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Abstracts 

Acceleration wave propagation in an isotropic homogeneous linear thermo-magneto
elastic material is investigated. A thermo-electrical interaction is taken into account 
in the heat equation to restrain the infinite velocity of thermal disturbances. There exist 
four types of coupled waves: an electro-acoustical wave, two thermo-acoustical waves 
and an electro-magnetic wave. The amplitudes of all the waves, in general, decay ex
ponentially in time, but the damping constants depend, in different ways, on the propa
gation directions and the thermo-magneto-elastic properties of the material. Especially, 
according as the angles between the initial magnetic field and propagation directions 
vary from O to 11:/2, the damping constant of the electro-acoustical wave decreases to 
0, and those of the thermo-acoustical waves increase. On the other hand, the damping 
constant of the electro-magnetic wave depends also on the angle between the initial 
magnetic field and the direction of its amplitude, and it gives rise to the elliptical polari
zation. 

1. Introduction 

The object of this paper is to investigate the acceleration waves in a linear 

thermo-magneto-elastic material. The basic field equations proposed by Kaliski1> 

are considered, where the heat equation brings on finite propagation velocities of 

thermal disturbances. 

Other sets of basic field equations of thermo-magneto-(electro-)elastic materials 

have been considered by Kaliski and Petykiewicz2>, Jordan and Eringen3>, 
Tiersten4> and McCarthy5>. Wave propagations in these materials have been 

analyzed by Paria6).7>, Willson8> Kaliski and Nowacki9>, Purushothama10>, Cander11>, 
Moon and Chattopadhyay12> and McCarthy13>· 14>. According to the dependences 

of the heat flux upon the temperature gradient, the deformation gradient, the 

electro-magnetic fields etc., the heat equations employed in the above articles can be 

classified into the following three types: linear type2>, 5>- 12>, non-linear type3>, 4>, 13>, 14>, 
and memory type5>. These three types of heat equations are straight-forward 
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generalizations of Fourier's law such that they are reduced to it as special cases. 

Hence, the sets of the field equations, including the above, as well as the case of 

Fourier's law, have parabolic-hyperbolic characters. That is to say, they bring on 

infinite propagation velocities of thermal disturbances, and also mechanical and 

electro-magnetic disturbances induced by the thermal ones. On the other hand, 

the set of field equations considered by Kaliski1> is a hyperbolic type, so that the 

behaviors of the waves will be essentially different from the above cases. 

In section 2, the field equations are reviewed and the definition of accelera-

tion waves is given. 

and their velocities. 

Section 3 shows the existence of four types of coupled waves 

In section 4, the differential equations for the amplitudes of 

the waves are obtained. Here, it is shown that all waves, in general, decay ex

ponentially in time, with different damping constants. The influence of the ma

terial properties and the propagation directions of the waves on these damping 

constants is also discussed here. 

2. Basic Equations and Definition of Acceleration Waves 

An isotropic homogeneous linear thermo-magneto-elastic material is, accord

ing to Kaliski1>, defined by the field equations 

where 

roth =i+D, div D= 0, 

rot E = -b , div b = 0 , 

pu = div s+ (j X B0) , 

,q+q = -K grad T+rcj, 

pTJ = -divq, 

8 = 2Ge+l(tr e)l-a0Tl, 

b =" µh, 

D = c[E+(ux B 0)], 

</Jj = 77[E+(ux B0)1 +~q, 
K 

ps = a0(tre)+,80 T, 

";;=_!_(au;+ au;), 
2 ax; ax; 

¢ = l + K,TC. 

K 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

The external forces and the heat supplies are assumed to be absent and a super

posed dot denotes the differentiation with respect to time. In the above equations, 

the unknown quantities are the magnetic field h, the electrical current density 

vector j, the magnetic induction field b, the electric field E, the electric induction 
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field D, the displacement u, the stress s, the heat flux q, the temperature T and 

the entropy s. The other quantities may be assumed to be constant from the 

homogeneity and the linearity of the material. Eliminating b, D, s and s from 

(2.1 )-(2.10) gives another set of equations: 

rot h = j+,~[E+ (u x Bo)] , div [E+ (zi x Bo)] = 0, 

rot E = - µh , div h = 0 , 

pu = GP'2u+(A+G)grad•divu-a0 grad T+(jxB0), 

ni+q = -K grad T+-aj, 

aoTo tr e+f3oToT = -div q' 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Here, we define the acceleration wave in this material as a propagating sur

face which has the following properties: 

(i) u, u, u,;, h, E, T, q and j are continuous everywhere. 

(ii) the.first derivatives qf them, except u, s~_-ffer)ump discontinuities across the surface, 

but are continuous everywhere else. 

Henceforth, we are concerned only with plane waves. The compatibility condi

tions of the first and second order for a continuous function/ (x, t) across the surface 

are then given by 

. -
[f] = -VJ, 

- -
[f,;] =fa;' 
[f,;;] = fa;n; ' [f,;] = (-Uf+f)n;, 
- = 
J = [f,;]n; , f = [J,;;]n;n; , 

(2.19) 

(2.20) 

(2.21) 

where a bracket denotes the jump of the quantity within it, and n and U are, 

respectively, the unit normal vector and the normal velocity of the surface. 

3. Velocities of Acceleration Waves 

Taking the jumps of (2.13)-(2.18) across an acceleration wave by the com

patibility conditions (2.19)-(2.21), we have 

or 

Jixn-eUE-eU(vxB0) = 0, 

Exn+µUli = 0, 

(pU 2-G)U-(A+G)(v•n)n-a0UTn = 0, 

, 0Uij_-KTn = 0, 

a0 T0v•n-f30 T0UT+ii_•n = 0, 

R,.fltzfl = 0, (a, /3 = 1, 2, ... , 13) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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where a11 = (h, E, v, q, T) , (3.7) 

-nx -eUl eUB0 X 0 0 

µUl -nx 0 0 0 

IIR.,1111 = 0 0 (pU2-G)l-(l+G)n©n 0 -a0Un (3.8) 

0 0 0 -rUl -Kn 

0 0 aoTon n -PoToU ' 
0 -n3 n2 

nx = n3 0 -n1 (3.9) 

-n2 n1 0 

and v means it. 
The velocity of the acceleration wave is given by U, satisfying 

det IIR.,1111 = 0 (3.10) 

and then the right nullvector of IIR.,11 11 indicates the coupled fields of the wave. 

Electro-acoustical wave 

Taking the scalar and vector products of (3.3) and (3.4) by n and combining 

(3.5), we get 

where 

(pU2-G)vxn = O, 

qxn = O, 

pU2-2G-l O -a0U 

IIR'II = 0 -rU -K 

Now, if we assume that 

vxn*O 

at a wave, then we must have 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The velocity U EA is equal to that of a usual transverse wave. In general, det 

IIR'II does not vanish for U=UEA, so that (3.12) and (3.13) then imply 
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V•n = T = 0, (3.17) 

for this wave. To investigate the other coupled fields, we shall first obtain the 

general relations between E and iJ which are valid for any wave. That is, eli

minating Ii from (3.1) and (3.2), and taking the scalar and vector products of 

the result by n, by use of the notation c2=(eµ)-1, we have 

For this wave, (3.19) reduces to (3.16) and (3.17) to 

( 1 utA )E- utA (B )---- xn = --- 0 •n v. 
c2 c2 

(3.18) 

(3.19) 

(3.19') 

Since we may assume U'i:A/c2~1, it is found from (3.2) and (3.19') that Ii and the 

transverse component of E are negligibly small. These quantities completely 

vanish when B0 is perpendicular to n.. However, (3.17) and (3.18) imply that 

the longitudinal component of E vanishes when B0 is located on the plane spanned 

by iJ and n. Finally, we can state that this wave is, in general, the coupled wave 

of an electrical longitudinal wave and a mechanical transverse wave. 

Thermo-acoustical waver 

If we assume that 

then (3.13) imposes that 

or 

where 

det IIR'II = 0 

(U2-c11-)(U2-ci)-rU2 = 0, 
a2 

r=-o 
P/3o 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

and where c9 and cL are the velocities of a usual thermal wave and a longitudinal 

wave, respectively. 

The solutions of (3.22) are given by 

(3.24) 

The velocities of the fast and slow waves coincide, respectively, with those of the 

two thermo-acoustical waves in the linear thermo-elastic material governed by 
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the modified heat equation with finite wave velocities. (Cf. Tokuoka 15)). In 

general, these velocities are not equal to UEA, and then from (3.11), we have 

vxn=O 

and from (3.18) and (3.19), we have 

U}~/c2 (v•n)B
0
xn. 

l-UTA/c2 

(3.25) 

(3.26) 

Since we may assume U}A/c~ 1, (3.26) implies that the electric field E has only 

a negligibly small transverse component, which completely vanishes when n is 

parallel to B0 • The magnetic field Ii is also negligible from (3.2) and (3.26). 

Thus, we can state that these waves are, in general, the coupled waves of a ther

mal wave and a mechanical longitudinal wave. 

Next, we shall investigate the difference between the fast and slow waves. 

From (3.22) we get the inequalities: 

(3.27) 

which indicate that the fast and slow waes are, respectively, faster and slower than 

both the usual longitudinal and thermal waves. 

From (3.24), (3.4) and (3.5), we have the following relations amongst the coupled 

fields v, q and T, 

(3.28) 

(3.29) 

We have a small r for usual materials, and hence, we consider the limit r- 0. 

When ci >cJi, it follows from (3.22) that 

(3.30) 

as r-0. Then, from (3.12) and (3.29), for the fast wave,we have 

(3.31) 

and from (3.25) and (3.28), for the slow wave, we have 

(3.32) 

Thus, we can conclude that when ci>c}, the fast wave is a predominantly me

chanical wave and the slow wave is a predominantly thermal wave. It is easily 

verified that the situation is reversed when c}>ci. 
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Electro-magnetic wave 

If we assume that a wave has a different velocity from those of the electro

acoustical and thermo-acoustical waves, the above discussion imposes that 

Then (3.18) and (3.19) reduce to, respectively, 

E•n=O, 

( 1 - ~
2 )Ex n = 0 . 

Assuming that 

Exn=l=O 
yields from (3.35) 

and from (3.2) li=l=O 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

for this wave. Thus, this wave is the electro-magnetic wave with the velocity of 

light. Eqs. (3.2) and (3.34) imply that the magnetic field Ti is perpendicular to 

the electric field E and that their longitudinal components vanish. 

4. Variation of the Amplitudes of Acceleration Waves 

In order to analyze the growth or decay of the acceleration waves, we take 

the jumps of the differentiations of (2.13)-(2.18) with respect to time, and eli

minate J from the result. That is, for any wave, we have 

P0 pafl = Q0 flllfl+ UR,,,flafl, (a, ft= I, 2, ···, 13) (4.1) 

where 

0 -cUl cUB0x 0 0 

µUl 0 0 0 0 

IIPaflll = 0 0 (pU2+G)l+(J+G)n©n 0 0 (4.2) 

0 0 0 -rUl 0 

0 0 0 0 -ftoToU , 

0 171 -1JB0X (ic/K)l 0 

0 0 0 0 0 
_u 

IIQafJII=¢ 0 -17UB0x 17U(B0x )2 -(ic/K) U B0 X 0 (4.3) 

0 1r17l -1r17B0x -1 0 

0 0 0 0 0 
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and IIRa/JII is defined by (3.8). In the above calculation, we have u~ed (2.19)

(2.21) and the relation R,./Ja/J=O derived from (3.6). Taking the scalar products 

of (4.1) by the left nullvectors bY of IIR../JII eliminates the second term of the right 

member of (4.1) and yields 

(4.4) 

which are the set of the ordinary differential equations for the amplitudes of the 

wave under consideration. 

Electro-acoustical wave 

Taking the vector product of the part a=7, 8, 9 of (4.1) by n yields 

• 7/ - 7/ vxn = --(B0 xE) xn+-[B0 x (B0 XV)1 xn, 
2p¢ 2p¢ 

(4.5) 

where we have used (3.16) and (3.17). By means of (3.18) and (3.19'), we can 

eliminate Efrom (4.5), and we finally have 

or 

where 

VXn = -8EA'iJXn 

V = v0 exp (-8EAt), 

(4.6) 

(4.7) 

(4.8) 

The electric field Eis also expressed in the same form as (4. 7) by (3.18) and (3.19'). 

Hence the electro-acoustical wave, in general, decays exponentially with respect 

to time. In particular, if B0 vanishes or is perpendicular to n, the damping con

stant 8 EA vanishes and hence, the amplitudes of this wave remain constant. The 

decay of the mechanical transverse amplitude of this wave is a characteristic of 

the thermo-magneto-elastic material, because the transverse wave does not decay 

in the thermo-elastic material considered by Tokuoka15l. It is also found from 

(4.8) that the electro-acoustical wave decays more rapidly in electric conductors 

than in dielectrics. 

Thermo-acoustical waves 

Taking the scalar product of the part a=7, 8, ···, 13 of (4.1) by the vector 

(4.9) 
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yields 

(4.10) 

Eliminating E, q and T from (4.10) by means of (3.26), (3.12), (3.28) and (3.29), 

we finally obtain 

V•n = -8TAv•n (4.11) 

or v = Vo exp (-8TAt), (4.12) 

where 8 = 1-[1J(U}A-ck)
2 

(B xn) • (B xn)+ rc}]/[(U2 -cJi) 2+rc1] 
TA 2</J p(l-U}A/c2) 0 0 ?" TA 

= 1JM(B0 xn)•(B0 xn)+ N , (>O) (4.13) 
2p</J 2i-</J 

and where (4.14) 

The other coupled fields q•n and T also take the same form as (4.12) by (3.28) and 

(3.29). Hence, the thermo-acoustical waves decay exponentially with respect to 

time. In view of the first term on the right of (4.13), the damping constants 

decrease, in contrast to the case of the electro-acoustical wave, according as n 
becomes parallel to B0• When n is paprallel to B0, the initial magnetic field does 

not influence the decay of these waves. The second term on the right of (4.13) 

is equal, apart from the multiplicative constant ¢-1, to the damping constants of the 

thermo-acoustical waves considered by Tokuoka15l. The presence of the multiplica

tive constant ¢-1( < 1 ), in other words, the presence of the thermo-electrical interac

tions, depresses the damping constants below their normal values. The influence of 

the electrical conductivity is similar to the case of the electro-acoustical wave. 

The non-dimensional quantities M, N, which depend on the thermo-elastic 

properties of the material, have respectively different values for the fast and slow 

waves. Consequently, the damping constants of the two waves also have different 

values. We get from (4.14) 

M+N=l 

for each wave, and from (3.24) and (4.14) 

The variation of M and N with respect to the parameters: 

( 4.15) 

(4.16) 
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Fig. l. Variation of M, N, where solid and broken lines denote, respectively, Mf=N, and 
M,=Nf. 

(4.17) 

is shown in Fig. l. Next, according to the discussion in the last section, we shall 

consider the limit r-+O for ci.>cJi. From Fig. l, we find that 

M 1 , N,-+ I and M., N1 -+ 0 

as r-o. Then (4.13) implies that 

I 
bTA --

s 2-rr/J 

(4.18) 

(4.19) 

Thus, for the damping constant of the predominantly mechanical wave, the term 

including the electrical conductivity and the initial magnetic field is essential. For 

that of the predominantly thermal wave, the term including the relaxation time of 

thermal conductivity is essential. It is easily verified that the situation is also 

valid when c}>i. 

Electro-magnetic wave 

Taking the product of (4.1) by the tensor 
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IIBII = 11- ;cnx l-n©n (c2-c71)[B0©n-(B0 •n)n©n1+(B0 •n)(nx)
2 

~ P[(c2-c1.) (c2-c71)-r,2J p(c2-c}) 

a0c[B0@n-(B0 •n)n©n] -aoe2[B0 -(Bo•n)n] II (4.20) 
p.-,80 T0 [(c2-ci) (c2-c71)- rc2] p,80 T0[(c2--ci) (c2-c7f )-rc2] 

yields by use of (3.34), 

nxE+µch-µc(h•n)n= _!!___nx.E TJc2(c2-c7f) [{ (B x.E)}B 
e<f; p¢[(c2-ci)(c2-c71)-rc2] n• 0 0 

7JC2 
-(B0 •n){n•(B0 x.E)}n] c2 

2 
(B0•n)[nx{nx(B0 x.E)}]. (4.21) 

p</J( -CT) 

Eliminating Ii form (4.21) by means of (3.2), we finally obtain the differential 

equation for .E: 

where we have used the relation E=nX (Exn) derived from (3.34). In order to 

solve (4.22), we shall first assume that n is not parallel to B 0, and introduce the 

unit vectors being perpendicular to n: 

ei= Boxn , e
2

= nx(B0 xn) 
I B 0 xnl lnx (B0 xn) I 

(4.23) 

By taking the scalar products of (4.22) by e1 and e2, we have, respectively, 

E•e1 = -oEMiE•e1 and E•e2 = -oEM2.E•e2 , (4.24) 

or, by solving them 

where o = __!J__ 7/ (B •n) 2 

EMl - 2e<f; 2p¢(1-c}/c2) 0 

7J(l-c7f/c2) (B
0 

X n) • (B
0 

X n) 
2p¢[(1-ci/c2) ( l -c71/c2)- r /c] 2 

~ __!J_ _ __!J_ B
0

• B
0 2e<f; 2p<f; 

o = __!J__ 7/ (B •n) 2 ~ __!J_ _ _!J__(B •n) 2 

EM
2 

- 2e<f; 2p¢(1-c}/c2) 0 2e¢ 2p¢ 0 
• 

The other coupled field his obtained from (3.2) and (4.25), i.e. 

(4.26) 
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We may assume that c-1- I B0 j2p-1>0 for usual cases, so that we see from (4.26) 

(4.28) 

Thus, we can conclude that the electro-magnetic wave also decays exponentially 

with respect to time, and that the electric field and the magnetic field become 

polarized, respectively, in the direction of e1 and e2 during propagation. For ex

ample, we shall consider the electro-magnetic wave which is circularly polarized at 

t=O. Then, the e1 and e2 components of any electric field of the wave at t=O 

satisfy the equation of the circle: 

(4.29) 

By use of (4.25) and (4.29), the components at the time tare found to satisfy the 

equation of the ellipse: 

where the ratio of the minor axis to the major axis is given by 

r = exp [-__!J__(B0 xn)•(B0 xn)t]. 
2p¢ 

(4.30) 

(4.31) 

These equations show that the electro-magnetic wave which is circularly polarized 

at the first time becomes elliptically polarized during propagation, and that the 

intensity of the polarization increases exponentially with respect to time. It is also 

found that the intensity of the polarization at any time is greatest when n is per

pendicular to B 0• 

When n is parallel to B0, the second term on the right of (4.22) vanishes. 

Therefore, any component of E being perpendicular to n can be expressed in the 

same form as (4.25), where the two damping constants are consistent. Of course, 

the above elliptical polarization does not occur in this case. 

Next, we shall mention the influence of the properties of the material on the 

decay of this wave. In view of (4.26), the damping constants do not depend on 

the thermo-elastic properties of the material in our approximation. Contrary to 

the cases of the electro-acoustical and thermo-acoustical waves, the damping con

stants decrease according as the magnitude of the initial magnetic field increases. 

The influence of the electrical conductivity and the thermo-electrical interactions is 

similar to the cases of the other three waves. Especially for electric conductors, 

the first terms on the right of (·1.26) will be very large, and then the electro-mag-
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netic wave decays instantaneously. 

Finally in Fig. 2, we make a sketch of the variation of the five damping con

stants with respect to the angle between the propagation direction and the initial 

magnetic field. 

The author is indebted to Prof. T. Tokuoka for his helpful comments on this 

investigation. 

C5~==========~6~TA;;s~===_j 
C4 

C3 
C2 

c, 1-----,,,<c...._ _____________ ::,,i 

0 cos2 8 
Fig. 2. Variation of the damping constants with respect to the angle 

0 between the propagation direction and the initial magnetic 
field, where c1 =N t/2r:¢, c2 =1Jl B 0 l 2/2p¢, c3=1)MtlBo l2/2P¢+ 
N1/2r:¢, c4 =N,/2r:¢, c5 =1)M,iBol 2/2p¢+N,/2r:¢, c6 =1)/2•¢-
1/ IBol 2/2p¢, c7 =1)/2c¢. We have assumed that cL2>ca2, TJI•> 
l/r:>1JIB0J2/p. 
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