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Abstract 

In this paper, applying a method of diffusion approximation, we consider optimal 
operating policies for a GI/G/1 queueing system with a removable server. The following 
costs are incurred in the system: a cost per unit time of keeping the server running, fixed 
costs for turning the server on or off, and a holding cost per customer in the system per unit 
time. The average cost rate is used as a criterion for optimality. By using a couple of 
diffusion processes that approximate the number of customers in the system, an explicit 
form of the average cost rate is derived. Furthermore, some sufficient conditions under 
which the optimal operating policy falls into specific forms are obtained. It is examined 
numerically how the boundary condition at the origin of the diffusion process effects the 
optimal operating policy and its cost. 

1. Introduction 

377 

Queueing systems with a removable server have been studied by many researchers, 

e.g., Yadin and Naor16>, Heyman8>, Sobel14> and Bell2>. In this paper, such a system 

under the general conditions is analyzed by using diffusion approximation, and some 

useful properties of optimal policies for operating the system are provided. In the 

standard GI/G/1 queueing system, the server always serves arriving customers, i.e., it 

is always on so far as the system is not empty. However, the server in the present 

GI/G/1 system is allowed to remain dormant in front of arriving customers, i.e., it may 

remain off. Furthermore, the following various costs are incurred in the system. 

First, costs for keeping the server off or on are incurred per unit time. It is assumed 

that the cost for keeping the server on (running cost) is greater than that for keeping it 

off (dormant cost). This is an incentive to turn the server off whenever the system be

comes empty. Secondly, fixed costs for turning the server on and turning it off are 
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incurred. The former is called a start-up cost and the latter a shut-down cost. The 

existence of the start-up cost is an incentive to keep the server off even if customers are 

waiting in the queue. In addition to the above costs there is a cost per unit time as a 

penalty for the delay of customers. This cost is proportional to the number of custom

ers in the system, and is called a holding cost. 

The problem of controlling the system concerns what policy would be optimal 

for turning the server off or on with respect to the information about the number of 

customers, and whether or not the server is off. As a criterion for optimality, we use 

the average cost per unit time over an infinite horizon. This problem for the M/G/1 

system has been first studied by Heyman8>. For the GI/G/1 system with a more general 

cost structure, Sobel14> obtained a sufficient condition under which the optimal stationary 

policy is, so called, an (n, N) policy (O;:;;;n;:;;;N). He mentioned that n=O in the queueing 

system with the above cost structure. Moreover, Yadin and Naor16> investigated the 

system in which both the running cost and the dormant cost vanish, and the operations 

for the start-up and the shut-down require stochastically distributed times. Their 

operating policy is also the (0, N) policy. 

In connection with control problems of dams and storage systems, much extensive 

research on a controlled Brownian motion process has been recently carried outi,s-5,1,12>. 

Rath 12> investigated a controlled diffusion process with the same cost structure and 

optimality criterion as in this paper. Approximating the underlying diffusion process 

by a sequence of random walk and applying the theory of Markov decision processes, 

he showed that the optimal policy is the (n, N) policy. He obtained, however, few re

sults about the properties of optimal policies, since the diffusion parameters are not 

specified in terms of the parameters of the original controlled queueing problem. 

Chernoff and Petkau3> proposed a slight generalization of Rath's results in which a non

linear holding cost is allowed. Their computational procedure for the optimal policy 

is, however, so complicated that one must solve a system of non-linear equations even 

for the linear cost structure. A Brownian motion control problem with quadratic cost 

was analyzed by Doshi4>: 

In this paper, considering these results, we shall investigate both the properties of 

the optimal operating policies and the accuracy of the approximation for the controlled 

queueing system with a removable server. Several assumptions and notation specifying 

the system are introduced in Section 2. In Section 3, using diffusion processes approxi

mating the number of customers in the system, we analyze the behaviour of the system 

under the (O, N) policy, and obtain an explicit expression for the average cost rate. 

Section 4 deals with the characterization of the optimal operating policy. It is shown 

that the theorems in Section 4 are rather new results which also hold exactly for the 

M/G/1 system. Section 5 examines numerically how the boundary condition at the 

origin of the diffusion process effects the optimal operating policy and its cost. 
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l. Assumptions and Notation 

Let us define idle periods as time intervals during which the server is off. Time 

intervals when the server is on are called busy periods. Moreover, a successive idle and 

busy period is called a busy cycle. It is noted that the definitions of idle and busy 

periods are different from the usual queueing terminology in which these periods are 

determined by whether or not the system is empty. 

Assumptions on arrival and serviee processes are: 

(a) Arrival process 

Let u. (n=l, 2, •··) denote the interarrival time between the (n-1)" and nu 

arriving customers; {u., n=l, 2, •··} is a sequence of nonnegative i.i.d. random 

variables with E[u.]=1/A (<oo) and Var[u.J=ua 2 (<oo). 

(b) Service process 

Let v. (n=l, 2, , .. ) denote the service time of the nth arnvmg customer; {v., 

n=l, 2, •··} is a sequence of nonnegative i.i.d. random variables with E[v.]=1/µ 

( < oo) and Var [ v.] =u, 2 ( < oo). It is assumed that the traffic intensity p = .\/ µ is less 

than unity. Moreover, the sequence {v., n=l, 2, •··} is independent of {un, n= 

1, 2, ···}. The order of servicing customers is arbitrary as far as it is work-conserving. 

(c) Cost structure 

Notations used for the costs incurred in the system are as follows : 

r1: dormant cost rate [$/hour], 

r2: running cost rate [$/hour], 

R1: start-up cost [$], 

R2: shut-down cost [$], 

h: holding cost rate [$/customer·hour]. 

In this linear cost structure, all costs are assumed to be nonnegative and finite. Further, 

it is assumed that h>O and r2fi;;r1. 

(d) Criterion/or optimality 

We adopt an average cost per unit time over an infinite horizon as the cost function 

to be minimized. Let C(t) be the total cost incurred during the time interval (0, t]. 

Then the optimal policy is a policy that minimizes 

lim lt E[C(t)]. 
/+oO 

(1) 

(e) Operating policies 

The forms of operating policies are closely related to the choice of decision epochs. 
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For the M/G/1 system, Heyman8> proved that the optimal policy has one of the following 

forms if the server should be turned on at any arrival epoch, or off at any service com

pletion epoch : 

(i) Always turn the server on, or never turn the server off. 

(ii) Turn the server on when N (~ 1) or more customers are present, turn the 

server off when the system is empty. It is called a (0, N) policy. 

(iii) Always turn the server off, or never turn the server on. It may be called a 

(0, oo) policy. 

For the GI/G/1 system, Sobel14> showed, under weaker conditions for the costs and 

the same decision epochs, that the optimal policy is an (n, N) policy. He pointed out 

that n=O under the linear cost structure. Consequently, following their results, we 

can restrict the form of operating policies to 

?To: a policy that the server is always turned on, 

and 

'ITN: a (0, N) policy (l~N~oo). 

In the formulation of Section 3, the decision epochs do not directly correspond to 

the arrival or service completion epochs since diffusion processes have continuous state 

spaces. Rath12> proved, however, that the optimal policy for controlled diffusion pro

cesses with the same cost structure is also the (n, N) policy. For the assumed queueing 

contents, the value of n must be zero. Thus, the choice of the decision epochs does not 

have any effect on the subsequent analysis. 

3. Formulation by a Diffusion Model 

In this section we shall explicitly derive the average cost rate under the policy 

'ITN by using two appropriate diffusion processes. Since the average cost rate does 

not depend on the initial state, it is assumed, without loss of generality, that an idle period 

begins at time zero. Let Q(t) denote the number of customers in the system at time 

t, and consider the behaviour of the path Q(t) in one busy cycle under the policy 'ITN. 

The sample path Q(t) is approximated by two independent diffusion processes { Y(t); 

t~0} and {Z(t); t~0}. The former approximates Q(t) in the idle period and the 

latter in the busy period. In the idle period, Q(t) increases monotonically according 

to the arrival of customers because the server is never turned on during that period. 

Let A(t) denote the total number of arrivals in the time interval (0, t]. Since Q(0)=0, 

Q(t)=A(t) in the idle period. Hence, using the results in [9], the path Q(t) in the idle 

period can be approximated by a diffusion process {Y(t); t~0} with the infinitesimal 

mean b1 and the infinitesimal variance a1, where 
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bi=lim E[Y(t+Llt)-Y(t)IY(t)] ,\ 
.4t+o Lit ' 

(2) 

and 

_ 1. Var[Y(t+Llt)-Y(t) I Y(t)] 
a1= 1m At 

.4t+o "-' 
(3) 

When the path first reaches level N, the busy period starts and the server is turned on. 

Let D(t) denote the total number of departures in the time interval (0, t]. Then it 

follows that Q(t)=A(t)-D(t) in the busy period. That is, the path Q(t) in the busy 

period behaves similarly to that of the usual GI/G/l system. llence, it can be approxi

mated by the diffusion process {Z(t); 160} with 

b _ 1. E[Z(t+Llt)-Z(t)IZ(t)J 
2= Im At 

.4tto "" 
,\-µ, (4) 

and 

_ 1. Var [Z(t+Llt)-Z(t)IZ(t)] 
a2= 1m At 

.4t+ 0 "-' 
(5) 

From the physical meaning of Q(t), the processes Y(t) and Z(t) should have the regions 

[O, NJ and [O, oo), respectively. However, it is assumed for analytical convenience that 

the former has the region (-oo, N]. 

For these diffusion processes, define the stopping times as follows: 

T1(xo, N)=inf {t60 I Y(t)=N, Y(O)=xo}, (6) 

and 

T2(xo, O)::inf {t60l Z(l)=0, Z(O)=xo}. (7) 

The stopping times T1 = T1(0, N) and T2 = T2 (N, O) approximate the lengths of the 

idle and busy periods, respectively. From b1>0, we have E[Ti] < oo. The assumption 

p< l implies that b2< 0 and hence E[T2] < oo. Thus, in an average sense, one busy 

cycle terminates at the finite time t=T1+T2. 

The following lemma is directly derived from Theorem 7.5 in [13, p. 160]. 

Lemma 1. Let V(N) denote the average cost rate of the system under the policy 

'TrN, i.e., 

V(N)=lim 1
1 

E[C(t)]. 
t+oo 

Then,for N=l, 2, ···, 

where 

V(N) E[T1]tE[T2] {E[.loT'c1(Y(u))du] 

+E[./oT'c2(Z(u))du ]+R1+R2}, 

(8) 

(9) 
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c;(x)=hx+n, z"=l, 2. (10) 

In order to evaluate the average cost rate given by (9), it remains to calculate both 

the mean lengths of the idle and busy periods and the expected costs incurred during 

these periods. The next lemma provides the differential equations that the expected 

costs satisfy. 

Lemma 2. Let 

J [Ti<xo,N) ] 
v1(xo) ==LJ 

O 
c1( Y(u))du 

and 

Then, v;(xo) satz"sjies the ordz"nary dijferentz"al equatt"on 

1 d 2v; dv; . ' · 
-
2 
a;-d 2 +b;-d +c;(xo)=O, xo Xo 

(11) 

fort"=l, 2. Thez"r boundary condz"#ons are gt"ven by v1(N)=O and v2(0)=0, respectz"vely. 

Proof: Using Theorem 1 in [11, p. 149], we can easily derive (11). The boundary 

conditions correspond to imposing absorbing barriers at x=N for the idle period and 

x=O for the busy one. O 
The mean lengths of the idle and busy periods can be obtained from Lemma 2, 

as shown in the next lemma. 

Lemma 3. Let m1(xo)=E[T1(xo, N)] and m2(xo)=E[T2(xo, O)]. Then, m;(xo) 

satz"sfies the ordinary dijferential equatz"on 

l d 2m; dm; 
-2 a;-d. 2 +b;-d. =-1, Xo xo O<xo<N, (12) 

for i=l, 2. Their boundary condt"tz"ons are gz"ven by m1(N)=O and m2(0)=0, respectz"vely. 

Proof: Substituting c;(xo) = 1 in Lemma 2 immediately leads to the result. O 

Thus, the average cost rate { V(N)} is obtained from these lemmas. 

Theorem 1. Let V(N) be the average cost rate of the system under the polz"cy 

'11'N. Then 

(13) 

andfor N=l, 2, •··, 

(14) 

where 
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Proof: The proof is directly done by Lemmas 1-.,3, Solving (11) with the given 

boundary conditions and setting xo to each initial value, we have 

(16) 

and 

(17) 

The mean lengths of the periods are derived from Lemma 3, or by substituting r1= 

r2= 1 and h= 0 into (16) and (17). That is, 

(18) 

and 

Then, by applying Lemma 1 and using (2)-.,(5) and (16)-.,(19), it will yield (14). From 

the structure of (14), it is considered that L(N) represents the mean number of customers 

in the steady state under the policy TTN, That is, L(l) must agree with the mean number 

of customers in the usual sense. Hence, the. average cost rate using the policy TTo is 

clearly given by (13). D 

The average cost rate (14) has a very similar form as the exact one for the M/G/1 

system8>. That is, the terms, except for hL(N), completely agree with those of the 

exact results. For the M/G/1 system, the term L(N) can be rewritten as 

(20) 

Let c, be the coefficient of variation of service times. Then, for c, 2=1, e.g., for the 

M/M/1 system, L(N) becomes equivalent to the exact one. For other values of c, 2, it 

follows from [16] that L(N) has an error evaluated by 

p(µ,2u,2+1) 
2(1-p) (21) 

Hence, V(N) overestimates or underestimates the exact average cost rate, according 

as c, 2> 1 or c. 2< 1. The relative error of (21), however, decreases as the traffic becomes 

heavy, since the error (21) increases with the linear order of p, whereas the number of 

customers increases with the order of (l-p)-1 • 



384 Toshikazu KIMURA, Katsuhisa OHNO and Hisashi MINE 

4. Optimal Operating Policies 

The optimal operating policy that minimizes the average cost rate derived in 

Section 3 will be found in this section. Although the average cost rates, { V(N), N~ 1}, 

are defined only on the set of the natural number, we extensively regard V(N) as a 

function of the positive real number N for the sake of analytical convenience. Then, 

by differentiating V(N) by N, it is shown that V(N) has a unique minimum at N=N 

because of its convexity, where 

(22) 

Hence, the best positive integer value of N is given by one of two integer points adjacent 

to N. Consequently, the optimal value of N can be determined by comparing the 

values of V(N) at these integers and V(O). For the M/G/1 system, Heyman8> obtained 

the same result as above. Further, it also agrees with the result of Yadin and Naor16> 

in a case where the switching times of start-up and shut-down are ignored. 

The next two theorems and corollaries provide some sufficient conditions which 

put the optimal operating policy in specific forms. It should be noted that these new 

theorems hold exactly for the M/G/1 system, because the error of V(N) is independent 

of N. 

Theorem 2. If ri =r2, then the op#mal operating policy ts 'ITo. 

Proof: The proof is executed by distinguishing two cases; 

Case l. N~ ! . For this case it is clear that mjn V(N)= V(l), where the minimum 

operation is chosen over the set of the natural number. Hence, 

min V(N)- V(O)= V(l)-V(O) 
N 

That is, the optimal operating policy is 'ITo. 

Case 2. N>;. Since V(N) must be less than or equal to mJn V(N), it follows 

from (13)~(15) and (22) that 

min V(N)-V(O);;;:; V(N)-V(O) 
N 

=h {L(.N)-L(l)} +; h.N 

=h(N-;)>o. 

That is, the optimal operating policy is 'ITo. D 

From the result of Theorem 2, we assume hereafter that n>r1. 
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Theorem 3. 

(i) If r2-r1<µ(R1+R2), then there exists a unique ,\*E(0, µ), such that for any ,\E 

[,\*,µ)the optimal operating policy is 1ro. 

(ii) Otheriwse, there exists a unique ,\**E(0, µ), such that for any ,\E[,\**, µ) the 

optimal operating policy is 1r1. 

Proof: From (22), we have 

(23) 

That is, .N2 can be regarded as a quadratic function of ,\, Therefore, .N2 is mono

tonically decreasing for,\> µ/2 and gets less than unity as,\ increases, i.e., 2(R1 +Ra) 

·A(µ-,\)/µh:i,l. This inequality can be rewritten as 

(24) 

Hence, if µ(R1 +R2):i,2h, then (24) always holds, that 'is, .N:i,1 for any ,\E[0, µ). · On 

the other hand, if µ(R1+R2)>2h, then .N:i,1 for ,\~,\1 with 

(25) 

It is clear that A1E(µ/2, µ). Consequently, a sufficient condition for .N:i,1, which is 

independent of the costs, is ,\~,\1. Assume here that ,\ is sufficiently large so that 

.N:;,1. Then, 

min V(N)-V(0)= V(l)-V(0) 
N 

===(1-p) {,\(R1 +R2)-(r2-r1)}. 

Hence, if ,\~,\2= (r2-r1)/(R1 +R2) and 0<A2<µ, it follows that min V(N)~ V(0) and 
N 

the optimal operating policy is 11 0• In other words, if r2-r1<µ(R1+R2), then the 

optimal operating policy is 1ro for ,\~max(A1, Aa)E(0, µ). For a case where ,\z~µ, i.e., 

r2-r1~µ(R1+R2), it follows for any,\ with .N:i,1 that 

min V(N)= V(l) < V(0), 
N 

whereby the optimal operating policy is 1r1 for ,\ satisfying .N :i, 1. Such ,\ is given, for 

example, by ,\E[A1, µ). Thus the proof is completed. D 

and 

Corollary 1. If r2 -r1 < µ(R 1 + R 2) :i, 2h, then the optimal operating policy is 

1r1 for 0<,\<(r2-r1)/(R1+R2), 
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Corollary 2. If r2-,1~µ.(R1+R2) and 2h~µ.(R1+R2), then the optimal oper

ating policy is ff'l, 

The proofs of these corollaries obviously follow that of Theorem 3, and hence are 

omitted here. 

Theorem 3 and its corollaries mean that the optimal operating policy eventually 

falls into ff'o or ff'1 as the traffic becomes heavy. 

Remark 1. Although it has been assumed that h * 0, a case where h =0 could occur 

in a system where the holding cost is ignored or included in the running cost. For this 

case, it is clear that the optimal operating policy is ff'oo. 

5. Boundary Conditions at the Origin 

Since Q(t) represents the number of customers in the system, it cannot take a nega

tive value. However, no restriction is imposed on the process Y(t) that approximates 

Q(t) in the idle period. With respect to the average behaviour of Y(t), it follows from 

b1>0 that 

E[Y(t+.dt)-Y(t)]>0, for ..1t>0. (26) 

Hence, it is guaranteed in the average sense that the process Y(t) increases monotonically. 

Each trial of the path Y(t), however, has the possibility of violating the nonnegative 

restriction. Specifically, for a case where the variance of interarrival times aa 2 is 

large, the probability that the path Y(t) invades the negative region becomes large since 

the diffusion coefficient a1 is proportional to aa 2• Considering this possibility, Whitt16> 

adopted the process Y(t) with a reflecting barrier at the origin. His results can be 

obtained easily by modifying the boundary conditions in Lemmas 2 and 3 as follows 

[10]: 

dv1 I _0 
dxo so=O- ' 

(27) 

and 

dm1 I _ 0 dxo so=O- • 
(28) 

Solving the differential equations (11) and (12) with the boundary conditions (27) and 

(28), respectively, and setting xo=0, we have 

(29) 

and 

(30) 
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where ~ denotes the characteristics of the process Y(t) with a reflecting barrier at the 

origin. Hence, the average cost rate under the policy 'TT'N(N"i:,. 1) is given by 

V(N) 1' l {v1(0)+v2(N)+R1 +Rs} 
E[ 1]+E(T2] 

=r1+p(r2-r1)+hL(N)+ 1}-i+Ra , 
E[T1]+E[T2] 

(31) 

where 

A 

p 
E[Ta] 

E[T1]+E[Ta] ' 
(32) 

and 

L(N) A 

1 
{(-

1--_!__)N2-.!!!__E[T1]-~E[Ta]}. (33) 
2(E[T1]+E[T2]) b1 ba b1 ba 

Furthermore, from the statements in Section 3, the average cost rate under the policy 

'TT'o is given by 

(34) 

Remark 2. The right hand side of (31) corresponds to that of (14). The symbol 

p represents the utilization of the system, and the term (E[T1]+E[T1J)-1 represents 

the number of busy cycles per unit time. It follows from (19), (30) and (32) that 

limp=p. 
N--

(35) 

Remark 3. If the variance of interarrival times a., 8 vanishes, that is, if the system 

is .D/G/1, then { V(N)} agrees with { V(N)}. Therefore, the results in Sections 3 and 4 

also hold for the approximate solutions with the reflecting barrier. This fact is partially 

noted in (15]. 

It follows from the above remarks that a boundary condition at the origin for the 

process Y(t) effects the solutions to some degree. Hereafter, taking account of the 

importance of the boundary condition, we deal with a new and more natural boundary 

condition, which is relevant to the average behaviour of Y(t). Let To be the time from 

the beginning of one busy cycle to the first arrival of a customer in this busy cycle. 

Then it is known that the relation E[To]=l/,\ does not always hold. Moreover, it is 

difficult in general to give an exact expression of E[To]. We assume in the following 

that To is a stationary residual life time of the interarrival times {u.}. Thus, its mean 

is given by 

E[To] (36) 

This assumption seems to be plausible because what effects the average cost rate is only 

relevant to the stationary behaviour of the system. Since the first passage time T1(0, 
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N) is a sum of To and T1 (1, N), it is quite natural to adopt the following boundary 

condition at the origin: 

(37) 

As for the costs incurred during the idle period, the boundary condition is similarly 

given by 

because the cost incurred in the time interval To is the dormant cost only. Taking the 

boundary condition (38) into account in Lemma 2, we obtain 

Substituting r1=l and h=O in (39) leads to 

(40) 

where • denotes the characteristics of the process Y(t) with the boundary condition 

(37) or (38). These boundary conditions physically correspond to the process which 

remains at the origin for the time interval To, and then jumps instantaneously to x=l, 

and thereafter starts from scratch. If the arrival process is a Poisson process, the 

process Y(t) is called an elementary return process, and has been investigated by Feller0>. 

Moreover, since a1=b1=E[ToJ-1=A for the Poisson arrival case, we have v1(0)=v1(0) 

and m1(0)=m1(0). 

In order to examine the accuracy of the diffusion approximation and to show the 

p 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0,9 

Table 1. The Optimal Operating Policy 1TN* and Its Cost Rate for the M/Es/1 System 
(r1=10, r2=50, R1=Rs=l00, h=l, ,.-1=1.0). 

I 
exact diffusion approximation 

relative error V(N*) relative error 
N* cost rate N* V(N*) (%) N* (%) 

6 19.608 6 19.583 (-0.127) 7 20.352 (3.794) 
8 25.737 8 25.678 (-0.194) 9 26.498 (2.957) 
9 31. 063 9 30.988 (-0.241) 10 31.801 (2. 378) 

10 35.900 10 35.800 (-0.278) 11 36.602 (1. 957) 
10 40.375 10 40.250 (-0.309) 11 41.011 (1.576) 
10 44.575 10 44.425 (-0.366) 11 45.136 (1. 259) 
9 48.591 9 48.416 (-0.360) 10 49.043 (0.929) 
8 52.700 8 52.500 (-0.379) 9 53.039 (0.643) 
0 56.975 0 56.750 (-0.394) 0 57.077 (0.180) 



p 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
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Table 2. Tke Optimal Operating Policy .,,~ and Its Cost Rate for tke Ea/E6/1 System 
(r1=10, ra=50, R1=Ra=lOO, k=l, µ.-1=1.0). 

I 
simulation diffusion approximation 

V(N*) V(N*) N* cost rate N* V(N*) N* N* 

6 19.998 6 19.788 6 20.180 6 20.137 
8 26.005 8 25.837 8 26.250 8 26.225 

10 31.175 9 31.066 10 31.480 10 31.464 
10 35.895 10 35.783 10 36.179 10 36.167 
10 40.479 10 40.100 10 40.484 10 40.475 
10 44.250 10 44.075 10 44.421 10 44.415 
9 47.924 9 47.733 9 48.052 9. 48.047 
8 51.500 8 51.150 8 51.410 8· 51.407 
0 53.489 0 53.400 0 53.491 o. 53.461 

effects of its boundary conditions, the approximate results in Sections 3 and 5 are 

compared numerically with the known exact results. Table 1 shows the exact and 

approximate solutions of the optimal operating policies and their costs for the M/E2/l 

system. Note that the cost structure satisfies the condition (i) of Theorem 3. No 

significant errors are found either for the optimal operating policy or for the correspond

ing cost rate. It is shown from many other numerical results for the M/G/1 system 

that the approximation { V(N)} ( = { P(N)}) is more accurate tl;ian { P-(N)}, except for 

the heavy traffic. 

For general arrival processes, it is difficult to obtain the exact results analytically. 

Hence, we shall compare the approximate results with the results obtained from the 

GPSS simulation. These results for the Ea/£5/l system are shown in Table 2. It 

follows from this table that the approximation { P(N)} behaves more like { P°(N)} than 

{ V(N)}, and that { P(N)} and { P°(N)} are slightly more accurate than { V(N)}. This 

tendency becomes apparent as the coefficient of variation of interarrival times becomes 

small. Consequently, it seems that the approximation { P(N)} is best suited for all 

cases of the GI/G/1 system. 

6. Concluding Remarks 

This paper characterizes the optimal operating policy that minimizes the average 

cost rate. As another criterion for optimality, the expected total discounted cost, 

E[j,
00

e-fl1dC(t) ], is also frequently used for evaluating the costs incurred in the system2>, 

where /3(>0) denotes a discount rate. In particular, this discounted cost seems to be 

appropriate for investment problems. By using the same diffusion processes as defined 

in Section 3, it is possible to calculate the discounted cost and to analyze an optimal 

operating policy. 
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