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Abstract 

In this paper, we consider optimal allocation policies for standby systems in which 
each unit stochastically fails. When all the units in the system fail, a system failure 
occurs.· Each time the system fails, we determine the optimal number of units in the 
system to be next used so as to minimize the total expected replacement cost over a finite 
time horizon. The problems are formulated by dynamic programming, and are solved 
by a successive approximation method. Moreover, some properties of optimal policies 
are derived. That is, the optimal number of units of the system decreases in the remain
ing time, and there exists a critical point in time after which we leave the failed system. 

1. Introduction 
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Since R.E. Barlow and F. Proschan [I] introduced the concept of age replace

ment, much effort has been devoted to the study of replacement problems for 

stochastically failing systems. C. Derman, G.J. Lieberman and S.M. Ross [7] 

analyzed the optimal sequential allocation problem as follows. There are n types 

of replacement units. The problem is to assign the initial unit and subsequent 

replacements from among the n types so as to minimize the total expected cost of 

providing an operative unit for t units of time. Y. Tabata and T. Nishida [9] 

introduced the concept of idle time. They discussed sequential unit allocation 

problems for a m-unit parallel system, and gave some properties of an optimal 

policy when the failure time distribution of the unit is exponential. 

In this paper, two kinds of optimal replacement problems for a cold standby 

system with m units are discussed. First, we consider a m-unit cold standby system 

in which each unit has an identical failure time distribution. Only one unit is in 

an operating state and the others are in a standby state. If the unit in the operat

ing state fails, a unit in the standby state takes over the operation. Here we as

sume that the switch-over is perfect, that is, the switchover consumes zero time. 
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When all units in the standby system fail, we say that a systemdown has occurred 

or the system fails. For such a system, we consider two cases. 

Case 1 ; We start the operation of the system at time 0, and we must operate 

for T units of time, that is, whenever a systemdown occurs, we must 

replace the failed system with a new one. 

Case 2 ; We have a planning period of length T. We start the operation of 

the system at time 0. When a systemdown occurs, we can leave the 

failed system until the end of the planning time. 

In case 1, we select an action from the actions mentioned below, considering 

the remaining planning time. 

Action i ; We purchase an i-unit system and replace the failed system by the 

i-unit system. 

The times of purchasing and replacement are assumed to be neglected. We must 

pay the purchasing cost of the new system, which increases in proportion to the 

number of the units in the new system. Also, a replacement cost is incurred. 

In case 2, we consider the system with the same structures as were mentioned 

before. Now we start the operation of this system at time 0. When a systemdown 

occurs, that is, when all units of the system fail, we can select one of the following 

actions, considering the remaining time. 

Action i ; We purchase an i-unit system and replace the failed system by the 

i-unit system. 

Action O ; We do not purchase a new system, and leave the failed system until 

the end of the planning time. 

When we choose action i, we assume that the replacement time for a new system 

can be neglected, and must pay the purchasing cost and replacement cost. When 

we select action 0, we must pay the penalty cost per unit time due to the loss of 

production.• 

In both cases, our purpose is to determine an optimal allocatilon policy that 

minimizes a total expected cost over a planning time. The problems are formulated 

by dynamic programming, and an optimal policy is derived. Moreover, some 

properties of a near optimal policy are obtained for each case. 

2. Notations 

For the behavior of the standby system, we define the following notations. 

F(x) : failure time distribution function of a unit. 

We assume that the failure time of each unit is exponentially distributed with 

expected time 1 / -l, namely 
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F(x) = 1-e-"". 

f(x) : density function of F(x), 

F;(x) : failure time distribution function of an i-unit standby system. This is 

easily given by 

F;(x) = r% Ai e-Alti-ldt. 
Jo(i-1)! 

F;(x) : 1-F;(x), 

f;(x) : density function of F;(x) 

In our system, we consider the following costs: 

K Purchasing cost for one unit. 

L Peplacement cost. 

c Penalty cost per unit time incurred when we leave the failed system as 

it is. 

(This notation is used only in case 2.) 

As for an optimal allocation policy, we introduce the following quantity. 

V(x) The optimal total expected cost when x units of time remain until the 

end of the planning time. 

3. An Optimal Policy in Case I 

In this section, we discuss an optimal policy when we must operate the sys

tem for T units of time. By the principle of optimality, the minimum cost V(x) 

satisfies the following equations: 

V(x) = min H;(x) . 
j 

( 1 ) 

( 2) 

Hi(x) is the expected total cost over time x when we replace the failed system 

with a new standby system with i units, and adopt an optimal policy from that 

time on. 

We solve these equations by a successive approximation method. That is, 

we consider the following recursive equations: 

V,,(x) = min H~ (x) . 
j 

H~ (x) = L+iK + I>;(t) v,,_l (x-t)dt. 

V0 (x) = L+K+Ax(L+K). 

It is easily shown that lim V,.(x) = V(x), and the proof is omitted. 
n+oo 

( 3) 

( 4) 

( 5) 
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From here, we investigate the characteristics of each H~(x) and V,,(x). 

Lemma 1. H~(x) is a non-decreasing function in x. 

Proof. When n=l, we see that 

r .. +, 
H[(x+y)-H[(x) = Jo f;(t){L+K+l(x+y-t)(L+K)}dt 

-[f;(t){L+K+l(x-t)(L+K)}dt 

= (L+K) {F;(x+y)-F;(x)} 
r .. +, 

+(L+K)J .. F;(t)dt~O. 

Consequently, V1 (x) =min H/ (x) is a non-negative non-decreasing function in x. 
i 

Suppose that Vk(k) is a non-negative and non-decreasing function in x, and for 

n=k+l, we show that 

Hk~l (x+y)-Hk~l (x) = !:+.)' f;(t) v.(kx+y-t)dt 

-!>;(t) V,.(x-t)dt 

= [f;(t) {Vk(x+y-t)-Vi(x-t)}dt 

r .. +, 
+ J.. f;(t) Vk(x+y-t)dt~O. 

Thus, Vk+1(x) is also a non-decreasing function in x. Repeating the same argue

ment, we can prove the lemma for all n. 

Lemma 2. ( 6) 

Proof. The proof is done through two steps by a mathematical induction me

thod. 

(i) If Vn_ 1(x)=H,,!_ 1 (x) for 2~i~m, we see 

H!(x)-L-V,,_ 1(x) = H~(x)-L-H,,'_ 1 (x) 

= -L-(i-l)K+~>(x-t)Vn-1(t)dt 

-(f;(x-t) V,,_ 2(t)dt 

= -{L+(i-l)K}F(x) 

+ !:f(x-t) {V,,_ 1(t)-H~::(t)}dt 

~-LF(xf. 
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(ii) If Vn-1(x)=Hn~1(x), 

H!(x)-L-Vn_1(x) = H!(x)-L-Hn~1(x) 

= -L+ !>(x-t) {Vn-1(t)-Vn-2(t)}d 

:=;-LF(x). 

From (i) and (ii), the proof is done. 
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Lemma 3. For each n, H;(x)-H!(x) changes its sign at most once in x, and 

if a change occurs, it is from positive. 

Proof. We see that 

H;-H!(x) = KF(x) + !:J(x-t) {H!(t)-Vn_1(t)-L}dt. 

Substitutingf(t)=.ile-xt and F(t)=e-x1, we have 

exs{H;(x)-H!(x)} = K+!: .ilex,{H!(t)-Vn_1(t)-L}dt. ( 7) 

Considering lemma 2, the right hand side of equation (7) is less than K-.ilLx. 

Therefore, the proof is over. 

Theorem 4. For each n, i~2, H~(x)-Hi;'(x) changes its sign at most once 

in x, and if a change occurs, it is from positive. 

Proof. We see that, 

H!(x) = L+iK+ !>;(x-t) Vn_,(t)dt 

= L+iK-{L+(i-l)K}F(x)+ !>(x-t)H 1;'(t)dt. 

Hence, the following equation holds as in the proof of lemma 3. 

Repeating the result of lemma 3, the sign of the integrand of the second term of 

the right hand side in equation (8) is either positive for all O:::;x:::; T. Or, it changes 

its sign only one time, and it is from positive to negative. In this way we can 

prove the theorem for all i. 

From lemma 3 and theorem 4, we have the following theorems. 

Theorem 5. Assume that Hi! 1(x) crosses H!(x) at a point x!, then Hi!'(x) 

crosses H~(x) for allj>i, and the following inequality holds, 

( 9) 
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Proof. 

eAJ:{Hi;1(x)-H~(x)} = K+ 1: ;.e>-•1{H!(t)-Hi•;;1(t)}dt. (10) 

Assume Hi; 1(x) crosses H~(x), and H!(x) does not cross Hi•;;1(x). The right 

hand side of equation (10) is positive and the left hand side of equation (10) is 

negative. This is a contradiction. Consequently, inequality (9) holds. 

Theorem 6. Assume Hi;1 (x) does not cross H!(x), that is, H;; 1(x) "2:,H~(x) 

holds for all Osxs T. Then for allj>i, Hi; 1(x) does not cross Ht(x). 

Proof. The proof is easily done as in the proof of theorem 5. From theorems 

5 and 6, we can obtain a near optimal policy of the form, 

[ 

select action I 

select action 2 

select action i 

Osxsx!, ] 
x!sxs;' 

xi-1 <x< T. n - -

4. An Optimal Policy in Case 2 

In this section, we treat an optimal replacement problem which includes a 

concept of idle time. By the principle of optimality, the minimum cost V(x) 

satisfies the following equations: 

V(x) = min { 
ex 

min H!(x). 
( 11) 

i 

(12) 

ex is incurred when we leave the failed system until the end of the planning 

time T. Hi(x) is the expected total cost over time x, when we replace the failed 

system with a new standby system with i units and adopt an optimal policy from 

that time on. 

We consider the following recursive equations. 

{ 
ex 

Vn(x) = min . i 
mmHn(x). 

i 

H~(x) = L+iK+ i>;(t) Vn_ 1(x-t)dt. 

V0(x) =ex. 

It is easily shown that lim Vn(x)=V(x), and the proof is omitted. 
n+oo 

(13) 

(14) 

(15) 
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Next, we investigate the characteristics of each H!(x) and V.(x). For the 

purpose, we have the following lemmas. 

Lemma 7. O<H!(x+y)-H!(x)<cy. 

0::5:x::5: T; y>O. 

(16) 

Proof. The proof is done by a mathematical induction method. For n=l, 

rs+, rs+y 
Hence, it is clear that O< ls cF;(t)dt<c Js dt=dy, which implies that. in-

equality (16) holds. For n=k, we assume that inequality (16) holds. Then, for 

n=k+l, we can show the following inequality: 

Considering inequality (17), 

( i) H,.~1 (x+y)-H,.i 1 (x) ~ }:+, f;(t) Vi(x+y-t)dt-}>;(t) V,.(x-t)dt 

::;; !:J,(t) {V,.(x-t)+cy}dt 

+ !:+, f;(t)c(x+y-t)dt-}:f,(t) V,.(x-t)dt 

rs+y rs+, 
= c Js F;(t)dt<c J.. dt = cy. 

(ii) a,.il (x+y)-H,.i1 (x) = [+' f,(t) V,.(x+y-t)dt-}: f;(t) v.(x-t)dt 

= !:f;(t) {V,.(x+y-t)-V,.(x-t)}dt 

rs+, 
+ Js f;(t) V.(x+y-t)dt~O. 

(17) 

From (i) and (ii), inequality (16) holds for n=k+l. That is, H!(x) are non

decreasing functions in x for all n and i. The proof is over. 

Lemma 8. For each n and i, H!(x)-cx changes its sign at most once in x, and 

if a change occurs, it is from positive. 

Proof. We put g!(x) =H!(x)-cx. Clearly, it holds that g!(O) =L+iK>O. 
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From lemma 7, we obtain that 

From (i) and (ii), we can show g!(x) is a non-increasing function in x and is 

positive when x=O, which implies that the lemma holds. 

Lemma 9. H!(x)-L-Vn_1(x) changes its sign at most once, and if a change 

occurs, it is from positive. 

Proof For n= 1, we see that 

Hf (x)-L-V0 (x) = K-c ~: F(t)dt. 

Therefore, lemma 9 holds for n= I. Then, for n ~ 2: 

( i) If Vn_ 1(x) =ex, then we see 

H!(x)-L-Vn_1(x) = H;(x)-L-cx = K-c ~: F(t)dt. 

(ii) If Vn_ 1(x)=H/ .. 1(x), then 

H!(x)-L-Vn_1(x) = H!(x)-L-H/:__1(x) 

= -L+ ~>(x-t) {Vn_1(t)-Vn-2(t)}dt<O. 

(iii) If Vn_ 1(x)=Hn~ 1(x), i~2, then 

H;(x)-L-Vn_ 1(x) = H!(x)-L-Hn~1(x) = -{L+(i-l)K}F(x) 

+ !>(x-t){Vn(t)-H!:W)}dt~O. 

From (i), (ii), (iii) and lemma 8, lemma 9 holds for n~2. The proof is over. 

Lemma JO. For each n, H;(x)-H!(x) changes its sign at most once, and if a 

change occurs, it is from positive. 

Proof We see that 

H;(x)-H;(x) = KF(x) + ~>(x-t) {H;(t)-,Vn_1(t)-L}dt. 

Substitutingf(t) =Ae-;,.i and F(t) =e-At, we see that 

From lemma 9, the sign of the integrand in equation (18) changes at most 

once, and if a chenge occurs, it is from positive, which implies that the lemma 

holds. 
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Theorem 11. For each n, i, H 1! 1(x)-H!(x) changes its sign at most once, 

and if a change occurs, it is from positive. 

Proof. We see that 

H!(x) = L+iK+ [f,(x-t) V,._ 1(t)dt 

= L+iK- {L+ (i-1 )K} F(x) + !:J(x-t)H;;1 (t)dt. 

Therefore, 

Substituting J(t) =J.['At and F(t) =e-'At, we see that 

Here, repeating the same arguments as in lemma 10, the sign of the integrand in 

equation (19) changes at most once, and if a change occurs, it is from positive. 

Hence, the sign of the left hand (19) has the same property, which implies that 

the lemma holds. 

Theorem 12. If H'·:;1(x) does not cross H!(x), then Hi·:;1(x) does not cross 

Ht(x) forj>i. 

Proof. If H': 1 (x) does not cross H!(x), then it holds that H;! 1(x) z.H!(x), 

from theorem 11. Considering equation (19), we show that Hi: 1 (x) >Ht(x), for 

all j > i. The proof is over. 

Theorem 13. Suppose H':1(x) crosses H!(x) atx!. Then, the following rela

tionship between each x! holds; 

(20) 

Proof From theorems 11 and 12, we can easily show inequality (20). From 

lemma 8 and theorem 13, we can obtain a near optimal policy of the form. 

(i) If l(L+K)>c, 
it is optimal to take action O whenever a systemdown occurs. 

(ii) If l(L+K) <c, 

[ 

select action 0 

select action i 

select action j I s;,is;,js;,m. 
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5. Conclusion 

In this paper, we consider optimal allocation policies for standby systems in 

which each unit stohcastically fails. In both cases 1 and 2, the problems are 

formulated by dynamic programming and are ~olved by a successive approximation 

method. We can conclude that the optimal number of units of the system, which 

minimizes the total expected. cost, decreases as the remaining time decreases, and 

in case 2, there exists a critical time point after which we should leave the failed 

system. 

Here, we assume that each unit fails exponentially. However, there are 

many cases where their failure time distributions are general. We sohuld study 

an optimal allocation problem in these cases, which will be postponed to a future 

opportunity. 
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