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Abstract 

This paper describes a method for analysing parametrically excited system of higher 
order. The method is based on the theory of matrix function and the discrete Ft1urier 
transform. As a numerical example, we deal with a kind of Hill's equation derived 
from the synchronous generator circuit with unbalanced capacitive load and give its 
stability charts. 

I. Introduction 

When parameters in a linear circuit or system are varied periodically with 

time, the corresponding equations can be written by a set of ordinary differential 

equations with periodic coefficients. In this paper, we call such a set of equations 

a periodic system. Conventionally, the properties of a periodic system of the 

second order have been investigated in detail, aimed at studying its stability. 

However, there appears to have been little attention paid to the periodic system 

of a higher order and the wave forms of its solutions. In practical problems, we 

encounter many periodic systems of a higher order, such as various systems of 

synchronous machines, resonant transfer circuits and so forth. For these systems, 

we need to investigate the wave forms as well as the stability. Here, we propose 

a method for numerically analysing periodic systems of a higher order, using the 

theory of a matrix function, and an algorithm is given. 

2. Periodic System2l 

We deal with the periodic system described by 

dx ) - = P(-r)x 
d-r 

P(-r+2n-) = P(-r) 

( 1 ) 

where P(-r) is an n X n real matrix periodic with respect to -r, and xis n real vector. 
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Let the matrix 0(-r) be the normalized fundamental matrix of Eq. (1). Then 0(-r) 

is a solution of the matrix differential equation 

dX = P(-r)X 
di-

X(O) = 1 ( 2) 

where 1 is an n X n unit matrix. This equation is called the associated equation of 

Eq. (1). Following the Floquet theorem, we obtain 

0(-r) = L(i-) exp (i-W), L(O) = 1 ( 3) 

where L(-r) is called the Liapunov matrix with period 2ii-, and Wis an nxn con­

stant matrix. Because 0(-r+2ii-) also satisfies Eq. (2), there is a nonsingular matrix 

Vsuch that 

From Eq. (3) we obtain 

0(-r+2ii-) = 0(-r) exp (2ii-W) 

Because Vis a nonsingular m:atrix, there is the matrix W satisfying 

or 

V = exp (2ii-W) 

I W=-Iog V 
2ii-

( 4) 

( 5) 

( 6) 

( 7) 

Therefore, ifwe can obtain the logarithm of V, we can determine L(i-) from Eq. 

(3). 

3. Evaluation of log V 

Let the eigenvalues of V be .it1, .it2, •··, .it,. The functionf(.it) is assumed to be 

analytic with .it in the open interval of .it including -li, .it2, ... , .it,. Under this assump­

tion, we can determine the function J( V) by the fundamental formula of the 

matrix function derived from the Lagrange-Sylvester interpolation formula1>. 
Let the minimal polynomial,fr(A) of Vbe 

y(A) = (A-.il1)m1(-t-A2r2 .. , (l--t,)m• 

m1+m2+ .. •+m, = m (~n) 
( 8) 

where the integer mis the minimal degree of V, and m;(i=l, .. ,,s) is the minimal 

multiplicity of A;, Then the matrix functionf( V) is expressed by 

( 9) 
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wherej<0l(A;) gj(A;), and J<kl(A;) g dkf\A) I . The matrix Z;k is the constituent 
dA >-=>-; 

matrix for V, and its coefficient J<kl(A;) is the value of j(A) on the spectrum of V. 
The matrix Z;k depends not onf(J.) but on V. Therefore, it is important to deter­

mine Z;k so as to be easily computed without using tedious programming techni­

ques. In the following section, we show a method for determining Z;k using linear 

independent test functions. 

3-1 When V has a si:mple structure 

In this case, we have m=s, m;=l (i=l, •··,m). Let m linear independent test 

functions be g,(A) (r=l,···,m). These functions are assumed to have the same 

property asf (A). Using the definition of the matrix function, we have 

r = 1, ···, m. (10) 

We must give the form of g,(J.) so that we can compute the value of g,( V) as 

easily as possible. Therefore we choose g,(A) as 

( 11) 

Then, from Eq. (10) we can obtain the simultaneous matrix equation with Z;0 

(i=l, •·•,m). Solving it, we have 

(12) 

where 

Z 1 g {Zw Z 20, ···, Zmo} 

G' g {1, V-A11, ( V-A11) ( V-A21), ... , ( V-A11) ( V-A21) ··· ( V-Am_ 1l)} 

T 1 g T©l 

1 1 

Because Tis the upper traingular matrix, Z 1 is easily obtained by the backward 

substitution. 

3-2 When V doesn't have a si:mple structure 

Using Eq. (9), we obtain 

r = 1, ... , s (13) 
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where g}0>(..l;) 6g,(..l;), g}k>(..l;)~ d,.g,~..l) \ and g,(..l) is given by the same form as 
d..l >-=>-; 

Eq. (11). We can obtain the matrix T by the same processes as in the case ofa 

simple structure. Because the expression of T is so complicated we do not express 

it. The constituent matrix Zu, can be computed by the same procedures. 

3-3 Expression of log V 

We divide m eigenvalues into two sets. Let the set {..l1, ... ,..l,} be the set of real 

numbers and the set {..l,+1, ..lr+i, ···, ..l.,., ..l!} be that of complex numbers, where the 

asterisk indicates the complex conjugate values. Let us put 

(14) 

Then we have from Eq. (9) 

(15) 

If we express A; by the polar coordinate, we have 

(16) 

Let us take the principal branch oflog A;. Then we have 

(17) 

Furthermore, we divide the set of real eigenvalues into two sets: the set {..l1, •• ·, 

..lp} is defined as the set of positive eigenvalues, and the set {..lp+1, •··, ..l,} as that of 

negative eigenvalues. Then from Eq. (15) we have 

P { m; - 1 ( 1 )Ir+! } 
logV= ~ log..l;Z;0+ ~ (k-1)! -T Z;t 

• 
r { m;-1 ( 1 )k+l } 

+;it (logj..l;l+J1r)Z;0+~(k-l)! -T Z;t 
• 

+ :E [10g r;R;0+<p;X;0+ mf1 

(k-1) !{Re(-_!__)H
1

R;k+Im(-_!__)k+1X1k}]. 
1='+1 k=l A; A; 

(18) 

As is easily seen, if V has negative eigenvalues, log V becomes the complex matrix. 

4. Computation of L ( i-) 

Using the technique of numerical integration such as the Runge-Kutter-Gill 

method, we can obtain the numerical solution of Eq. (2) in the interval [O, 2n]. 
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Let us denote the sequence of the numerical solution of Eq. (2) by { (1)(-r p)}, where 

-rp=211:p/N(p=0, 1, •·•,N). From Eq. (4), we have V=(l)(211:). Therefore, we have 

(1)(-rp) = L(-rp) exp(;: logV) p = 0, I,···, N-1 

Solving Eq. (19), we obtain 

p = 0, I, •· ·, N-1 . 

Because v-p/N is the non-integer power of V, we obtain numerically 

v-l/N =exp(-: logY) 

x; 1 ( 1 )k =~- --logV 
k=Ok! N . 

Therefore, v-P/N is computed by 

p = 0, I,···, N-1. 

and the numerical sequence {L(-rp)} is given by 

p = 0, I, • · ·, N-1 . 

(19) 

(20) 

(21) 

(22) 

(23) 

Applying the discrete Fourier transform (abbreviated as DFT) to {L(-rp)} we can 

compute the harmonic components of L(-r). 

5. Algorithm 

The above results lead us to the following algorithm. 

Step 0 : Divide the period 211: of P(-r) by N, and put -rp=/11:. 
N 

Step I 

Step 2 

Compute the numerical sequence {(1)(-rp)} for P=0, 1, ···, N by solving 

Eq. (2) in terms of a numerical integration. 

Compute the eigenvalues of V=(l)(211:). 
Comment: At this step, we can nvestigate the stability. If the abso­

lute values of all eigenvalues are less than unity, the periodic system is 

asymptotically stable. 

Step 3 : Compute the comtituent matrix Z;k by Eq. (12). Use the modified 

form of Eq. (12) if V does not have a simple structure. 

Step 4 : Compute logVby Eq. (18). 

Step 5 : Compute v-l/N by Eq. (21). 
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Compute the numerical sequence {V-PIN} by Eq. (22). 

Compute the numerical sequence {L(rp)} by Eq. (23). 
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Step 6 

Step 7 

Step 8 Compute the harmonic components of L(r) by applying the DFT to 

the numerical sequence { L ( r p)} . 

Step 9 Stop. 

6. Some applications 

6-1 Application to Mathieu equation 

To assure our method, we apply it to the Mathieu equation. We deal with 

the equation 

(24) 

The parameters lie in an unstable region. The first solution is given by 

(25) 

where K is a constant. The second solution is obtained by changing the sign of 

r in Eq. (25). Omitting the external multiplier, we show our results in Table 1 

together with McLachlan's result3>. Both are in good agreement. This result 

justifies our method. 

Table 1. Numerical results. N =25 + I 

I McLachlan I Our method 

µ I ±0.08 I ±0.07976 

S1 0.94 0.94 

Ss -l.75x 10-2 -1.7558x 10- 2 

Ss 1.12 X 10-4 l.1230x 10- 4 

C1 1.0 1.0 

Cs -2.lOx 10-2 -2.1072 X 10-2 

Cs l.44x 10- 4 1.4426 X 10- 4 

6-2 Application to self-excitation of synchronous generator 

We deal with a periodic system which describes the phenomenon of a syn­

chronous generator connected to an unsymmetrical capacitive load. Under some 

assumptions, the periodic system can be written by 

(26) 

where 8k=80ak, O<a< 1. The parameters 80 and a are given by 
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(27) 

where x4 ,xq and x. are the generator reactances in the direct and quadrature axes 

and the reactance of the capacitor, respectively. The derivation of Eq. (26) is 

given in the Appendix. For the numerical case of n=2, we show the results for 

the stable and unstable parametric points in Table 2. Also, for the numerical 

cases of n=2, •··,5 the regions of self-excitation are shown in Figs. 1-a to 1-d. The 

shaded area is a region of self-excitation. The dashed lines in the stable regions 

Table 2-a. Harmonic components of L(r). a=0.5, 80=1.0 (unstable point) 
-·-

µ I Li I La Ls 

[ 0.45644 -j0.51428] [ 0.03848 -j0.02349] [ 0.00483 -j0.00634] 
±0.25740 

j0.60070 0.40648 j0.12202 0.06137 j0.02594 0.03058 

Table 2-b. Harmonic components of L(r). a=0.5, 80 =6.0 (stable point) 

µ 

±j0.24361 

0 

Lo 

[-0.82590 

0.0 

0.0 ] 

-0.04826 

[

0.04439 -j0.00916] 

j0.27567 0.05756 

'E I 

I 

E / 
I 

0 

I La 

[ 0.77211 

jl.6740 

-j0.12781] 

0.30074 

0 

I 
I 

I 

I 
I 

, E 
I 
I 

5.0 10.0 15.0 
eo~ 
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I L4 

[ 0.09126 

j0.40243 

E I 
I 
I 

I 
I 

20.0 

-j0.03681] 

o.15257 

/ 
/ 

/ 

0 

,,. ,,. 
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demonstrate the boundaries which divide the even and odd harmonic components 

of L(-r). The symbols O and E denote the odd and even harmonics, respectively. 

The above computations are carried out with double precision. 

7. Conclusion 

We have presented a method for obtaining the numerical solution of a periodic 

system of a higher order by a matrix function. When we applied it to some periodic 

systems, we had good numerical results. This method is based on the R.K.G­
method. Therefore, a large storage of memories becomes necessary when it is 

applied to a system of a higher order, as the numbers of the sampling points in­

crease. We also emphasize that the numerical sequence of the Liapunov matrix 

L(-r) can be computed by this method. 

For running the algorithm, we have used the computer F ACOM-M200 at 

the Data Processing Center of Kyoto University. The authors wish to express 

their gratitude to Mr. Katsumi Sato, a student of Kyoto University, for his co­

oporation with the numerical computation. 
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Appendix 

We assume that a three-phase synchronous generator is ideal4>. The O-a-/3 
expression of the performance equations of the generator is effective when it is con­

nected to an unsymmetrical load5>. We normalize the parameters, variables and 

time. Here, the variables v, i, and yr stand for the voltage, current and flux 

interlinkage, respectively. 

The a, /3 components of the terminal voltages of the generators are given by 

v,. = pyr,.-r~,. } 
V11 =P1/r11-n11 

(A.I) 

where pg :.- , and r is the resistance of the armature windings. The flux relations 

are given by 
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Va 

Ye 

Xe 

Fig. Al. The synchronous generator with unbalanced capacitive load. 

i/rm = cos r •G(p)E-{cos T xd(p) cos r+_!__xq(l-cos 2r)}i .. 
2 

-{cos r xd(p) sin r-_!__xq sin 2r}i11 2 

,;,11 = sin r•G(p)E-{sin ?' xd(p) cos T-_!__Xq sin 2r}i .. 
2 

-{sin?' xd(p) sin r+_!__xq(l +cos 2r)}i11 2 
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(A.2) 

where xd(p), Xq and E represent the operational impedance in the direct axis, the 

reactance in the quadrature axis and the field voltage of the generator, respec­

tively. G(p) and xd(p) are operational functions given by 

G( ) - 1 
p - TJoP+l ' 

(A.3) 

where T;0, x; and xd are the time constant of the field circuit, the transient re­

actance in the direct axis and the synchronous reactance, respectively. 

As shown in Fig. Al, the terminal conditions are given by 

(A.4) 

These conditions are expressed by the 0-a-f:J components 
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. . 0 . I . 
z0 = z,. = , p vfJ = - Xe zfJ . 

2 

Therefore, from Eqs. (A.I) (A.2) and (A.5), we have 

P'ifrtJ = vfJ+rifJ 

I . 
pvfJ = -XelfJ 

2 

'ifrtJ = sin 1: G(p)E-{sin 1: xa(p) sin -r:+_!__xq(I+cos2-r:)}ifJ. 
2 

Ifwe assume xa(p)=xd=const., and G(p)E=E=const., we have 

(A.5) 

(A.6) 

{ (xd+xq)-(xd-xq) cos 2-r:+2r __!__+xe__!__}ifJ = 2E sin 1: • (A. 7) p p2 

Here, we define a new variable by 

(A.8) 

Therefore, we have 

. I 
l[J = ---------V 

(xd+xq)-(xd-xq) cos 2-r: 

I I+a2 = = ---- {I+2~ancos2n-r:}v 
xd+xq 1-a2 

•=1 

(A.8) 

a= (vxd-vx°q) I (vx,i+vX:J · 

Then, Eq. (A.7) can be written as 

= 
+k2{1 +2 ~ a'"cos 2m-r:}v = -2E sin 1: (A.9) 

ffl=I 

8 - _r_ k2 _, Xe - v xdxq' - 2v XdXq. 

If r is negligibly small, the homogeneous equation associated with Eq. (A.9) be­

comes a kind of Hill's equation 

(A.IO) 


