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Abstract 

Spanning vectors of the practically reachable subspace of a single input discrete-time 
system are studied. Reachable subspace is the space spanned by the vectors of the form 
b, Ab, A 2b, •··· If A'b lies on the subspace s,. spanned by the vectors b, Ab, A 2b, •··, 
A•-1, then AHi b also lies on the same subspaces,. for any l~O, and so, Si is the reachable 
subspace. On checking, if Akb lies on Si by numerical calculation, we usually assume that 
A 1b lies on Si in practice, if the distance ll of A 4b from S, is small. As the distance of 
AH1b from Si is not guaranteed to be small _in this case, it must be examined if AHlb 
can be assumed to lie on S,., in practice or not. 

Concerning the distance of AHi from S,., the following results are obtained. i) 
When k<n-l, where n is the dimension of the state, AHlb can have an arbitrary value 
for n-k-l>l>l. ii) If the maximal number of practically independent vectors are taken 
from the set of vectors b, Ab, •··, An-lb, and if the absolute values of the eigenvalues are 
less than unity, then the distance between AHlb and the subspace S spanned by these 
practically independent vectors does not become larger than a certain value Mil for any /. 
The condition that S becomes practically reachable subspace is also studied. 

1. Introduction 

Consider a discrete-time system given by 

(1) 

where x and b are n-vectors, u is a scalar and A is a non-singular n X n matrix. As is 

well known, the reachable subspace is spanned by the vectors b, Ab, A 2b, •··. If A'b 

is expressed by a linear combination of b, Ab, A 2b, •··, Ai-1b, then for any /~0, AH1b 

can be expressed by a linear combiation of these vectors. In this case, the reachable 

subspace is given by the space S(b, Ab, •··, A 4- 1b) spanned by the vectors b, Ab, ···, 

A 4- 1b, and the algorithm to get the reachable subspace is given as follows. Suppose 
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ib, Ab, ···, AA-1b are independent. Add a new·vector AAbto the 'Set and check if b, 

Ab, ···, A Ab are independent. If they are not, then b, Ab, •··, AA-1b are the spanning 

vectors of the reachable subspace. If they are indep_endent,. add anoth_er new vector 

A•+lb to the set and continue the procedure as before. This procedure will end, at most, 

before A•+ib. 

From the theoretical viewpoint, checking that the Grammian is zero is useful for 

testing if a set of k (k>n) vectors is linearly independent. In computer applications, 

however, to check if the Gramian precisely equals zero is not practical because of the 

rounding off errors arising in the computations. 

Suppose b, Ab, •··, AA-1b are linearly independent. The height hA of AAb from 

S(b, Ab, •··, A•-1b) is given by 

IG(b Ab ... AA-lb Ai.b)I 
' ' ' ' IG(b, Ab, ···, AA-lb)I 

(2) 

where IG(•)I is the Gramian.2> Thus for computer applications, we usually set a small 

number 8>0, and if 

(3) 

holds, we then suppose that·AAb is practically oh the subspace S(b, Ab, •··, AA-1b), 

and that b, Ab, ···, AA-1b, AAb are linearly dependent. In this case, we usually assume 

that the reachable subspace is practically S(b, ···, AA-1b). But strictly speaking, since 

the vector AAb is approximately on the S(b, Ab, •··, AAb), it is nessceary to prove that 

the height of AH1b from S(b, Ab, •··, A,A-1b) is also small for any l>O. In some cases, 

this expectation is violated, unfortunately, as is shown in this paper, and for some vectors 

like AH1b, the height from S(b, •··, A•-1b) can take an arbitrarily large value. 

l. Fundamental Relations 

Theorem 1. 
For any set of vectors Ei, E2, ···, En+1, if E1, E2, ···, e. are independent, there exists 

a pair (A, b) that satisfies 

(i=l, 2, ···, n+l) (4) 

Proof 

Denote the matrix whose columrts are E1, ···, e. by [Ei, ···, En]. Then, Eq. (4) is 

equivalent to 

"b=E1 

A[E1, ···, f,.J=[E2, ···, E■+1J 

As E1, E2, ... , e. are independent, [E1, ... , f.J is non-singular. Thus, A is given by 

(5) 

(6) 
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(7) 

Q.E.D. 

The condition that [1, ... , [. are independent can be slightly loosened. 

Theorem 2. 
For any set of m (m>n) independent vectors [1, [2, •··,[,.,and for any set of scalars 

c1, ca, ···, c,., there exists a pair (A, b) satisfying the relations 

(i=l, 2, ···, m) 

Proof 

The Eqs. (8) (9) are equivalent to the relation 

(8) 

(9) 

Take a set of vectors ,1, ,2, ···, ,._,. by which [1, [2, ···, [,., ,1, ···, {._,. are 

independent. For any 7/1,7/2, ... , '1/•-m 

satisfies Eqs. (8) and (9). 

Q.E.D. 

In the proof of theorem 2, we can make a polynonial of the order m 

,. 
if,(A) =A'" - ~ C jAi-1 

j:a1 
(12) 

which is the minimal polynomial of A for the vector b. As the characteristic poly­

nominal is divisable by the minimal polynomial, m out of n eigen-values of A can also 

be taken arbitrarily. Therefore, the following theorem holds. 

Theorem 3. 
Given an arbitrary set of m (m::;,n) independent vectors [1, [2, •··, g,. and m scalars 

A1, A2, ···, Am, there exists a pair (A, b) that satisfies the following conditions: 

i) Eq. (8) holds. 

ii) m eigen-values are A1, A2, ···, A,.. 

iii) Amb is linearly dependent' on 6, E2, ... ' e ... 
In the case m=n, A is unique. 

From theorem 1. the following theorem is obtained directly. 

Theorem 4. 
For any k (k>n) and positive 8 and L, there exists a triplet (A, b, l) (O<l::;.n-k) 

that satisfies 
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IG(b, Ab, ... , A•-1b, A'b)I <a2 (13) 
IG(b, Ab, ···, A•-1b)I 

IG(b, Ab, ···, A•-1b, AH'b)I 2 (14) 
IG(b, Ab,···, A•-lb)I >L 

Proof 

As k<n, there exists an l>O with which k<k+l~n. Take a set ofvectors E1, Ea, 
···, 6+1, E,+1+1 which satisfies 

(15) 

(16) 

E•+a, ···, E,+1, E•+z+z, ···, E•+1 can be taken arbitrarily, as long as Et, ···, E• are inde­

pendent. It is clear that the pair (A, b) 

b=Ei 

A=[Ea, ···, Ea+i] [E1, ···, E-J-1 

satisfies Eqs. (13) and (14). 

(17) 

Theorem 4 says nothing about the eigen-values of A, so the absolute value of the 

eigen-values of A thus obtained may be greater than iµiity. 

Theorem 5. 
For any positive 8, L, for any k (k>n-1) and for any set of n scalars A1, Az, ···, ,\., 

there exists a triplet that satisfies the following conditions ; 

i) Eqs. (13) and (14) hold true. 

ii) A1, As, •··, Aa are the eigen-values of A 

Proof 

Let 

(18) 

As k<n-1, there exists an l>O such that k<k+l~n-1. Take a set of independent 

vectors that satisfy Eqs. (15) and (16). Let 

• 
E•+i= I: CJEJ 

i•l 

It is easily verified that the pair (A, b) 

A =[£2, • • •, En , En+i] [Et, •" •, EmJ-1 

b=Ei 

(19) 

(20) 

(21) 
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satisfies Eqs. (13) and (14), and that eigen-values of A are .\1, •··, ,\ •. 

Q.E.D. 

It is seen by theorems 4 and 5 that even if Eq. (13) may hold for any small 8, AH1b 

is not necessarily near enough to S (p, Ab, •··, A"-'-lb) for all l>O if k<n. 

·· 3. Number of Vectors to Construct Practically Reachable Subspace 

Define the practically reachable subspace as follows. 

Definition (Practically Reachable Subspace) 

The practically reachable subspace is the space span~ed by a set of vectors A"•b, 

A"•b, ···, A"mb which satisfies the following conditions. 

i) O=k1<k2<··-<km 

IG(b, ···, A";b)I >82 
IG(b, ···, A";-1b)I 

ii) 

iii) for any k1-1<l<k1 

for all i 

IG(b ··· A"1-1b A 1b)I , , , <82 
IG(b, ···, A"Hb)I 

iv) for any l>k 

IG(b ... Alt-lb A 1b)I , , , <82 
IG(b, ···, Ak-lb)I 

(22) 

(23) 

(24) 

End of definition 

If the input to the system is not very large, the state of the system given by Eq. (1) 

moves only on the neighbourhood of the practically reachable subspace. 

As is stated in chapter 2, if A1tb is dependent on b, ... , A1t-1b, then AH1b is also 

dependent on b, •··, A1t-1b. Therefore, to check if AH1b is independent of b, ···, A1t-1b, 

is not necessary. In case A"b is only practically dependent on b, ... , A"-1b, AH1b is 

not necessarily practically dependent on the same set of vectors. There is the possi­

bility that for some l>O, the vector AH1b may be completely independent of b, ... , 

A1t-1b. Therefore, to get a set of vectors which spans the practically reachable sub­

space, it is necessary to check at least up to the A•b term in the sequence b, Ab, ·· ·, (By 

thorem 3). Even ifit is known that the eigen-values of A lie inside the unit circle centered 

at the origin, to check at least up to A•-1b is necessary, which is the result of theorem 5. 

Here arises a problem. Is it necessary to check the practical dependencies of the 

vectors beyond the A•b term? What conditions are necessary for checking only up 

to the A•b term? 

If some eigen-values ,\; of A are l.\1I>1
1 

any large value of A 1b may appear for 

a large l. In a case where the eigen-vector of ,\; lies outside the subspace spanned by 

b, Ab, •··, A1t-1b, then even if 
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IG(b, Ab, ···, A'b)I <S 2 
IG(b, Ab, ···, Ak-lb) 

may hold for a very small positive S, 

445 

(24) 

IG(b, Ab, ···, AHb, A'b)I >L2 (25) 
IG(b, Ab, ···, Ak-lb)I 

holds for an arbitrarily la~ge L, by taking l large enough if JA;j > 1. Therefore, 

hereafter we will assume that all ·the eigen-values of A lie inside the unit disc centred 

at the origin. 

Theorem 6. 
Suppose every eigen-value A; of A satisfies Eq. (26). 

jA;j<l 

For a set Km of integers 

and for some e>O, if 

kEK,. 

then 

for all l~O. 

Some notations used above are as follows : 

EN-K is the set of vectors {Ai-1b,k$Km, k=l, 2, ···, n}. 

IG(EN-K)I is the Grammian of EN-K• 

M;=m;u (i+~-l )(;t_f)pi+' 
p=max jA;j 

; 

To prove theorem 6, the following lemmas are necessary. 

Lemma 1. 
Let 

z'=l, 2, ··· 

and 6, · · ·, f n be independent. 

Take the arbitrary vector { which is expanded as 

Then 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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(32) 

where 

(33) 

Proof 

Denote the subspace spanned by EN-K as S(EN-K). e .. and' are expressed by the 

sum of two vectors. 

e .. =e .. +e. 
{=i+t 
e., ,Es(sN-K), t., tEs(sN-K).L 

f1,=0 for kEKm 

where S( • ).L is the orthogonal complement of S( •) 

By Eqs. (31) and (34), 

IG(EN-K, ~I 
IG(EN-K)I 

Q.E.D. 

By the Kayley-Hamilton theorem, it is known that An+1b can be expanded as 

(34) 

(35) 

(36) 

When the eigen-values of A are known, the coefficients of the expansion K1,; are given 

by the following lemma. 

Lemma 2.a> 

The coefficients of expansion in Eq. (36) are given as 

(37) 

where Ai are eigen-values of A, and /3(a1, •··, an) is the function which gives the number 

of non-zero a1, ···, an. 

Lemma 3. 
The upper bounds of the absolute values of the coefficients of expansion in Eq. 

(37) are given by 

(38) 

Proof of theorem 6 

Let {=An+1b by lemma 1 and Eq. (36) be 

h 2 ::;: [ I: IK1,.-l,182(k)J 2 
ieKm 

(39) 
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From Eq. (24) p< 1, 

1. (;"+l-l)(n+l) HI-O _im l t+·P -
J->00 J 

Therefore, Mi of theorem 6 exists for every j 

From Eqs. (38), (36) and (39), 

h2::s;[ I: MkD2(k)]2 
kEKm 

Eq. (41) shows that if 

S2(k)<./mMk kEKm 
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(40) 

(41) 

(42) 

Q.E.b. 

Theorem 6 shows that if the set of vectors Km is selected from the set of vectors 

b, Ab, ···, A•-1b so as to satisfy Eq. (38), then the subspace spanned by EN-K contains 

the practically reachable, subspace, and to check the practical dependencies beyond the 

A•b term is not necessary. 

Let 

then 

4. Numerical Example 

1.5/. 

-1+2/. 

2/. 

-1.5/.-0.75 l 
-2/.+1.5-1.25. 

-2/.+0.5 

and the eigen-values of A are -0.5, 0.5±}0.5. As M2 defined in the theorem 6 is not 

very large, to check the practical independencies up to A 2b is sufficient. In this case, 

although b and Ab are practically dependent for small ., the practically reachable 

subspace is a 2-dimentional subspace spanned by the vectors (1, 0, 0)' and (0, 1, 1)'. 

5. Conclusions 

The following results are obtained. 

i) If k::s;n-1, where n is the dimension of the state, then even if A•b lies on S., the 

subspace spanned by the vectors b, Ab, •··, A•-1b, practically, the distance of AH1b 

from S. may become arbitrarily large for such k that k+l::s;n. Therefore, to check the 
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practical dependencies up to the A"b term is necessary at least. 

ii) If k<n-l, and all the eigen-values of A are known to lie inside the unit disk 

centered at the origin, then, to check the practical dependencies up to the A•-1b term is 

nescesary. 

iii) If Eq. (28) holds, then, to check the practical dependencies up to A•-1b is sufficient, 

and checking beyond this term is not necessary. 
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