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Abstract 

We propose a method of solving a nonlinear programming problem with two scalar 
parameters which satisfy a certain nonlinear equation. Given an optimal solution of the 
problem for an initial parameter value, the proposed method iteratively generates a sequence 
of optimal solutions of the parametric problem along the path determined by the equation 
in the two dimensional parameter space. The procedure is illustrated with an example. 

1. Introduction 

In the previous papers [3) and [ 4), the authors presented a method of finding optimal 

solutions for a nonlinear programming problem with a single scalar parameter. Ex

tending the idea of the previous paper, this paper proposes a method for problems having 

multiple parameters. 

We can generally write a parametric nonlinear programming problem of this type 

as follows: 

minimize 

subject to 

J(x, t) 

g(x, t)=O, } (1) 

where/: Rn xRP--+R, g: R• xRP--+R"' are twice continuously differentiable functions, 

and xERn and tERP are a vector of decision variables and a vector of parameters, re

spectively, which satisfy the equation cp(t)=O. Hereafter, we are mainly concerned 

with a two parameter case, namely, tER 2 and cf,: R 2--+R, for simplicity of exposition. 

An example of problem (1) is found in the following situation. Suppose we have 

a nonlinear programming problem: 

minimize 

subject to 

f(x, s, T) 

g(x, s, T)=O, 

* Department of Applied Mathematics and Physics 

} (2) 
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where xER• is a vector of decision variables and (s, 1")ER2 is a vector of parameters. 

Suppose moreover that s is given as a state of another system governed by a differential 

equation, say: 

(3) 

where .,. is a time parameter. Then the problem (2) becomes that of finding optimal 

solutions x(s, 1") for every pair (s, .,.) of the state and time, which is determined from the 

differential equation (3). When initial conditions s(O)=so and s'(O)=s1 are given, the 

differential equation (3) might be uniquely solved with appropriate assumtions. 

We denote an optimal solution of the problem (1) for the parameter value t by x(t), 

and we shall assume that x(t) is unique and a continuous function of t. Assume that 

it is known that the optimal solution x(/0
) with respect to an initial parameter value t 0 = 

(t1°, '2°), thus satisfying cf,(t0)=0. Then the optimal solution x(t) of the nonlinear pro

gramming problem (1) can be obtained by changing t continuously so as to satisfy cf,(t) =0. 

It is noted that similar ideas may be found in [2] and [6) for unconstrained optimization 

and nonlinear equations. 

In section 2, we describe a reduced formula for a parametric nonlinear programming 

problem. We also give expressions of its gradient and Hessian matrix of the reduced 

objective function, and the Kuhn-Tucker conditions for the reduced parametric formula. 

In section 3, using an iterative procedure for changing the value of two parameters, we 

present an algorithm to solve the parametric nonlinear programming problem. In 

section 4, numerical experiments are carried out to test the algorithms. In section 5, 

we briefly consider an extension to a three parameter case. 

2. Reduced Problem 

In this section, we sketch a fundamental idea of the parametric programming 

technique, which is regarded as a natural extension of our previous work [3) for a single 

parameter case. 

For problem (1), we adopt the following nondegeneracy assumption: For any 

t=(ti, /2) satisfying cf,(t)=O, and for any feasible solution x, i.e., g(x, t)=O and a-:;.x-:;.b, 

there exists a partition of variables x into basic variables y and nonbasic variables z. 

In this conditions, y is m-dimensional and z is (n-m )-dimensional, such that the m x m 

matrix 17,g(y, z, t) is nonsingular and a11 <y<b, (a, and b, consist of the components 

of a and b corresponding toy, respectively). (See [1)). 

Similarly, the matrices 17$/(x, t) and 17$g(x, t) are partitioned as [17,/(x.y), 17./(x, t)] 

and [17,g(x, t), 17.g(x, t) ], respectively. Let x and lbe any points in R• and R 2• Then 

by the above nondegeneracy assumption and the implicit function theorem, there exist 
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a partition x=(y, z) and a function h: fJx'J.-R"', where fJ and 'J. are certain neigh

borhoods of j and l, such that 

g(h(z, t), z, t)=O (4) 

for all zEfJ, tE'J.. 

Consequently, we may define, at least locally, a reduced formula of problem (1) as 

follows: For tER2 

minimize 

subject to 

F(z, t) = f(h(z, t), z, t) 

a.-::;.z-::;.b., } (5) 

where components of a. and b. correspond to the lower and upper bounds of z. Notice 

that the objective function F is twice continuously differentiable in x and t, because 

both/ and h have similar properties. 

We now state the Kuhn-Tucker conditions for an isolated local minimum of problem 

(5). A statement of the conditions for more general nonlinear programs can be found 

elsewhere, for example, in [5, p. 235], and hence, no proof is given here. For tER2, 

if z(t) is optimal to problem (5), then the following conditions hold: 

and 

a1-::;.z1-::;.b1 

r;'z1,F(z(t), t)z(t) ~ 0 

r;'z11F(z(t), t)z(t)-::;.O, 

where IU./i U/2= {1, 2, ···, n-m}. 

Next, we given the gradient and Hessian matrix of the function F. Let 

(6) 

.\(x, t)=r;',/(x, t)[r;',g(x, t)]-1 (7) 

Then from ( 4) and (5) we obtain by direct calculation 

r;'.F(z, t)=P'.f(h(z, t), z, t)-A(h(z, t), z, t)r;'.g(h(z, t), z, t). 

Furthermore, differentiating (8) yields 

T [ P',.2/-AP'rrs g r;',.2/-AP'r•s g] [ P'•h] 
r;'u2F(z, t)=[r;'xh , In-m] j \ 

P' .,s -1\P' .,s g P' .. sf-AP' .. 2 g I n-m 

=I'T[P' u2/-Ar;' us g ]I', 

where 

(8) 

(9) 

(10) 
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3. Algorithm 

To describe the approach to solving nonlinear programming problems with a two 

dimensional parameter, we suppose that a parameter vector ti=(li,,, ts,,) satisfying 

cf,(t1)=0 and the optimal solution x(t,,) are known. 

First, an iterative procedure is introduced to obtain the parameter value tH1=(fiH1, 

tzH1), which differs slightly from,,, and satisfies the equation cf,(tHl)=O. The proce

dure starts with the moving oft from ,,, by a fixed amount along the line tangent to the 

curve defined by cf,(t)=O. Thus, the direction di=(d1i, ds,,)ER8 of the movement is 

orthogonal to rcf,(t,,), namely 

and 

lld,,ll=A 

for some small fixed real number A>O. (See Fig. 1). 

It is easy to see that (11) and (12) are satisfied by 

d1,,= ~~,,) A /llrcf,(t,,)11 

da,,=- &f,(t,,) A/llrcf,(t,,)11 a1i 

provided that rtf,(t,,):!,;:O. Then, we set 

i=l, 2. 

} 

(11) 

(12) 

(13) 

(14) 

However, the point tH1=(tii+i, taH1) determined by (14) may not satisfy cf,(ti,,+1, tsH1) 

=0 in general, so we compute tH1=(t1H 1 ,tzHl) such that cf,(tH1)=0 in the following 

¢)(t)=O 

o...._-------------t1 

Fig. 1. 
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way. Fixing ti11+1=i1•+1, t211+1 is obtained as a limit of the sequence {-r1} generated by 

Newton's method. 

i=0, 1, 2, ... 
} (15) 

where we assume that ocf, (tH1 -r)::!\=0 for all i. a1z ' 
In practice, whenever lc/,(tiH1, -r1)l<e for some u, where e is a sufficiently small 

positive number, the iteration terminates, and the value of t2H1 is set equal to -r1+1. 

It is expected that the point tH1=(t1•+1, tz•+i) satisfying lc/,(ti'+1, t2H1)l<e can be found 

within a few iterations of (15), provided e is small enough. 

Once tH1 is determined, we have to calculate the optimal solution x(t) of problem 

(1) for t=tH1• This can be done first by solving the system (6) to obtain z(tH1), and 

then by solving the equation g(y, z(tH1), t•+i)=0 to obtain y(tH1). Since this proce

dure is essentially the same as in a single parameter case, in the present case, we also 

employ the method given in [3). 

Now, we are ready to state an algorithm to solve problem (5) parametrically. 

Algorithm 

Step 1: Determine an initial point x(t0
) with t0 =(t0

1, t 0 2). Fix the upper bound 

of the parameter value ti* and '2*, and choose sufficiently small numbers a> 0, 8 > 0 

and p>0. Set k=0 and proceed to step 2.1. 

Step 2.1: At t=t", partition x into basic variables y and nonbasic variables z, 

with a;+a<yi(t•)<b;-a for each i. Proceed to step 2.2. 

Step 2.2: The nonbasic variables z are divided into (z1, z1., z11) in such a way 

that, a1<z1(t")<b1, z1t(t")=a1t, and z1,(t,,)=b,1• Proceed to step 3.1. 

Step 3.1: Determine the point tH1=(tiH1, taH1) as described previously. 

Proceed to step 3.2. 

Step 3.2: Set z0 =z(t•) and i=0. 

Step 3.3: Compute zH1 by 

Step 3.4: If llzi+i-zill<p, set z(tH1)=zi+i and go to step 4.1. Otherwise, 

setj=j+l and return to step 3.3. 

Step 4.1: Calculatey(tH1) by solving g(y, z(t11+ 1), tH1)=0. If there exists some 

i such that a1+a> y;(tH1) or y;(tH1)<b1-a, set y;(t11+1)=a; for each i such that 
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a;+a<y1(tH1) is not satisfied. Also set, y1(tH1)=b1 for all i, such that y1(tH1)<b1-a 

does not hold, and return to step 2.1. Otherwise, proceed to step 4.2. 

Step 4.2: For each iEI, if a;::;;.z; is not satisfied, set z1=a1. Similary, if z1~b1 

does not hold, set z1=bi. Set z1t=a1t for all jEJ1 such that P'•;F(z(tH1))<8 is not 

satisfied. Likewise set z1r=b,1 for all jEJs such that P'•;F(z(tH1))>8 does not 

hold, and return to step 2.2. Otherwise, proceed to step 5. 

Step 5: If t1';2:.ti* or t2';2:.tz*, then terminate. Otherwise, return to step 2.1. 

· 4. Numerical Experiments 

In this section, computer experiments for nonlinear programming. problem (1) 

with a two dimensional parameter are carried out to test the al~orithm. Specifically, 

the parametric programming problem solved. here. is expressed as follows: 

minimize 

subject to 

ti/1(x) +(1-ti)/o(x) 

t2g1(x)+(l-t2)go(x)=O, 
(16) 

where go(x) have the same dimension as g1(x). Also, assume that the optimal solution 

of the problem for t 0 =(0,0) is known. For ti, t2E [O, 1] satisfying a certain nonlinear 

equation ef,(t)=O, we can obtain the optimal solution, of problem (1) parametrically. 

In our experiment, the functions /1 and /o are respectively 

where x 0 =(x1°,xs0
, •·•,X7°) is a given vector, and the functions g1 and go are respectively 

g11(x)=x12+x22+xa2+x42+x1 -x2+xa-x4+xa-8 

and 

gu(x) =xi 2+2x22+xa2 +2x42-x1 -x4+xe-l0 

g1s(x)=2x12+x22+xa2+2x1-X2-x4+X7-5 

goi(x) = g11(x)-g11(x0
) 

go2(x) =gu(x) ~ gu(x0
) 

gos(x) =g1a(x)-gu(x0
). 

The bounds for the variables x are o::;;.x,,. i=5, 6, 7. Moreover, the parameter 

t=(ti, t2)E [O, 1] X [0, 1) is supposed to satisfy the equation 



Table 1. ,I>. .... 
0 

cumulative 
ti /2 Xl X2 Xa X4 X6 xa X7 I CPU time 

(msec) 

0.0 0.0 0 0 2.0 1.0 2.0 3.0 2.0 4.0 0.0 14 
:::i:: 

0.0997 0.0099 0.0653 1. 9132 1.0197 1. 9063 2.9900 1.9812 4.0158 -0.063 122 1· 
e: 

0.1967 0.0386 0.0844 1.8072 1.1548 1. 7065 2.9691 1. 9686 3.9988 -0.3493 245 is: 
la! 

0.2881 0.0830 0.0435 1.7078 1.3269 1.4579 2.9308 1.9681 3.9388 -1.0265 369 ,!'1 

a:: 
0.3731 0.1392 -0.0313 1.6259 1. 4755 1. 2182 2.8708 1. 9866 3.8218 -2.1729 491 I 

>rj 

0.4518 0.2041 -0.1037 1.5619 1. 5858 1. 0143 2.7928 2.0280 3.6381 -3. 7532 611 C: 
:,: 
C: u, 

0.5246 0.2752 -0.1559 1. 5121 1.6683 0.8351 2.7038 2.0907 3.3882 -5. 7027 730 :i: 
f.i: 
► 

0.5924 0.3510 -0.1876 1.4730 1. 7335 0.6533 2.6050 2.1722 3.0734 -7.9889 853 ~ 
IJ. 

0.6862 0.4709 -0. 2026 1.4219 1.8042 0.3069 2.4077 2.3208 2.4821 -12.1062 1040 
,<: 
0 
l::l 

O;l 
0.7443 0.5540 -0.1865 1. 3727 1.8311 0.0070 2.1775 2.4078 2.0472 -15.4391 1199 '-< g 

l::l 

0.8259 0.6821 -0.1090 1. 2460 1.8860 -0.3909 1. 5517 2.3991 1.3848 -21.5955 1439 ~ 
0.8771 0.7693 -0.0210 1.1431 1. 9729 -0. 5737 0.8806 2.1983 0.7668 -26.6614 1583 0 

0.9261 0.8577 0.1121 1.0482 2.1386 -0. 7249 0.0 1.5558 0.0 -33.6434 1738 

0.9731 0.9470 0.3698 0.9949 2.0360 -0. 9162 0 0 1.3111 0.0 -39.8501 1866 

1.0 1.0 o.o 1.0 2.0 -1.0 0.0 1.0 0.0 -44.0 1973 
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Then the vector x 0 is obviously the optimal solution to problem (16) for t=(0,0). It is 

noted that for t=(l,1), problem (16) i~ equivalent to the well-known Rosen-Suzuki 

problem, whose optimal solution is (0,1,2,-1,0,1,0) and the minimal value of the ob

jective is -44. These computations were performed using double precision on a 

FACOM M 200 computer of the K.yoto University Computation Center. The results 

for x 0 =(0,2,1,2,3,2,4) of the calculations are summarized in Table 1. 

5. , Conclusion and Extensions 

In this paper, we have presented a nonlinear progralµllling problem with two 

parameter t=(ti, ta), and tested the numerical experiment by a computer. The techni

. que proposed so far iteratively generates a sequence of optimal s6lutions x(t") for the 

successive values of the parameter t, such that cf,(t")=0. 

Moreover, it is not difficult to establish similar results for the case of a three dimen

sional parameter, satisfying cf,(ti, ta, ta)=0. In this case, equations (11) and (12) become 

r,cf,1(t)d=0, 

r,cf,2(t)d=O, and 

lldll=.Jd12+da2+ds2 = .d 

from which each component of the vector dis calculated in a manner analogous to (13). 

The expressions for the direction vector are given as follows : 

where 

and 

d1=D2a/D 

d2=D31/D 

da=Du/D 

D
81 
=~ ecf,2 _ acf,s ecf,1 

eta eti eta eti 

Du=~ acf,2 _ acf,2 ecf,1 
eti eta eti eta 

Dza- acf,1 ecf,2 _ ecf,2 ecf,1 
- eta eta eta eta 
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