
434

ADINA Computer I and II

II. Data Structure

By

Tatsuo Nom*

(Received March 30, 1981)

Abstract

The ADINA Computer treats data of a characteristic structure which is very suc
cessful for parallel computation, and also shows well the structure of the machine itself.
The data structure, as shown in this paper, is easily introduced into a high level pro
gramming language PASCAL. For illustration, some programs are shown by using
the language.

Introduction

The previous papers [l] and [2] proposed new parallel machines, ADINA-I,

-II, for high speed computing in science and engineering. The ADINA-I is

especially useful for computer simulation in a one or two dimensional physical

space, and the ADINA-II is useful for that in a three dimensional space.

This paper aims to show some characteristics of the data structure of the

ADINA Computer, and some commands and actions in parallel computation. It

will be found that the data structure is very simple and natural, and that it is

easily introduced into a high level programming languge, for example, PASCAL.

Hence, it is also found how well the machine itself is structured.

§ 1 is for the ADINA-I and §2 is for the ADINA-II.

§ 1 ADINA-I and its data structure

1.1 The main part of the architecture of the ADINA-I is conceptionally shown

in Fig. I. Here, every circle means an arithmetic processor unit (AU) having

an equivalent structure and a private memory block. Those processors are num

bered from 1 to N, as shown in the figure. In order to always allow a data transfer

between any pair of processors, a two dimensional array of buffer memories (BM)

is equipped, and each BM is expressed by a square in the figure. This array is a

* Department of Applied Mathematics and Physics

ADINA Computn- I and II II. Data Structure

I
I

,.1, , \

t 2 J ,....,_,,

I
I

..... 1
I \
I I
\ I _ _,,,,

I
I

·1 ,, .._
I • ',
I I / , __

1.

I
,1,

I \
\ :
\ , ,_,.

Fig. 1. Buffer memories and processors of the ADINA-I.

main characteristic of the ADINA-I.

.435

The set of N processors can take two positions m the way of time sharing.

These positions are shown by real line circles and broken line circles, and are

called the row position and the column position respectively. A data transfer

from the AU-i to the AUj, whichever AV-i (alternatively the AUj) is at the row

(column) position or the column (row) position, is mediated by the buffer memory

BM-(i,j) or BM-(j,i). In order that such a data transfer be allowed for every

pair of processors, every AU-j must be connected to the buffer memories BM-(i,j)

(i=l, 2, ···, N) and BM-(j,k) (k=l, 2, ... , N) by busses. In order to reduce the

quantity of the hardware as much as possible, and to make each processor take

an asynchronous action easily, it is more convenient to use a FIFO (First-In-First

Out) memory as a buffer memory, as stated in [l).

1.2 For a computer simulation of a two dimensional physical phenomenon, an

unknown variable u is usually expressed by a set of data on a two dimensional array

of grid points, such as

var u: array (1 . . K, 1 . . L] of real;.

The value of u itself is expressed as u[i,j]. The letters Kand L may, of course, be

any integers, but for simplicity, only the case where K=L=N is considered in the

436 TatsuoNoOI

following. As a rule, every processor then plays a role of computing on the cor

responding row and column of grid points. For example, the AU-j is concerned

to determine a one dimensional array of u[i,j] (i= 1, 2, ... , N) or u[k,j] (k= 1, 2, •··,

N) (at the row or column position, respectively). In order to clear the distinction

between the two kinds of one dimesnional arrays, we call one kind a data row and

the other kind a data column, denoted by

u[i, (j)] and u[(,), k]

respectively. The idea is to deal with data declared like

var u: array [I. .N, (I. .N)], [(I. .N), I. .N] of real;.

This gives a typical data structure of the ADINA-I.

1.3 For an illustration, we first consider the following example of an iterative

method:

(1)
ut/ = M+1,;+u7-1.;+u1,;+1 +u7,;-1)/4,

n = 0, 1, 2, • · ·, i, j = 1, 2, • · ·, N,

where n is the number of iterations, and i and j are the numbers of the grid coor

dinates. To realize a one time computation from n to n+l, we take the following

procedure:

(i) v,,; = u,,;+i+u,,;-i (i,j = 1, 2, •··, N),

(ii) v1,; = (u,+1,;+u,_ 1,;+v,,;)/4 (i,j = 1, 2, ···, N),

(iii) u,,; = v,,; (i,j = 1, 2, •··, N).

It is noticed in the first step that the right hand side of (i) contains only the vari

ables with the same first suffix i and the different values of the second suffixj+l

and j-1. This allows for the computation (i) to proceed in parallel and inde

pendently for all i's. It is also noticed in the second step that the right hand side

of (ii) contains only the variables having the same second suffix j and the different

values of the first suffix i+l, i, i-1. It allows for the computation (ii) to be done

in parallel and independently for all j's. For formulating such a procedure, the

array type with the double bracket is very convenient, as seen in the following

program. (It is supposed that at the starting point u[i, (j)] (i,j= 1, 2, ···, N) are

known.)

procedure one setp ef the Jacobi's iteration method for the Laplace operator;

const N=l6;

var u,v: array [l .. N, (1 .. N)], [(l .. N), I .. N] of real;

i,j:I..N;

ADINA Computer I and II II. Data Structure 437

begin
for i,j=: 1 to N ptransfer u[(i),j]: =u[i, (j)];

{For the parallel transfer to reread the data row as the the data column, andfor the

detail of the action ofptransfer, see the next procedure.}

for i: =1 to Npdo

begin
for j: = 1 to N do v[(i), j]: =u[(i),j+l] +u[(i),j-1]

end;

{parallel doing the computation enclosed by begin and end over all i's}

for i,j: =1 to N ptransfer v[i, (j)]: =v[(i),j];

{ to reread the data column as the data row}

for j: = 1 to N pdo

begin

for i: =1 to N do v[i, (j)]: =(u[i+l, (j)]+u[i-1, (j)]+v[i, (j)])/4

end;

for j: = 1 to N pdo

begin

for i: = 1 to N do u[i, (j)]: =v[i, (j)]

end
end;.

In the above procedure, the parallel command ptransfer and pdo are introduc

ed. Their means and the methods of their application are easily read from the

above procedure. Only one point to notice here is that all variables in a loop of

pdo must be data of the same type, row or column.

1.4 In order to ptransfer, an array of buffer memories is essential. As mentioned

above, we use a FIFO memory as each buffer, and here introduce the type fifo
for its expression. That is,

type S = fifo of real;

var buffer: array [1. .N, (1. .N)] = [(1. .N), 1. .N] of S;.

The type fi.fo is the same data structure as that of the type file, but we have introduc

ed the former in order to make a distinction from the latter used in the usual way.

Now, we use both expressions

buffer [i, (j)] and buffer [(i),j]

for the same buffer. The sign=in the definition of var buffer means the idendity

as the hardware. The double brackets are, however, introduced to distinguish

between the i-th element of the j-th row of buffer [i, (j)] and the j-th element of

438 Tatsuo Nom

the i-th column of bt,iffer [(i),j].

The detail of ptransfer is as follows :

procedure ptransfer from row to column;

const N=I6;

type S= fifo of real;

var buffer array [I .. N, (I .. N)]=[(I .. N), I .. N] ofS;

u: array [I .. N, (I .. N)], [(I .. N), I .. N] of real;

i,j: 1. .N;

begin

forj: =l to Npdo

begin for i: =l to N do

end;

begin rewrite (buffer [i, (j)]); buffer [i, (j)] t : =u[i, (j)];

put(buffer [i, (j)])
.end

for i: =l to Npdo

begin for j: =l to N do

end

end;

begin reset (buffer [(i),j]); u[(i),j] :=buffer [(i),j] t ;
get (buffer [(i), j])

end

§2 ADINA-IT and its data structure

2.1 The ADINA-II has a two dimensional array of N 2 arithmetic processor units

and N two dimensional arrays of N 2 buffer memories. Fig. 2 shows the way of

the bus connection between the k-th array of buffer memories (figured by the

squares) and the related processors (figured by the circles) (k=l, 2, •··, N). The

array of all processors is made to take two positions, as in the ADINA-I. They

are again shown partly by the real line circles and the broken line circles, and

are again called the row posidon and the column position respectively.

The way of data transfer through the k-th array of buffer memories is the

same as that in the ADINA-I, but differs only in the point that one side of data

transfer is the k-th row of processors, and its counterpart is the k-th column of

processors. (In the ADINA-I, both sides are the s'.1me one dimensional array.)

In. this case, it is not always allowed to transfer data directly between any pair of

processors, but only between every pair, both parts of which are in a row and a

ADINA C-Omputer I and II . II. Data Structure

I
I

,L,
/ \

' J \ / ---~

I
I

,1,
, ' I \

I I
\ I , _.,,

Fig. 2. The k-th arra1- of buffer memories and related processors of the
ADINA-II.

439

column with the same order number respectively. It is, however, easily seen that

every data transfer is always allowed indirectly through only one processor as a

mediator, such as

((j, k)) - (l,j),,- ((k, l)) - (m, k)1 - ((l, m)),

where ((k,l)) is the mediator for transferring from ((j, k)) to ((l, m)), and ((,)) is

the number of processors and (,) k is the number of buffer memories on the k-th

array. (See [2] for details.) Such a way of data transfer is a main ch~~acteristic

of the ADINA-II.

2.2 The other characteristic point for use is that the complex of all the processors

and buffer memories may take three positions with regard to a fixed cube of lattice

points for computation. These positions are called the a-position, the b-position

and the c-position respectively. (See [2], especially Fig. 4-a, -b, -c.) Correspond

ing to such a situation, we here introduce three kinds of one dimensional array

instead of the usual three dimensional array, for example,

u[i, (j, k)] , u[i), j, (k] and u((i,j), k]

instead of u[i,j, k]. Here, it is assumed that the first variable belongs to the (j, k)-

440 TatsuoNom

th processor, the second to the (k, i)-th and the third to the (i,j)-th when these

processors are at the row positions of the a-, b- and c-position of the complex re

spectively. We call such arrays the a-array, the b-array and the c-array respec

tively, which assume a main aspect of the data structure.

2.3 Such data structure may be well understood by reading the following applica

tion program, which solves the Poisson equation .du= f in a three dimensional

cube by the well-known ADI method of Douglas and Rachford:

(I)

(2)

(3)

(-.d1 +r)u"+1/3 = (.J2+.J3+r)u",

(-.d2+r)un+2/3 = -.d2u" +run+I/3'

(-.ds+r)u"+I = -.dsu"+ru n+2/3

where r is the parameter of iteration, n is the number of iteration and

.d1ui,j,k = ui+l,j,k-2ui,j,k+ui-l,j,k'

.d2ui,j,k = ui,i+1,k-2u1,;,k+u1,;-1,k,

.d3U/,j,k = ui,k,H1-2u1,;,k+u1,j,k-l.

It is supposed in the following program that the values of u at the n-th stage and

the boundary are given, and that the procedure double sweep is defined beforehand.

The procedure solves tri-diagonal systems arising from the equations (I), (2), (3).

procedure one step of ADI method;

const N=l6;

var i,j, k: I .. N;

f: array[! .. N, (I .. N, I .. N)] of real;

u, .d2u: array[! .. N, (I .. N, I .. N)], [I .. N), I .. N, (I .. N], [(I .. N, I .. N),

I .. N] of real;

.d3u: array[! .. N, (I .. N, I .. N)], [(I .. N, I .. N), I .. N] of real;

{ The symbol .d2 or .d3 is, ef course, not allowed in PASCAL, but we here use it for

simplicity ef illustrat.'on. Other convenient symbols will also appear in later program

without notice.}

begin

forj,k: =l to Npdo doublesweep(u[•, (j,k)]);

{to solve the equation (I) for every (j,k) in parallel at the a-position and get the a-array

ef the solution u[•, (j, k)]}

for i,j, k: = I to N ptransfer

begin u[i),j, (k]: =u[i, (j, k)], .d2u[i),j, (k]: =.d2u[i, (j, k)]

end; {to reread the a-arrays as the b-arrays}

fork, i: = I to N pdo double sweep (u[i), •, (k]);

ADINA Computer I and II II. Dana Structure 441

{to solve the equation (2) for every (k, i) in parallel at the b-position and get the b-array

of the solution u[i), •, (k]}

for i,j, k: = 1 to N ptransfer u[(i,j), k]: =u[i),j, (k];

{to reread the b-array as the c-array}

for i,j: =1 to N pdo double sweep (u[(i,j), •]);

{to solve the equation (3) for every (i,j) in parallel at the c-position and get the c-array

of the solution u[(i,j), •]}

for i,j, k: = 1 to N ptransfer u[i),j, (k]: =u[(i,j), k]

{to reread the c-array as the b-array}

fork, i: =1 to Npdo

begin for j: = 1 to N do

.d2u[i),j, (k]: =u[i),j+ 1, (k]-2•u[i),j, (k] +u[i),j-1, (k]

end;

for i,j, k: = 1 to N ptransfer .d2u[(i,j), k]: =42u[i),j, (k];

for i,j: =1 to Npdo

begin fork: = 1 to N do

.d3u[(i,j), k]: =u[(i,j), k+ 1]-2•u[(i,j), k] +u[(i,j), k-1]

end;

for i,j,k: =1 to Nptransfer
begin u[i, (j, k)]: =u[(i,j), k], .d2u[i, (j, k)]: =42u[(i,j), k], .d3u[i, (j, k)]: =

.d3u[(i ,j), k]

end

end;

It is seen in this program that the main parts of the computation generally

proceed in a fully parallel way, and hence the efficiency of parallelism is almost

100%, It is found that the ADINA Computers are very well suited for the ADI

methods, the Fractional Step methods etc ..

2.4 Now, we comment about the procedure ptransfer in the ADINA-II. When

the buffer memories are RAM's as in [2], the procedure is simple. In fact, it is

only a change of view point, from the row (column) position to the column (row)

position of the processors, for example,

"for i,j, k: = 1 to N ptransfer u[i),j, (k]: = u[i, (j, k)]"

means to consider the a-array stored from the row position at the a-position as the

b-array by viewing from the column position and also the a-array at the b-position

simultaneously. Thus there is no time loss with regard to the ptransfer.

On the other hand, where the buffer memories are the FIFO's, there is some

442 Tatsuo Nom

time loss for the ptransfer. We have, then, a special data structure of buffer me

mories to notice here, for example,

type S=fifo of real;

var bziffer: array [l . . N, (1 . . N, (1 .. N))]=[l . . N), 1 . . N, ((1 . . N)],

[(l . . N)), 1 . . N, (I .. N]=[((l . . N), 1 .. N), I . . N],

[(l . . N, (I . . N)), I .. N]=[l . . N, ((I . . N) ,1 . . N)]

ofS;.
.J

Then, we use both expressions

buffer[i, (j, (k))] and buffer[i),j, ((k)]

for the (i,j)-th buffer of the k-th array as the complex of processors and buffer

memories is at the a-position. The former is used as the i-th buffer viewed from

the j-th processor on the k-th row, the array of processors being at the row position.

The latter is used as the j-th buffer viewed from the i-th processor on the k-th

column, the array of processors being at the column position. The mentioned

processors are really connected to the k-th array of buffer memories. Similarly,

both

bziffer[(i)),j, (k] and bziffer[((i),j), k]

are expressions for the (j, k)-th buffer of the i-th array as the complex is at the

b-position. The former is the j-th buffer viewed from the k-th processor on the

i-th row, the array of processors being at the row position. The latter is the k-th

buffer viewed from the j-th processor on the i-th column, the array of processors

being at the column position. Also, both

bujfer[(i, (j)), k] and buffer[i, ((j), k)]

are expressions for the (k, i)-th buffer of the j-th array as the complex is at the

c-position. The former is the k-th buffer viewed froi;n the i-th processor on the

j-th row, the array of processors being at the row position. The latter is the i-th

buffer viewed from the k-th processor on the j-th column, the array of processors

being at the column position.

As seen above, the correspondence between the pattern of the double brackets

and the real positions of the complex and the array of processors is ruled as fol

lows:

The inner bracket () being at

the third position

the first position

the second position

The complex being at

the a-position

the b-position

the c-position

ADINA Computer I and II II. Data Structure

In the outer bracket (,) , the

inner bracket being at

The array of processors

being at

the latter

the former E-+

the row position

the column position

We here omit the detail of ptransfer by using such FIFO buffers, since it is

the same as that in the ADINA-I mentioned in § 1. The following program how

ever, gives an example of their usage.

2.5 It is an electrostatic particle code of the plasma simulation, which shows that

the ADINA Computer is very useful not only for fluid simulation but also for

particle simulation. In the particle code, it is characteristic to have a procedure

of 'particle push', which moves every particle to each new position. The pro

cedure is very complicated for other parallel machines, but it is comparatevely

easy for the ADINA Computer, as seen in the following program.

The electrostatic model is as follows:

p(r) = ~ q,.S(r-r,,,),
d

P•E(r) = 4n-p(r),

F(r,,,) = f S(r'-r,,,)E(r')dr',

m,. dv,. = q .. (F(r ..)+_!__v,,,xB0),

dt C

where r is the three dimensional Euclidian vector, r ,,,, v,., q .. and m,. are the position,

the velocity, the charge and the mass of the a-particle, respectively. S(r) is the

shape factor of the super particle with a finite size, E(r) the electric field, F(r ..) the

force by the electric field, B 0 the given static magnetic field and c the light velocity.

It is assumed that the computation is realized on a cubic lattice, with the

accuracy of the first order as regards the width of the lattice points (grid points).

For that, the following approximate methods are applied. The first equation is

approximated by the formula

where r g is the nearest grid point of r ,,,, Q.(r g) and D(r g) are the monopole and the

dipole at the grid point r g respectively, and are given by

In order to get force F from the monopole and the dipole, the method of Fast

Fourier Transform (FFT) is very useful. It is, in fact, as follows:

i) to get the discrete Fourier Transform Q.(k) and D(k) by the FFT method,

444 Tatsuo NooI

ii) to get F(k) from the equations

iJ(k) = S(k)[Q(k)-v-=Tk•D(k)],

E(k) = -v -14n-kiJ(k)Jlkl 2
,

F(k) = S(-k)E(k) ,

iii) to get F(r1) from F(k) (FFT-1
).

The next step is to determine the destination of every particle by solving the dif

ference equations

v:-v:-1 = q,. (pn-l/2(r,.) + v:+v:-1 XBo)
.dt m.. 2c ,

r:+1/2 = r:-112+.Jtv:.

The last step is the 'particle push'.

procedure one step of the electrostatic code;

const N=l6;

type vector= array [1 .. 3] of real; complex= record real part, imaginary part: real end;

complex vector=record real part, imaginary part: vector end;

T =file of record destination: record first, second, third: 1 .. N end;

r,., .J.,r, v.,: vector;

m.,, q.,: real

end;

var particle: array[l . . N, (1 . . N, 1 . . N)l, [l . . N), 1 . . N, (1 .. NJ of T;

i,j, k: 1. .N;

procedure Q. and D;

begin

for j, k: =l to N pdo

begin for i: = 1 to N do

end
end;

begin Q.[i, (j, k)]: =0; D[i, (j, k)]: =0;

reset particle [i, (j, k)];

end

while not eof particle [i, (j, k)]) do

begin Q.[i, (j, k)]: =Q.[i, (j, k)] +particle[i, (j, k)]. q,.;

D[i, (j, k)]: =D[i, (j, k)] +particle[i, (j, k)]. q.,*.dr,.
end

procedure Q and D

ADINA Computer I and II II. Data Stnu:ture

var Qi: array[l . . N, (l .. N, l .. N)], [l . . N), 1 . . N, (l .. N] of complex;

D 1 : array[l..N, (l .. N, l .. N)], [l .. N), l .. N, (l .. N] ofcomplexevector;

Q2 : array[l . . N), 1 . . N, (1 . . N], [(l . . N, 1 . . N), 1 . . N] of complex;

D 2 : array[l .. N), l .. N, (1 .. N], [(l .. N, 1 .. N), 1 .. N] of complex vector;

Qa: array[(l . . N, l .. N), 1 . . N], [l . . N, (1 . . N, l .. N)] of complex;

D 3 : array[(l .. N, 1 .. N), 1 .. N], [l .. N, (1 .. N, 1 .. N)] of complex vector;

begin for j, k: =l to Npdo FFT(Qi[-, (j, k)], Di[•, (j, k)]);

445

{to take the one dimensional discrete Fourier Transformation in the direction of the first

coordinate, the procedure FFT being assumed to be defined beforehand}

for i,j, k: = 1 to N ptransfer

begin Q1[i),j, (k]: = Q1[i, (j, k)], .l>i[i),j, (k]: =.D1[i, (j, k)]

end

end;

begin fork, i: = 1 to pdo FFT(Q2[i), •, (k], .D2[i), •, (k]);

for i,j, k: = 1 to N ptransfer

begin Q2[(i,j),k]: = Q2[i),j, (k], .D2[(i,j), k]: =.D2[i),j, (k]
end

end;

begin for i,j: = 1 to N pdo FFT(Qa[(i,j), •], .D3[(i,j), •]) ;

for i,j, k: = 1 to N ptransfer

begin Qa[i, (j, k)]: = Qa[(i,j), k], D3[i, (j, k)]: =.D3[(i,j), k]
end

end; {procedure Qand .D}
procedure F;
var /J, S, S-: array[l .. N, (1 .. N, 1 .. N)] of complex;

{It is supposed that S(k) and S-(k)=S(-k) are defined beforehand}

E: array[l .. N, (1 .. N, 1 .. N)] of complex vector;

F': array[l . . N, (1 .. N, 1 .. N)], [l .. N), 1 .. N, (1 .. N] of complex vector;

begin

for j, k: =l to Npdo

begin for i: =l to N do

begin /J[i, (j, k)]: =S[j, (j, k)]*(Qa[i, (j, k)]-v - lk•D[i, (j, k)]);

E[i, (i, k)]: = -4ny -lk*P[i, (j, k)]/1 k I 2 ;

end

end

F[i, (j, k)]: =S-[i, (j, k)]*E[i, (j, k)]

446 Tatsuo Nom

end;

procedure F and P' • F;
const h=IJN;

var F: array[(l . . N, 1 .. N), 1 .. NJ,[1 . . N, (1 . . N, I .. N)], [l .. N), 1 . . N, (1 .. NJ

of vector;

F,,: array[l .. N, (1 .. N, 1 .. N)] of vector;

F,.: array[l .. N, (1 .. N, 1 .. N)], [l .. N), 1 .. N, (I .. N] of vector;

F,: array[l .. N, (1 .. N, 1 .. N)], [(L. N, 1 .. N), 1 .. N] of vector;

begin FFT-1 (F[(i,j), k])

{It is hree assumed that the procedure FFT- 1 is defined beforehand. The procedure

is very similar to procedure Q. and D•}.
end;

begin

for i,j:=I to Npdo

begin for k:=l to N do F,[(i,j), k] :=(F[(i,j), k+l]-F[(i,j),k-l])/2h

end;

for i,j, k:=l to N ptransfer

begin F[i, (j, k)] :=F[(i,j), k], F,[i, (j, k)] :=F,[(i,j), k]

end;

forj,k:=l to Npdo

begin for i:= 1 to N do F,,[i, (j, k)] := (F[i+ I, (j, k)]-F[i-1, (j, k)])/2h

end;

for i,j, k:=I to N ptransfer F[i),j, (k] :=F[i, (j, k)];

fork, i:=l to N pdo

beginforj:=I to Ndo F,.[i),j, (k]:=(F[i),j+I, (k]-F[i),j-1, (k])/2h

end;

fori,j,k:=I to Nptransfer F,[i, (j,k)]:=F,.[i),j, (k]

end;

procedure particle destination;

begin

for j, k:= 1 to N pdo

begin for i: :-- I to N do

begin reset (particle[i, (j, k)]);

while not eof (particle [i, (.i, k)]) do

begin

particle[i, (j,k)]•v,. t :=·············•·;

end

end;

ADINA Computer I and II I.I Data Structure

particle[i, (j, k)]. r,. t :=particle[i, (j, k)].r,. t +
.dt*particle[i, (i, k)].r,. t ;

particle[i, (j ,k)].destination t : = ··· ··· ···;
pa~ticle[i(j, k)] . .dr,. t := ... ··· · · ·;

put(particle[i, (j, k)])

end

end

procedure particle push;

type S=fifo of real

var buffer: array[l . . N, (1 . . N, (1 .. N))]=[l . . N), 1 . . N, ((I . . N)],

[(1. . N)), 1. . N, (1. . N] = [((1. . N), 1. . N), 1. . N] of S;

l,m,n: I .. N;

447

{When a particle contained in the particle[[, (j, k)] is carried into the particle [n, (l, m)],

with for j, k: = 1 to N pdo', it is once transferred into the

bujfer[l, (j, (k))] =buffer[l),j, ((k)],

with 'for k, l: = I to N pdo', it is then traniferred into the

buffer[(!)), m, (k]=buffer[((l), m), k],

and with 'for l, m:= I to N pdo', it is written into the particle[n, (l, m)].}

begin

forj,k:=l to Npdo

begin for i:=l to Ndo rewrite (bujfer[i, (j, (k))])

end;

for j, k:=l to N pdo

begin for i:= I to N do

end;

begin reset (particle[i, (j, k)]);

while not eof (particle[i, (j, k)]) do

end

begin l:=particle[i, (j, k)].destination.second t ;
bujfer[l, (j, k))] t :=particle[i, (j, k)] t ;
put (buffer[!, (j, (k))]); get (particle[i, (j, k)])

end

fork, l:=l to N pdo

begin for j:=l to N do rewrite (particle[l),j, (k]);

448

end

TatsuoNom

forj:=l to N do

begin reset (buffer[l),j, ((k)]);

while not eof (bujfer[l),j, ((k)]) do

beginparticle[l),j, (k] t :=buffer[l),j, ((k)] t ;
put (particle[l),j ,(k]); get (bujfer[l), j,((k)])

end

end

fork, l:=l to N pdo
begin for m:=l to N do rewrite (buffer[(l)), m, (k)]

end;

fork, l:=l to N pdo

begin for j:= 1 to N do

end;

begin reset (particle[l),j,(k]);

while not eof (particle[l),j, (k]) do

end

begin m:=particle[l),j, (k].destination. third t ;
bujfer[(l)), m, (k] t :=particle[l),j, (k] t ;
put(buffer[(l)), m, (k]); get (particle[l),j, (k])

end

for l, m:= 1 to N pdo

begin for n:=l to N do rewrite (particle[n, (l, m)]);

for k:=l to N do

end

begin reset (bujfer[((l), m), k]);

while not eof (bujfer[((l), m), k]) do

end

begin n:=buffer[((l), m), k].destination.first t ;
particle[n, (l, m)] t :=buffer[((l), m), k] t ;
put (particle[n, (l, m)]); get (buffer[((l), m), k])

end

end; {particle push}

begin

Q and D; Q and D; F; F and p • F; particle destination; particle push

end; { one step of the electrostatic code}

2.6 The final example is to show how to realize the command ptransfer of the

ADINA Computer I and II II. Data Structure

ADINA-I by the ADINA-II. It is for the simple data transfer:

procedure ptransfer of the ADINA-I

const N 2=256;

var u: array[l . . N 2
, (1 .. N 2

)], [(l .. N 2
), 1 . . N2] of real;

p,q: 1 . . N 2
;

begin for p, q:=l to N 2 ptransfer u[(p), q] :=u[p,(q)]

end;

449

It is convenient to assign four dimensional arrays for the two dimensional

arrays of u, namely

u[p, (q)]-v[p mod N, (q mod N, q div N)] [p div N],

u[(p),q]-v[(p mod N,q mod N), p div N] [q div N].

Then, the last procedure is equivalent to

procedure realization by the ADINA-II;

const N=l6;

varv: array[l .. N, (l .. N, l .. N)][l .. N], [(l .. N, l .. N), l .. N][l .. N] of real;

w: array[(l . . N, 1 . . N), 1 . . N][l . . N] of real;

i,j, k, m:l . . N;

begin

for i,j, k, m:= 1 to N ptransfer v[(i,j), k][m] :=v[i, (j, k)][m];

for i,j:=l to Npdo

begin for k:=l to N do

end

end;

begin for m:=l to N do w[(i,j), k][m] :=v[(i,j), k][m]

end;

for m:=l to N do

begin fork:= 1 to N do v[(i,j), m][k] :=w[(i,j), k][m]

end

Conclusion

We have shown the data structure of the ADINA Computer with some ex

amples of its program for illustration. The characteristic feature has been seen

in the expression of double brackets of variable array. It is not as cumbersome as

it looks because it reflects the architecture of the machine so sufficiently that it is

very easy to compile the sources with a very high efficiency. Also, it covers the de

tails of hardware so well that the user may not know its realization.

Thus, we can say that the data structure is very natural and useful for parallel

450 Tatsuo Nom

computation, and for that reasons we can say that the ADINA Comupter itself is

very valuable.

References

I) Nogi, T. and Kubo, M.: ADINA Computer I, I. Architecture and Theoretical estimates,
Memoirs of the Faculty of Engineering, Kyoto University, Vol. XLII, Part 4, Oct. 1980.

2) Nogi, T.: ADINA Computer II, I. Architecture and Theoretical estimates, ibid., Vol. XLIII,
Part I, Apr. 1981.

3) Jensen, K. and Wirth, N.: PASCAL User Manual and Report, Lecture Notes in Computer
Scinece 18, Springer-Verlag, 1974.

