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Abstract 

A method of numerical elastoplastic analysis is presented and several two and three 
dimensional examples are given. 

The elastoplastic velocity field is represented in simple layer and differentiated 
volume potentials. The boundary condition and flow rule yield a system of singular 
integral equations which can be solved numerically. 

Examples show the high accuracy and efficiency of the present method. 

I Introduction 

The integral Equation Method, as a numerical technique to solve linear 

boundary value problems, is frequently used these days. Nevertheless, only a few 

works in its application to non-linear problems1> have been done since 1971, when 

Swedlow and Cruse2l showed the method's applicability to elastoplastic boundary 

~alue problems. To complicate matters, some of these works are reported to 

have been based on erroneous formulae. 3J.4l However, we believe this situation 

by no means indicates that the Integral Equation Method does not have any 

advantages over conventional methods of elastoplastic analysis. Indeed, the most 

remarkable aspects of the Integral Equation Method, i.e., the small number on 

unknowns and the easiness in expressing singularity are both favorable to the 

end. The former promotes the efficiency of incremental calculation and the 

latter enables us to give a proper singularity to the elastic-plastic boundary, which 

may help to improve the accuracy. 

In this paper, we formulate a method of numerical elastoplastic analysis 

based on the simple layer potential method.5l The boundary condition and 

flow rule yield a system of integral equations with a vector valued function on 

the boundary and a scalar valued function over the plastic region as unknowns. 

Displacements and stresses are obtained by solving these equations and carrying 
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out the incremental analysis in an ordinary manner. Several solved two and three 

dimensional problems are shown as exa~ples. They show the high accuracy 

and efficiency of the present method. 

2 Potential Representation6> 

We assume isotropy in elasticity for simplicity. It can be easily shown that 

the three dimensional (or plane strain) elastoplastic velocity field it is governed by 

the equations 

in D'UDP 

and 
n'P n•P 
Tit-= Tu+-(C: aP+)•n•P on 8D•P, 

where 

d*u = µdu+(.l.+µ)P'P'•U (d*: Navier operator), 

,. (a" ) ,. Tu= nir•u+µ an +(Pu) •n ( T: traction operator) 

and 

C: • = ,U tr •+2µa (C: elasticity tensor). 

(1) 

(2) 

(3) 

(4) 

(5) 

D', DP, aD•P, aP, n•P, • and: stand for the elastic region, plastic region, elastic­

plastic boundary, plastic strain rate (We do not assume tr aP=O in this paper.), 

unit normal vector on 8D•P directed toward D', •i•i and •ij •ij type inner products, 

respectively. A superposed+(-) denotes a limiting value on aD•P from DP (D'). 
Note aP+=1=0 in general. 

Motivated by eqs. (1) and (2), we put 

(6) 

where I' is the fundamental solution of elasticity, or Kelvin's point load solution. 

Substituting eq. (6) into eqs. (1) and (2), we have 

(7) 

and 

(8) 

Using Gauss' theorem, we have 

{9)* 

• For numerical calculation, not r,,,,. but I',c,.u is recommended. 
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where 

(10) 

with the upper (lower) sign taken for interior (exterior) problems. (This convention 

will be used in what follows.) 

It might be possible to use eq. (9) and the flow rule for numerical elastoplastic 

analysis, but a more effective approach is found by examining the form of the 

flow rule. We assume that a yield function J(i-, f) describes admissible states 

by the condition 

J(i-, f)~O, (11) 

where r and '!ft stand for stress and a set of internal parameters, respectively, 

and that the time variation oft is governed by an evolutional equation 

(12) 

Under theiie assumptions, the (associated) plastic strain rate takes the following 

form: 

(13) 

where i is strain rate, 

(14) 

and * signifies a certain product. Using eq. (13), we have 

(15) 

and 

1P'=D:s. (16) 

The boundary condition and flow rule (eq. (16)) yield a system of integral equations 

with ,P and efr as unknown functions, which can be solved numerically. Note 

,Pis a vector function defined on 8D, and 7P' is a scalar function defined over DP. 

Using eq. (9), we obtain integral equations corresponding to the boundary 

condition and flow rule. To this end, we calculate 17u in DP and its limiting 

value on 8D. For the three dimensional case, we have 

(17) 
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in DP, where 

V: e = _11_(3l+8µe- l+µ 1 tra) 
15µ l+2µ l+2µ 

(18) 

and f DI denotes the ordinary principal value integral, which is clearly convergent. 

The limiting value on 8D may be easily calculated as 

where 

ru = ±S· (s6±(C: ifJ) •n)+_!__ V: (C: afJ)+ 
2 

+ 1 rr-i,ds+f rn: (C: ifJ)dV JaD DI 

" 1 ( l+µ ) S•(>= - n©(>---(n•(>)n©n 
2µ l+2µ 

and f indicates the principal value integral defined as 
DI 

lim f •dV, B, = {xf lx-xol <e, xED, XoE 8D} 
IJO jD\Be 

Fig. 1. Domains for the definition of principal 
value integral. 

(19) 

(20) 

which can be easily shown to converge in this case. Using eqs. (14)-(17) and . . 
(19), we may obtain a system of integral equations with <J, and 1JI' as unknown 

functions. 

It is by no means easy to see the solvability of the obtained integral equations. 

For traction boundary value problems, however, we can easily establish the ex­

istence of i, for the given sufficiently smooth boundary traction i and slJ, pro-

vided 8D is sufficiently smooth and, for the interior problem, f idS=O and 
j&D 

f xx idS=O. Thus, the assumption made in eq. (6) is justified. JaD 
Before closing this section we discuss briefly some extensions of the present 

formulation. 
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I) In order to express a far-off field, we may add u0, which satisfies A*u0=0, 

to the right hand side of eq. (9). 

2) We have considered three dimensional or plane strain cases so far. How­

ever, the whole analyses leading to eqs. (15) and (16) apply to plane stress case, 

with ,t replaced by 2µ.t/(.t+2µ) and tr in eq. (15) taken as the two dimen­

sional one. 

3) We assumed the regularity of the yield surface, or the existence of one yield 

function. The cases with several yield functions may be treated similarly, re­

sulting in an analogue of eq. (15) with as many unknown functions 'IF; in DP as 

the yield functions which are calculated as zero. 

4) Crack problems may be solved by adding a double layer potential over the 

crack surface to eq. ( 15). 

3 Numerical Analysis 

The method of analysis employed here is rather conventional, i.e., the dis­

cretization of unknown functions by appropriate shape functions, the nu­

merical solution of the resulting system of algebraic equations and incremental 

evaluation of field quantities. In this section, we discuss these steps briefly. 

I) Discretization 

We use the simplest method of discretization, i.e., the modelling of 8D and 

DP by an assemblage of plane and polyhedral segments, and the interpolation of 

the unknown quantities by the characteristic functions of these segments. Then, 

all the integrals appearing in the discretized counterpart of eq. (9) can be cal­

culated analytically. By direct differentiation and some limit calculations, if 

necessary, we can construct the discretized boundary condition and flow rule 

without reference to eqs. (17) and (19). Piecewise constant approximation is 

considered to be the simplest reasonable one for our potential representation, 

though unreasonable for the Swedlow-Cruse type representation because the 

boundary stresses of the double layer potential depend on the derivatives of its 

density explicitly. 

The modelling of DP requires some intuition. The region where yielding is 

likely to occur must be subdivided into mesh in advance. 

2) Numerical solution of the integral equations 
C • • 

We take tj, and ?[f as unknown functions. Collocation is used to discretize 

the boundary condition and flow rule. These equations are solved simultaneously 

using a direct method (Crout method) so that iterative computation is not neces­

sary for each incremental step. Although some parts of the coefficient matrix 
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alter for each step, the size is small because ff' is a scalar function. 

3) Incremental analysis 

Ordinary incremental analysis is employed and no corrective iteration is 

carried out. The magnitude of each increment is determined so as to make one 

element yield in one step. Note that the sign of I' determines the state of the 

corresponding element, i.e., ff' >O for loading, ff' =0 for neutral and 1P" <0 for 

unloading. 

4 Examples 

Several two and three dimensional boundary value problems are solved by 

using the method described in §3. 

I) Extension of circular hole7> 

It is well-known that the above mentioned problem admits analytical solu­

tions for statically determinate stresses under some assumptions, i.e., plane strain, 

Tresca's yield condition and no work hardening. As was noted by R. Hill, these 

solutions also approximate stress states in von Mises material under the same 

conditions, with a slight modification. Assuming perfectly elastic-plastic von Mises 

material, we computed several stresses and compared the results with analytical 

solutions. The material properties were set as follows: 

E (Young's modulus) = 2.1 x 106 kg/cm2 (206 GPa), 11 (Poisson's ratio) = 0.3, 

a, (yield stress) = 2500 kg/cm2 (245 MPa) . 

-r96 and -r,, for p (internal pressure)= 0.6, 0.66 and 0.8 a,, calculated at 

several points using the model shown in Fig. 2, are plotted in Figs. 3 and 4. They 

agree well with the analytical solutions shown by the solid line in spite of the ra-

Fig. 2. Model of circular hole. 
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Fig. 3. Hoop stress around a circular hole 
subject to internal pressure. 

Fig. 4. r,, around a circular hole subject 
to internal pressure. 

ther coarse mesh used. 

2) Circular hole subject to biaxial tension8> 

Using the complex potential technique, L.A. Galin calculated stresses around 

a circular hole subject to biaxial tension under several assumptions, i.e., plane 

strain, incompressibility (Tresca or von Mises yield condition) and no work har­

dening. We solved the same problem under the following conditions: 

E = 2.1 x 106 kg/cm2 (206 GPa), 11 = 0.45, a, = 2500 kg/cm2 (245 MPa), 

-ri1 = 1875 kg/cm2 (184 MPa, 0.75a,), i- 22 = 2125 kg/cm2 (208 MPa, 0.85a,). 

The choice for Poisson's ratio may make the result a close approximation of the 

incompressible solution though an exact incompressible analysis might be possible 

within our framework after some limit calculations, which the authors do not 

think worth while. 

The calculated plastic region is shown in Fig. 5, which agrees quite well 

with the exact one depicted by a solid line. (The subdivision used is also shown in 

Fig. 5.) -r22 along x1 axis and i-11 along x2 axis are plotted in Figs. 6 and 7, which 

C0::0 0.85<ry 
X2 

Fig. 5. Plastic region around a circular hole subject to 
biaxial tension. 
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1.5 
-Galin 

>, 

b 

~1. 

t5 r/ r. 2.0 0.51.0 1.5 r / r0 
2.0 

Fig. 6. , 22 along x1 axis; circular hole 
subject to biaxial tension. 

Fig. 7. , 11 allong x2 axis; circular hole 
subject to biaxial tension. 

are also in excellent agreement with Galin's results. 

CPU time was about 16 sec., using Ml90 at the Kyoto University Data Pro­

cessing Center. 

3) Three dimensional tunnel analysis 

A three dimensional elastoplastic analysis was carried out in order to estimate 

the size of the plastic region around a tunnel under excavation. This kind of 

analysis is important for the mechanical interpretation of the so called NATM 

(New Austrian Tunnelling Method). 

For simplicity, we assumed that the mechanical behaviour of rock can be 

modelled by elastic-plastic material with the Drucker-Prager yield condition and 

associated flow rule. The material properties were put as follows: 

E = 7000 kg/cm2 (686 MPa), c (cohesion) = 20 kg/cm2 (1.96 MPa) , 

JI = 0.4, </> (friction angle) = 30°. 

x, 

10 (m) 

X 2 15 

Fig. 8. Model of tunnel under excavation. 
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Also, a slight isotropic hardening was assumed to c. The initial stress state was 

set as i-~1=-60 kg/cm2 (5.88 MPa), i-g2 =i-g3=-80 kg/cm2 (7.84 MPa), in the 

cartesian coordinate system shown in Fig. 8. The tunnel cross section is assumed 

to be a circle having a diameter of 10 m. 

Fig. 9 shows the plastic region obtained by using the mesh shown in Fig. 8. 

x, 

Xz 3 2 1 0 

3 (m) 
2 
1 

1 
2 3 X3 

Fig. 9. Plastic region; three dimensional tunnel analysis. 

The plastic region grows vertically (in the x1 direction) at the side of the tunnel, 

but no such trend is seen near the face. Also, we see that the thickness of the 

plastic region on the side diminishes as the face is approached. This effect may 

be considered to be of fundamental importance in understanding the mechanical 

+ 
-+ 
:::::j::. 
=±::" 

x, 

----·-------+-1-+-----+--X3 
_1!20 kg/cm2 

--isiress 
(compress ion) 

1m 
shape 

Fig. 10. Principal stress in x1 -x3 plane; three dimensional 
tunnel analysis. 
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aspects of tunnel excavetion. Figs. 10 and 11 show the in-plane princiapl stress 

and -r22 in x1-x3 plane, respectively. The displacements on the boundary are 

given in Fig. 12. The vertical component in the x1-x3 plane is amplified, com-

-"t22 ( kg(cm2) 

X1 200 

3 100 
2 

1 X3(m) 
0 1 2 3 

Fig. 11. -r22 in x1-x3 plane; three dimensional tunnel analysis. 

X1 

-
-----------'L.....I--X3 

I I 

-
________ ___,.......__X3 

elasto- plastic 1m 
- shape 

elastic 10cm 
- displacement 

Fig. 12. Displacement on the boundary; three di­
mensional tunnel analysis. 

pared with the elastic displacement expressed by a broken line, showing the effect 

of the plastic intrusion. 

The analysis in 75 steps was carried out in 10 minutes of CPU time using 

Ml90 at the Kyoto University Data Processing Center. 
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5 Concluding Remarks 
I) P.K. Banerjee et al.9> proposed to convert the volume integral in eq. (9) into 

the volume potential over DP. However, this process is not reasonable because 

eq. (9) is equivalent to eq. (6) and eP+ =I= 0 on an•P in general. Such a con­

version may be acceptable if eq. (6) is integrated with respect to time. 

2) In effect, eqs. (17) and (19) were not used in our numerical analysis. How­

ever, the importance of these equations is twofold. Firstly, they show that the 

stresses in DP and on 8D do not depend explicitly on the derivatives of potential 

densities, so that the piecewise constant approximation may be considered rea­

sonable. Secondly, they become necessary if a higher order intepolation is em­

ployed, where numerical integration is indispensable. 

An analogue of eq. ( 17) was also noted by Bui'>. 

3) The most time consuming part in the algorithm of the Integral Equation 

Method is the evaluation of integrals. Therefore, the simple layer potential ap­

proach shown in this paper may be more practical than the Swedlow-Cruse type 

formulation, considering the number of integrations needed. 

4) We took (> and W as unknown functions. As it is a scalar function, the 

resulting linear algebraic equation is small in size, especially in a the three dimen­

sional case. Thus, the present method may be applied effectively to almost any 

boundary value problems. 
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