,a•--:~1: •(ie) =i[20+t1)U.es-0+2µ) lel 2(0,.es+os,e1)-llel 2oue,] (2 l) 
., u, ~ ().+2u) 1e1· , 

where I e I=../ (e,e,). For the sake of generality, we suspend the assumption t, = 0 

for the time being. As can be easily shown 

and 

0 

0 

().+2u) r 

.().+ µ) l!'ce, 
_,2µ().+2u) r 

0 

0 

(l+3µ)l!" 
2µ(l+2µ) r , 

().+3µ)1!' 
2µ(l+2u) r 

Eq. ( 12) can be written as 

where 

().+2µ) r 

+ 
i ().+µ)ce, 
2µ().+2µ) r 

r=../(eaea). Inverting for 

lla; ~- ). eae, 
ur 2u(l+u) r3 

lls; 
_; __ e, __ 

2(,l+µ) r2 

~- ().+µ)eae, 
ur 2µ(l+2µ) r3 0 

0 

• (l+µ)cea 
12µ().+2µ) r 

().+3µ) + (}.+ L!) C 

2µ().+2µ) r 2u().+2u) 

a,;, we have 

i ea l,; 
2().+ µ) r 2 

l+2µ 
2µ().+u)r ls; 

(22) 

(23) 

().+ ll) l!'C 
2µ(). + 2µ) .. (24) 

(25) 
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i( 2(i1ti) r2 +2~r )e. 
+ 

A+2ti C 

2ti0+µ) r +2µ (26) 

Using eq. (26), we obtain a,; for the given l1;. The solution of the problem may be 

constructed by using eq. (14) and the relations 

and 

;O+ti) x,e, 
4ti(i+2ti) r 

0+ u) xae.e, 
20+2u) r 

.(A+µ) xaea 
14µ0+2ti) r 

ci+µ) I x,I 
4µ(i+2µ) 

·( u 
I 20+2ti) r 

;( tJ O + u) I xa I ) 
20+2µ) r - 20+2ti) e, 

(27) 

(28) 

Specifically, when t;= 0, i. e., for a half-space free of surface traction, the last 

matrix on the right hand side of eq. (26) gives U1;. From eqs. (14) and (28), we 

have 

·[ 1 
I 20+u) r2 

0+3ti) (xa-C) - U+u) X3C ]e 
4uU+2u) r 2µ(i+2u) • 

0+2t1) 2 + d + 0+3u) (xa+c) + u+ tJ) X3CT 

4ti(A+µ) 0+2u) r 4u(i+2u) 2u(-<+2u) (29) 

where I',;(x) stands for the fundamental solution with its singularity at (0, 0, x). The 

Fourier inverse transform of eq. (29) can be easily calculated by using known formulae 

of the Bessel functions. The result is 
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[
(3-4v) (xs-C) 

R~ 
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4(1-2v) (1-v) 
R2(R2+xs+c) 2 

6x3c (x3 +c) + 4( 1-v) (l-2v) ] 
m R2( R2+ Xs+c) x, 

[
(3-4v) (x3 -c) +6xsc(x3 +c) 

R~ R~ 

(30) 

where R1=v(x.x.+(xa-c) 2), R.=v(x.x.+(xa+c) 2
) and Ji is Poisson's ratio. Eq. (30) 

coincides with Mindlin's well-known result•>. 

3.2 TRANSVERSELY ISOTROPIC ELASTOSTATICS 

Assume that transversely isotropic elastic material occupies half-space x3>0, with 

the plane of isotropy parallel to the boundary x3=0. Then, we have 

(31) 

and 

(32) 

where c;;'s are elastic constants. It is easy to see that 

( C13 + C44) ~3~ a 
---3~~---

Cnc«II ( r2 +.t;~~) 
i=2 

(c1s+c44) ~s~, 
3 -

C11C« II ( r2 + K;~~) 
i=2 

_ _ _l'11r
2+~~~ 

3 

Cnc44 II ( r2 + K;~i) 
i=2 

(33) 

and 
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(cur2-c,se~) ep 
3 

Cull ( r2 + ,.,e~) 
i=2 

where "z and t.3 are the roots of the equation 

,.2 _[ct+cucsa-(c13+c«) 2] t.+ ~=O 
C11C« Cu 
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, (34) 

(35) 

and t.1 =c44/c66 • For the sake of simplicity, we assume t.2 =,ct.3 in this paper, though 

the degenerate case might be treated in the same way. 

Because of the similarity to the isotropic case, we shall list here only the major 

results: 

, (36) 

, (37) 

~ 

[1 -+-L .1•-1~desL = 
(38) 
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and 

where 
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L
2
= (c,s+c .. ),/~ 

Cu (K2-K3) , 

Ls, K3, M 3 are obtained by interchanging ,c2 and ,c3 in eq. ( 41) 1, 2,3• 

(39) 

(40) 

(41) 

The fundamental solution of the transversely isotropic body may be calculated 

using eq. (36) to give 

, (42) 

where i?.;= ,/(K;x.x.+x~), Rt= R;+lxsl (l=s;;i=s;;3), which coincides with Kroner's 

result within a constant factor -1/ cuc44c66, which is known to be missing in his 

paper6 >. 

For the calculation of Green's tensor of the 2nd kind, we use eqs. ( 12), (39), ( 40) 

to have 
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--·-e ,/•1 r [ 

C I ~I r Oap + ( l A A ) flllV ~ + I 2 C,w 

Using eqs. (14) and (37), we have 

where 

(K,-,/~L1) (A2K;-L;) 
,/ IC; (l + A1A2) 

B~- = (~ M,+ L,) (A2K;-L;) 
,, ,/ IC; (l + A1A2) , 

-B~- = (K,-{~L,) (L1-A1M;) 
., ,/ IC; ,/ ICJ (l+A1A2) ' 

B'-= (~ M 1+L,) (L;-A1M;) 
'' ~,/ IC; (l+A1A2) , 
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(44) 

(45) 

This problem was studied earlier by H. Okamura and I. Shimada71 , but presented 

incompletely. Recently, Y. -C. Pan and T. -W. Chou8> solved the same problem 

including the degenerate case. However, as there are many misprints and undefined 

symbols in their paper, we gave up efforts to compare our result with theirs. Instead, 

we successfully checked our solution as vanishing when x3<0, and to have the requi­

red reciprocal property, thus ensuring the validity of our result. 
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3.3 ISOTROPIC STEADY-STATE ELASTODYNAMICS 

We assume u(x) e- 1•• type time-harmonic solution. Then, the equation of isotro­

pic steady-state elastodynamics takes the following form: 

J?j=µo,; a, a, +(-<+t.1)01 o; +palo1; (46) 

with ~ being the same as the static case ( eq. (19)). Using. ( 46), we have 

and 

( 47) 

~k~i--1~1 e--c-=12-)e,e;es]}, 
(48) 

where w, p, kT and kL are the frequency, density, and wave numbers of the transverse 

and longitudinal waves, respectively. 

Im 

i ✓(r 2 -k 2 ) (r > k) 

✓(k'-r') (k > r) 

Fig. 2 ; Path of integration. 

eliV R2+•~-
= ----o-----,==~-

411:.j R2+x~ 

Re 

In the two previous examples, we did not 

need to consider what path of integration 

/J, mentioned in eq. ( 11), should be taken. 

For steady-state elastodynamics, however, 

the requirement of the radiation condition 

for I',; determines /J. We shall take fJ as 

shown in Fig. 2. The following calculation 

of the fundamental solution for the Helm­

holtz equation illustrates this conclusion: 

(49) 

where R=.j(x.x.) and .j(r2-k2
) is evaluated as -i .j(k2-r2) for r<k. Note that 

Jim .j ( 12 - (k+ iE) 2) takes this value, if we choose for the square root a branch contin­
<10 
uously varying near the real axis and with positive real part. 
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Now, we shall list the major results: 

and 

1 
G(r) 

where RT=✓ (r'-k}),RL= ✓ (r'-ki) with the above mentioned sign, 

F(r) =(2r2 -k}) 2 -4r2 RTRL (Rayleigh's function) 

and 
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(50) 

(51) 

, (52) 

For the calcuation of Green's tensor of the 2nd kind, we use eqs. (12), (52) and 
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to have 

_ "I! [(2r"-k})C-'Rr-2RrRLe-•Rr, 
''-« F( r) 

_ [2r2r'Rr+ (k}-2r2) e-•Rr, ] 
RL F(r) 

Now, assume Im w=E (E>O). Using eqs. (14), (51) and (54), we have 

where 

l O 100 
X X 100 

+ 2 ir.u ---Jb
0
A(r)r2]1(Rr)dr+ j/J

0
A(r)r8j2(Rr)dr 

X loo 7f'Jo C(r) r2]1(Rr)dr 

X 100 

---j[J
0
B(r) r].(Rr)dr 

-rD(r) r3
] 0(Rr)dr 

A( r) = (2Rr Rr,e-"sRr _ (2r2-k}) e-"sR L) (2 Rr RLe-•Rr - (2 r2-k}) e-,R L) 

k}RLF(r) 

(53) 

. (54) 

, (55) 

D( r) = (2RT R1,e-"sR1, - (2 r2-k}) e-"sRr) (2RT R1,e-,R L - (2r2-k}) e-,RT) 
k}RrF(r) (56) 

and the fundamental solution I'1; is well-known to have the following from21 
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(57) 

where Ix I = ✓ ( x,x,). The solution for real w may be obtained by letting ft 0. 
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Eq. (55) and its extension to a layered half-space9> are known to seismologists. 

Recently, 0. Matsuoka and K. Yahata10
> studied this problem again. 

4. CONCLUSION 

Green's formula in the theory of elasticity was shown to provide an analytical 

method of solution for half-space problems by using Fourier transform. Half-space 

Green's tensors of the 2nd kind for isotropic elastostatics, transversely isotropic elasto­

statics and isotropic steady-state elastodynamics were constructed by the present me­

thod. 

It may be said that the most remarkable feature of the present method is its con­

structiveness. Such penetrating insight as Mindlin had when he solved his point load 

problem for the first time is not required. 

The present method is easily extended to problems for layered media with slight 

modification. 

Green's tensors thus obtained may be used effectively as kernel functions of the 

Boundary Integral Equation Method. 
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