
A Class of Linear Multiple Regression Techniques 
for Ordered Attributes 

By 

Hidekiyo ITAKURA* and Yoshikazu NISHIKAWA* 

· (Received May 28, 1980) 

Abstract 

A class of linear multiple regression techniques is discussed, in which ·the order of 
magnitude ia constrained, '1,mong regression coefficients. Each of the predictor variable~ 
is a qualitative variate having some categories which are on an ordinal scale. The criterion 
variable is quantitative. The problem is to solve a quadratic programming problem, 
in which the objective function is the residual sum of the squares of regression, and the 
constraints are linear ones imposed on the regression coefficients. Under some conditions 
for the observed data, the problem can be solved numerically. This technique works 
eff'ectiv~Jy for some types of regression analysis. 

1. Introduction 

335 

Techniques of linear multiple regression are very useful for multivariate analysis 

methods, but conventional techniques are sometimes unsuitable for analyzing some types 

of statistical CUI.ta. AmoQg them is a type of data concerned with qualita~ve variates 

of ordered attributes. It is sometimes found that results from a formal application of 
the conventional techniques to the data bewilder us in trying to interpret them. One 

of the bewildering points is that the order of values of regression coefficients given to 

the categories of each attribute seems unnatural, at least from the viewpoint of deriving 

a meaning of the regression under study. 

This paper is concerned with a class of linear multiple regression techniques. 

In order to avoid such unnaturalness, the order of magnitude is constrained among the 

values of the regression coefficients. Let the categories of an attribute be placed on an 

ordinal scale. Depending on the properties of the attributes and categories in the 

problem under study, although there may be a variety of order relations, one of the 

relatively general types is considered in this paper. 
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In the next section, a conventional linear multiple regression technique for quali­

tative variates is reviewed. Section 3, which is the principal part of this paper, is 

concerned with a procedure of multiple regression modified for ordered attributes. 

The significance of the presented modified multiple regression is then explained com­

plementarity, using trivial artificial data. Finally, an equational formulation for the 

regression is made, with a description of its systematic computational procedure. 

Section 4 illustrates an application of the method to real poll data associated with some 

areas' inhabitants' evaluation of their local cultural environment. 

2. Multiple Regression for Qualitative Variates 

This section reviews the technique of linear multiple regression for qualitative 

variates.1>2> The statistical data to be analyzed are compiled observations of people's 

attitudes or opinions derived from a questionnaire polling, or measurements of some 

kinds of subjective evaluations. 

It is assumed that the n attributes are under study in such a type of measurement, 

and that each one of them consists of k; categories (k;;?;2;j=I, 2, •··, n). Each one 

of the N individuals is to respond to one of the categories in· each item. For con­

venience, this response is expressed by the symbol 

{ 

1, if the individual i responds to the category k of the itemj 
f>i(j, k)= 

0, otherwise 

for k=l, 2, ···, k;; j=I, 2, ···, n; and i=I, 2, ···,.N. Then 

holds for every i andj. Moreover, it is assumed that each individual has a quantitatively 

measured value, Y;, as a criterion variable. 

By using the response fJ;(j, k) as predictor variables, the linear multiple regression 

(I) 

is considered. The unknown regression coefficients x;1, having quantitative values, 

called the category score for the category k of the attribute j, are to be determined in 

such a way that they minimize the residual sum of squares 

I N 
Jo=-2 ~ (Y1-y;) 2 

•=1 
(2) 

The result gives the best regression in terms of minimizing Jo. 
Equation (I) is substituted into Eq. (2) and the symbol J is used for Jo, from which 
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the constant terms independent of XJA are removed. The resulting J can be written 
in a vector-matrix form as 

(3) 

where 

x=(x1T, x2T, •··, xnT)T: M-vector 

x;=(x;1, x;a, •··, XJA;)T: k;-vector (J=l, 2, •··, n) 

F=[Fi-~. --~~~-- . . ·.·: ... ~
19

]: Mx M-symmetric matrix 

F.i Fn1 ··· Fan 

F ;r=Fr;T=[ J<~:.~~<:.~~-.:::<~~'--~-;.:.'_,_~,) ]= k; xk;•-matrix (j * j~;> 
f(j, k;;j', 1) ... f(j, knJ', kr) 

F;;=diag(/(j, l;j, 1), ···,J(j, k1;J, k;)): k1Xk;-diagonal matrix 

g=(g1T, gaT, •··, gnT)T: M-vector 

g;=(f.a;(j, l)Y;, ···, -f:,8;(}, k;)Y;)T: krvector 
1=1 ••1 

M equals the total number of categories, while/(}, k;j', k') represents the total number 
of individuals responding simultaneously to the category k of the attribute j and the 

category k' of the attribute j' : 

N 

f(j, k;j', k')=:E 8;(j, k)8;(j', k') 
/"l 

The superscript T denotes the transpose of a vector or a matrix. As seen from Eq. 
(1), XJA minimizing Eq. (2) is not unique. That is, any one category score (n-1 scores 
in all) in each of the arbitrary n-1 attributes is not independent. Therefore, the 

equation Fx-g (which, in order to determine x;A minimizing J, results from differentiat­
ing Eq. (3) with respect to x and putting it to zero) is a set of simultaneous equations 
having indeterminate solutions. Thus, without any loss of generality, x;1 is put to 

zero (}=2, 3, ···, n) and removed from Eq. (3); and 

(5) 

is defined, where 

x=(x1r, x2r, •··, x.T)T: .M-vector 

x1=(x12, x;a, ···, XJA;)T: (k;-1)-vector (}=2, 3, ···, n) 
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.F=[;:.: ... ;:: .... ·.·.· ... !.::]: .Mx.M-matrix 

fl'.1 F.a ··· F.-
P1,=F,1T=(F1; whose first column is removed) 

F;r=Fr;T=(F;;• whose first column and row are removed) 

(j,/=2, 3, ···, n) 

g=(g1T, gaT, •••, gnT)T 

g;=(g; whose first component is removed) 

M=M-(n-1) 

Consequently, the problem is reduced to the minimization of J with respect to x, and 

x J• minimizing J satisfies the equation 

(6) 

For the individual i, let us define the M-vector 

a;J=(l>i(j, 1), •··, 8;(j, kJ) )T 

It is easily seen that, if at least the M vectors among a1, a2, •··, aN are independent, 

.Fis positive-definite. Then, the solution of the linear algebraic equation (6) is unique. 

Useful information can be obtained from the results of the best regression deter­

mined. For XJ• obtained in the above way, the deviation of x;i from the average, 

weighted by the number of individuals for every attribute 

is computed, where N JI is the total number of individuals responding to the category 

l of the attribute j: 

N 
N;1=~ 8;(j, I) 

i=l 

The quantity XJ/ expresses the relative degree of influence of the category k in the 

attribute j on the criterion variable. Further, the correlation among 

(j=l, 2, ···, n; i=l, 2, ···, N) 

is obtained: 
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N 
I: O.iJO.ij' 
i=l 

1'Jj' N N 

I: a,,s. I: O.iJ's 
i•l i=l 

The partial correlation coefficient between the attribute j and the criterion variable can 

be calculated: 

where r 1i is the (i,j) element of the inverse of the (n+l)X(n+l)-matrix R={r1J'}, 

The value of rr 1• reflects the degree of the relation of the attribute j directly to the 

criterion variable, and the relation involves no indirect relations through the attributes 

other than j. 

3. Constrained Multiple Regression for Ordered Attributes 

The category scores x 1• are determined formally by minimizing the residual sum 
of the squares (5) in the last section. Accordingly, the order of magnitude among the 

resulting x;, is unconstrained. However, in a case where the categories of an attribute 

are on an ordinal scale, e.g., good or bad, necessary or unnecessary, satisfactory or 
unsatisfactory, sufficient or insufficient, etc., it is sometimes natural to presuppose some 
ordinal relation among the scores x 1, for every j. Although such a presupposition is 

a very strong one, it is sometimes reasonable and it is often due to some type of transi­
tivity in human judgment. 

As an illustrative example, let us consider the trivial artificial data given in Table 1, 

in which the symbol O means an individual's response to one of three categories in each 
of two attributes. The categories of each attribute are on an ordinal scale, for example, 
category 1 indicating "good", 2 indicating "neutral", and 3 "bad''. The criterion 

Table 1. Artificial data of responses. 

Attribute 1 Attribute 2 Criteri~n variable Y 1 
Individual Category Category i 

1 2 3 1 2 3 Case (i) Case (ii) 

1 0 0 1.0 1.0 

2 0 0 2.0 2.0 
I 

3 0 0 3.0 3.0 

4 0 0 2.0 3.0 

5 0 0 3.0 3.0 

6 0 0 4.0 3.0 
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Table 2. Category scores obtained for the data of Table 1. 

Attribute 1 Attribute 2 
Case 

XU xu X18 xu XIS X88 

(i) 
4 11 5 

0 
2 4 

3 6 -2- -3- 3 

(ii) 4 17 5 0 2 1 
3 -6- -2- 3 -3-

variable is such that, the smaller the value the higher the general goodness becomes. 

Thus, the condition should be satisfied whereby the value of y; becomes larger for an 

individual responding to category 2 or 3 rather than for one responding to category 1 

or 2, respectively. 

Table 2 shows the category scores x ik obtained by the procedure of the last section 

for the two cases regarding the values of the criterion variable. Although the above 

condition is certainly satisfied in Case (i), it is not true for Case (ii). For example, 

the value of y1 is 4/3+2/3=2 in responding to category 1 of attribute 1 and category 2 

of attribute 2, and 4/3+1/3=5/3 in responding to category 1 of attribute 1 and category 

3 of attribute 2. This is inconsistent with the condition. Therefore, it is reasonable 

that X;k be determined under the constraint x;1~x;2~x;a. The authors have 

sometimes experienced this type of inconsistency, when they were analyzing real data. 

There could be various types of order relation among the category scores, depending 

on the properties of attributes and categories in the problem under study. Here, let us 

consider the constraints 

(j=l, 2, ... , n) (7) 

which might be comparatively general, and also could be a basic form of other various 

types of constraints. 

A possibly less sophisticated way of obtaining the category scores satisfying the 

condition (7) may be as follows: First, x;1, are computed by the procedure of the last 

section, discarding the constraints. Next, two neighboring categories whose scores do 

not satisfy the constraints (7) are merged into one category. Then, the new problem 

with some merged categories is dealt with so as to obtain x;1,. Again, the constraints 

(7) are checked for the new x;1,. The same process is repeated until all the constraints 

become satisfied. This is somewhat cumbersome. A method is being considered 

for obtaining the category scores satisfying the constraints in one step, not needing to 

go through a cumbersome process with many steps. 

The problem is to determine x minimizing J of the equation (5) subject to the 

constraints (7). This is just one of the quadratic programming problems, and can be 
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solved numerically under the condition, with respect to the data, that .F is positive­

definite, as stated in the last section. However, making an inequality constraint of 

a vector-matrix form directly from the inequality (7) leads to having the constraint 

matrix with a number of zero-elements. This causes a considerable waste of compu­

tation time. Accordingly, the following procedure is done. 

By introducing the new variables E 1,, x1, are replaced as 

xu=xu+Eu 

X1a=xu+E1s=X11 +Eu+Eu 

xu, =X1,,,-1 +Eu, =Xu +Eu+Eu+··· +Eu,• 
x;s=x1a+E1a 

X;4=x;a+E14=X;s+E1s+E14 

x;,;-:XJ,A;-1 +E1,1=X1s+E1a+E14+•·· +E1,; 

Equivalently these are 

in the vector-ma,trix form, where 

E=(E1T, EaT, ···, E.T)T: .M-vector 

E1=(x11, E12, ···, Eu,)T 
E1=(x;2, Eis, ···, E1,1)T (}=2, 3, ···, n) 

S=diag(S1, Sa,•··, S.): Mx.M-matrix 

[
10:_-·~1 S _ 1 1 · .. : 

J- : ·-... 0 
1 1 ... 1 

(j=l, 2, ···, n) 

(}=2, 3, ···, n) 

and S1 is the k1Xk1-matrix and S; is the (k;-l)X(k;-1)-matrix for j=2, 3, ···, n. 

From this transformation, the constraints (7) are written simply· as 

where 

E=(E1T, E2T, ···, E.T)T 

E1=(E12, Eu, ···, Eu,)T 

(8) 

Moreover, for the convenience of the linear programming problem appearing in Wolfe's 

method, which will be described later, the values of criterion variable Y; are transformed 

as 

Y;=Y;- max Y, 
l=1t•••,N 
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and gin Eq. (3) is replaced by 

Due to this transformation, the .M components in g• are all non-positive. The values 

of xu (k=l, 2, ... , k1), obtained by using this g•, added to max Y, give the solution 
l•1,•••,N 

for the original Y ;. 

From the above, J is rewritten as 

(9) 

where 

and!* is g• with the first component of g ;• (j=2, 3, ... , n) removed. If.Fis positive­

definite, then so is A, because Sis non-singular. The problem is to determine f mini­

mizing J of Eq. (9) subject to the constraint (8). 

The solution f of the problem ought to satifsy the Kuhn-Tucker condition. That 

is, by introducing the Lagrange multiplier u of the (.M-1)-vector and defining 

L=uTE-J 
the Kuhn-Tucker condition is given by 

or 

and 

(11) 

(12) 

Since the elements of A and the components of bare all non-negative, xu;;i;O is observed 

from Eq. (10) together with (12). Therefore, by defining 

-[ xu' ]-[ -xu] z- l - e 
Eqs. (10) and (12) are written as 

Vz+[ ~ ]=b, zi?;O, ui?;O, V=(a, -A) 

where a is the first-column vector in A, and A is A from which a is removed. 
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According to Wolfe's methoda> for the quadratic programming problem, a basic 

solution of Eq. (10) satisfying the conditions (11). and (12) minimizes J. Hence, by 

introducing a scalar artificial variable w, the problem is reduced to the linear program­

ming problem of minimizing the objective function 

subject to the constraint 

Vz+v=b, z~O, v=[:J~o 
This can be solved by the usual simplex method, using the initial basic t' easible solution 

w=b, z=O, u=O. However, since the condition (11) has t6 'be satisfied, the basic 

change in the simplex method has to be executed in such a way that, if the /th compo­

nent (/~ 2) of vis a basic variable, the /th component of z is a non-basic variable. Also, 

if the /th component (/~2) of z is a basic one, the /th component of vis a non-basic one. 

If the matrix A is positive-definite, it is assured that, unless degeneracy occurs, this 

execution will always give the solution upon termination. 

4. Application to Real Data 

The data treated here are those resulting from the summary of a poll, which was 

conducted by the Association for Architecture Research'> for the,Na.tional Land Agency 

of Japan, with regard to inhabitants' evaluations of their local cultural environments. 

The purpose of the poll was to investigate how inhabitants evaluate their physical and 

human environments in local cities, preserving traditional manners and customs, and 

also the role that the local cultural environment plays in those general living environ­

ments. The poll was conducted in three local cities in Japan. 3057 families were chosen­

randomly, among which 2428 families responded, meaning a high 80% response. 

Several inquiries were made in the questionnaire concerning the above aims. The 

principal part of the questionnaire consisted of thirty items, concerning physical en­

vironment mainly from the viewpoint of local cultures and traditional manners and 

customs. For each item, the people were asked to indicate the degree of their feelings 

of satisfaction, in one of five specified categories: category 1-very satisfactory, 2-

satisfactory, 3-indifferent, 4-unsatisfactory, and 5-very unsatisfactory. The items 

used in this section were the following sixteen items among the thirty: 

2. A religious institution like a temple, a shrine, or a church. 

3. Precincts of a temple or a shrine. 

4. A statue of a children's guardian or travelers' guardian by a roadside. 

5. A sacred or aged tree, a stone monument, or a shrine gate by a roadside. 



344 

6. 
7. 

10. 

13. 

14. 

15. 

17. 

18. 

19. 

20. 

21. 

28. 
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A historic building like an old house of a prominent person. 

An old-style residence on a street. 

Stone steps, a stone wall, or a stone pavement. 

View of a temple or a pagoda from one's home or neighborhood. 

Some annual celebrations of their family, like annual festivals in certain 

seasons, or the Festivals of Star Vega in July. 

Their own community's celebration of a traditional local festival. 

Town association's activities for their neighbors. 

Decoration of their homes with a traditional drapery or a Japanese paper 

lapterp on a .f ~stival. 
An early morning fair or an evening fair. 

A street named with a historic atmosphere. 

A very curvy road preserved from old times. 

General traditional heritages in their town or community life. 

The first fifteen items were used as the attributes for predictor variables in the regression 

analysis, and the last item was used for the criterion variable. This analysis of regression 

aimed at observing the unconscious elements of traditional heritages. 

Categories 1 and 5 in every item were merged with categories 2 and 4, respectively, 

in advance, because there were very few responses to category 5 (very unsatisfactory) 

in some items, less than one percent of the total responses. Further, although item 28, 

used for the criterion variable, is on an ordinal scale as well as the other items, this 

Table 3. Average of observed values of the criterion variable 
from individuals responding to each category. 

Itemj Y;1 Y;a Y;, 

2 2.657 2.792 3.115 
3 2;648 2.795 3.006 
4 2.562 2.779 3.053 
5 2.554 2.785 2.983 
6 2.621 2.767 2.983 
7 2.587 2.783 3.066 

10 2.616 2.736 2.973 
13 2.556 2,797 3.000 
14 2.667 2.770 3.071 
15 2.676 2.768 3.011 
17 2.636 2.798 2.987 
18 2.608 2.772 3.022 
19 2.572 2.733 2.983 
20 2.565 2.806 3.079 
21 2,550 2.799 2.959 
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criterion variable was regarded as taking the values 2.0 corresponding to categories 1 

and 2, 3.0 to category 3, or 4.0 to categories 4 and 5. In this analysis, it is assumed 

that because every one of those fifteen items could be one of the factors constituting 

traditional heritages, the more s11,tisfactory the item the smaller the value of the criterion 

variable should be. One of justifications of this assumption is described by Table 3. 

This table shows the value 

1 N 
P1•=-N I: 8,(j, k) Y 1 

Ji /a1 

namely, 'the average of the observed values of the criterion variable from people who 

responded to ecah category of a predictor variable. From the table, it is seen that for 

every item, without exception, the average value corresponding to the category indicating 

a high degree of satisfaction is smaller than the average value corresponding to the 

category indicating a high degree of unsatisfaction. Therefore, on the average, the 

present assumption is true. 

After the preliminary processing of the data, the original method in Section 2 and 

the present modifie<;l method in Section 3 were applied to the data of 1838 valid responses. 

(The remaining 590 responses gave no answer to any of the above sixteen items under 

study.) The computed values of the category scores are shown in Table 4. Some 

interesting points are observed from the table. It had been expected that x;z~x;s~ 

x;,. The results by the original method do not necessarily meet this expectation. 

Table 4. Category scores computed by the two methods-by using full 
valid data (1838 responses). 

Original method Modified method 
Itemj 

x;1' x;a' x;,{ x;a' x;a' x;,{ 

2 -0.016 0.002 0.124 -0.014 -0.002 0.136 
3 -0.004 -0.002 0.027 -0.002 -0.002 0.015 
4 -0.045 0.003 0.115 -0.035 0.001 0.097 
5 -0.061 0.024 0.031 -0.042 0.017 0.017 
6 0.075 > -0. 027 > -0.071 0.0 0.0 0.0 
7 -0.067 0.022 0.120 -0.035 0.004 0.099 

10 0.028 > -0.020 0.042 -0.008 -0.008 0.045 
13 -0.063 0.028 0.041 -0.051 0.022 0.038 
14 -0.025 0.002 0.148 -0.018 -0.005 0.142 
15 0.028 > -0.046 0.018 -0.003 -0.003 0.023 
17 -0.047 0.022 0.113 -0.038 0.013 0.109 
18 -0.027 0.014 0.021 -0.022 0.011 0.020 
19 -0.051 -0.018 0.116 -0.044 -0.020 0.114 
20 -0.068 0.026 0.122 -0.062 0.021 0.121 
21 -0.117 0.043 0.114 -0.112 0.042 0.107 
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Table 5. Category scores computed by the two methods-by using half 
valid data (919 responses). 

Original method Modified method 
Itemj 

x;a' x;a' x;,' x;a' x;s' x;l 

2 -0.008 -0.006 0.109 -0.008 -0.008 0.127 
3 -0.016 0.017 > 0.011 -0.009 0.008 0.008 
4 -0.035 -0.007 0.131 -0.024 -0.009 0.113 
5 -0.025 0.012 > 0.006 -0.017 0.007 0.009 
6 0.050 > -0.030 0.021 -0.002 -0.002 0.016 
7 -0.052 0.011 0.112 -0.033 -0.000 0.104 

10 0.008 > -0.009 0.024 -0.006 -0.006 0.033 
13 -0.094 0.031 0.118 -0.087 0.027 0.116 
14 -0.029 0.002 0.164 -0.020 -0.006 0.155 
15 0.037 > -0.048 -0.029 0.0 0.0 0.0 
17 -0.038 0.006 0.126 -0.026 -0.003 0.108 
18 -0.020 0.018 > -0.011 -0.018 0.011 0.011 
19 -0.080 0.007 0.083 -0.076 0.005 0.080 
20 -0.060 0.026 0.108 -0.052 0.023 0.097 
21 -0.124 0.037 0.156 -0.119 0.034 0.154 

That is, there are pairs of two neighboring category scores where the order of values is 

reversed. (This case is indicated by the symbol > in the table.) By way of an extreme 

example, it is seen that the more satisfactory item 6 is, the more unsatisfactory is item 

Table 6. Category scores computed by the two methods-by using the 
remaining half valid data not used in Table 5. 

Original method Modified method 
Itemj 

x;2' x;a' x;l xpl x;a' x;l 

2 -0.025 0.010 0.154 -0.021 0.007 0.147 
3 0.000 > -0.011 0.052 -0.003 -0.003 0.027 
4 -0.045 0.009 0.088 -0.039 0.010 0.063 
5 -0.091 0.038 > 0.033 -0.060 0.024 0.024 
6 0.094 > -0. 021 > -0.171 0.0 0.0 0.0 
7 -0.079 0.028 0.140 -0.038 0.011 0.080 

10 0.055 > -0.030 0.052 -0.006 -0.006 0.037 
13 -0.027 0.026 > -0.045 -0.007 0.004 0.004 
14 -0.027 0.011 0.118 -0.018 0.005 0.093 
15 0.020 > -0.050 0.088 -0.009 -0.009 0.083 
17 -0.057 0.045 0.085 -0.049 0.030 0.102 
18 -0. 031 0.008 0.055 -0.024 0.005 0.049 
19 -0.025 > -0.045 0.175 -0.035 -0.035 0.155 
20 -0. 083 0.027 0.145 -0. 072 0.019 0.140 
21 -0.112 0.051 0.069 -0.105 0.051 0.057 
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Table 7. Root mean square and maximum value of the differences 
between the category scores. 

Two tables 
compared 

Tables 4 and 5 

Tables 4 and 6 

Original method 

d d,,, 

0.026 

0.030 

0.092 

0.100 

Modified method 

d d,,, 

0.019 

0.020 

0.076 

0.060 

28. In contrast with these situations, the results by the modi~ed method are reasonable. 

Also, it is interesting to note that in the case of the original method, every pair of two 

~eighboring category scores having the ~ame values (indicated by the symbol = in the 

table) or nearly same values, are in accord with the pairs of the scores between which 

the symbol > appears. 

Tables 5 and 6 show similar results. The 1838 valid responses were divided into 

two random groups of equal numb~rs. Table 5 us~s one group and Table 6 uses the 

other. Tll.e universe of the data used in Tables 4, 5, and 6 is the same, but since the 
' ,; C 

sets of samples used are differeN (rom eacl:i other, t)le results shown in these tables are 

not necessarily the same. . Notwithstanding, .it is desirable ~at these three results should 

be similar to each other as much as, possible, due to those from the same population. 

In order to i;iee the similari~y,. the root mean square, d, of the differences bet~een the 

category scores in Tables 4 and 5 is calculated for each method. The same thing is 

done for the differences between the category scores in Tables 4 and 6. Further, the 

maximum value, d .. , of the differences is also examined. Table 7 is a summary of these 

values. It is to be desired that these should be small. Hence, it is observed that the 

modified method is better than the original one, since the values d and d,,, of the modified 

method are smaller than those of the original method. 

5. Concluding Remarks 

A modified technique of linear multiple regression has been discussed, in which 

some linear constraints were imposed on the magnitude of category scores. The 

computational procedure was reduced to solving a simple problem of quadratic pro­

gramming. The problem can be solved numerically by using Wolfe's method, under 

the condition that there is available a certain amount of observed data independent of 

each other. 

The procedure here presented has been applied to real data. The problem has 

fifteen attributes, and each attribute indicates the degree of satisfaction about a certain 

matter. It also has three categories, which were reduced from the original five cate­

gories. The data had features suitable for the method. In particular, the average of 
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the observed values of a criterion variable from people responding to the category 

indicating a high degree of satisfaction is always smaller than that indicating a high 

degree of unsatisfaction. As a consequence of this numerical computation, the expected 

results have been obtained: Pairs of two category scores, obtained by the original method, 

violating the presumed constraints are turned into the same or nearly the same values 

by the modified method. Further, when sets of data from different groups of people 

but from the same universe, have been analyzed, the dispersion of the category scores 

by the modified method is less than that by the original method. 

The idea of the modified method is fairly simple and, if the method is used carefully, 

it will be very useful for a type of regression analysis. Although the procedure in 

Section 3 has been formulated for the same type of constraints for all the attributes, the 

formulation is also possible for some other types of constraints: for example, a case 

where category scores are constrained for some attributes but not for others. 
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