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Abstract

This paper discusses the perturbation method for analysing parametrically ex-
cited systems of the higher order from the practical and computational point of view.
Furthermore, we propose a multistep perturbation method. This method is powerful
when the system has large parameters as perturbed terms. As an example of the per-
turbation method, we deal with an equation derived from the resonant transfer circuit.
In addition, we also treat the Mathieu equation in order to assure the multistep per-
turbation method.

1. Introduction

Conventionally, there have been many studies on parametrically excited sys-
tems of the low order, aimed at their stability. Most of these studies are based on
the method of Hill’s infinite determinant. However, the Hill’s method is not effec-
tive when we try to analyse the systems of the higher order. In practical pro-
blems, we need to know both the stability and the wave forms of the solutions.
For that purpose, we often use the perturbation method. In this paper, we dis-
cuss the perturbation method from the practical and computational points of
view.

As is well known, the solutions of the system obtained by the perturbation
method do not converge for large parameters. We propose a multistep perturba-

tion method for those systems with large parameters.

2. Perturbation method?

We consider the periodic system

dx
= =Pz
dr (7)x (1)

P(c+2r) = P(r)
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where x is a real n vector and P(r) is a real n Xn matrix with the period 2z. By

the Floquet theorem, the normalized fundamental matrix of Eq.(1) is given by

O(z) = Z(r) exp (W) } (2)

Z(0)=1
where Z (7) is a real nXn matrix with the period 27, and W is an nXn constant

matrix.

Here, we introduce a small parameter ¢ as follows:

1 27
ﬂ=—§th
2z Jo

(3)
¢Py(r) AP(r)—P,
We have from Eq. (1)
22 _ (PrteP()x. (4)
dr
The matrix differential equation associated with Eq. (4) is given by
X — (PrteP()X (5)

where X is a real n X n matrix.

In the next section, we discuss how to obtain the fundamental matrix of Eg.(5).

2.1 Construction of the fundamental matrix

We introduce the parameter ¢ for Eq. (1). Then, the fundamental matrix of
Eq. {(5) can be represented by

D(z, ¢) = Z(r, ¢) exp (W ()7) (6)

where Z(r, €) is an nXn matrix with the period 2z, The matrices Z(z, ¢)
and W (e) are assumed to be expanded by the power series of ¢,

Z(z, ) = Zy(x)+eZy() + 8 Zy(x) + - }

7
W(E) = W°+€W1+€2W2+"- ( )

Here, Z,(t) (k=0, 1, --+) is a periodic matrix with the period 2z. The funda-
mental matrix of the unperturbed system of Eq. (5) is given by

&(z) = exp (Pyr) . (8)
From Egs. (6) and (7), we have
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0(s, 0) = Z(z) exp (Wie). (9)
Therefore, if we take W, as the real matrix, we then have

Zy(ry=1, W,=P,. (10)

Accordingly, substituting Eqgs. (6) and (7) into Eq. (5) and equating the like power

of &, we obtain the series of the matrix equations

dZ(7)

= P,.Z,—Z,W, (1),
dZdl(T) = PyZ,(t) — Z\(r) Wy— W, —Py(r) Zy(7) (1)
dZa’k(T) = PyZy(v) —Zy(v) Wo— W,— U,(7) (11);

where
U,) = B 2@ Wi~ U0 Zea(), Uo) =Bl (12)

As is easily seen, U,(r) is the periodic matrix with the period 2z.
We obtain the solution of Eq. (11) by the method of variation of constants.
The complementary solution of Eq. (11), can be written by

Z,(t) = exp (Pyr)Cy exp (—Pyr) . (13)

Substituting Eq. (13) into Eq. (11),, we obtain the differential equation on C,

and the solution is given by
C, — —so exp (— Uyt) { Wy Py(r)} exp (Py)dr (14)
where Z,(0)=0 (k=1, 2, ---). Therefore, from Egs. (13) and (14), we obtain
Z,(c) = _So exp {Py(c—E AW+ U,(6)} exp {—Py(r—£E)}dE.  (15)
Because Z,(r) is periodic, we have
S: exp (P,E) W, exp (—Pyf)dé — —S:” exp (Pyf) U, (2 —E) exp (— Pif)dé . (16)

From Eq. (16), we can find W,. Therefore, substituting W, into Eq. (15), we can
determine Z (7).

2.2 Computation of W,
We can not easily determine the value of W, directly from Eq. (16). There-
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fore, we transform Eq. (16) by use of the modal matrix S, formulated by the eigen-
vectors of P,. The classical canonical form of the matrix P, is represented by

J = S7P,S,, J=‘é-’n Ji = A1,,+H,, (17)
=1

where 1,,, and H,, are the m;Xm; unit and the well-known nilpotent matrices,
respectively, and m; is an order of the Jordan block J;. Therefore, we have

exp (Jz) = ‘G:BI exp (J;7)

( 1
ML 1 7 eecees . SN2 i
exp (Jx)AeMN| 1 = (m,-—l)'r d
. l T sesees ,l—.z'”‘—z
(m;—2)! (18)
r
e e eereesees 1
Eq. (16) becomes
2 ~ 2¢ ~
S SRR I dE = —S T (2 —E)e~IRdE (19)
[} o

where W and U{? are the i, j block matrices given by

o - Sws, |

- ~ 20
Uké(U(iki)) = SEIUkSo ( )

If P, has a simple structure, then exp(Jz) is a diagonal matrix. Therefore,
the elements of W, can be obtained analytically by

iy = =L { "G ae (21),
— (Towee a=a @,

- 27 Jo

Wi = 2—2

2 -

— g |, OB EE—6dE (kr) @D
where W% and U{ are the i, j elements of the matrices W® and U®, respec-
tively.

2.3 Modification algorithm of the solution

When the eigenvalues of W are complex or purely imaginary numbers,
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exp (W+r) has oscillatory terms. Then, we include the periodically oscillatory
terms into Z(r) so that logW has the principal value. We modify W in such a
way that the absolute values of the imaginary parts for each eigenvalue take the

minimum values. The algorithm is as follows:
S0: J<S7'WS,
S1: J<«R,(I,(J)) where the function R,( ) is defined by
1 1
R & Lsgn)[2151+1 ]

where I,,(J) denotes the imaginary part of J.
S2: WW—jS,JS;', Z(v)«Z(r)S,exp (jJr)S5' where j=v/—1.

The precise discussion is given in the appendix.

3. Multistep perturbation method

When the parameter ¢ in Eq. (5) is large, the perturbation method in section
2 is not applicable because the solution does not converge. Here, we develop
a technique to obtain the solution for large parameters. We divide ePi(7) in
Eq. (5) into M small terms,

P(t) = Py+-4,Py(c) +&,Py(r) ++ + &y Py (c) }

Mo, (22)
5P1(T)él§ &,Py(7)

and consider the following series of matrix differential equations:

X, _ px, (23),

dr

2 — (PtiB(}X, (28),

X L o

dTI = {Py4-4,Py(r) + -+ &P ()} X, . (23),
The Floquet solution of Eq. (23), is given by

X,() = Z(z) exp (W) (24)

[=0,1,+, M.

If we can obtain the solutions X, Xj, «:-, X, then we can find X, by the per-
turbation method, because Eq. (23),,; is led by adding the smaller term
&1 Pr1(7) to the matrix of Eq. (23),. The matrices ZU'*')(r) and WU are
represented by
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ZU(2) = ZW(z) 4 ﬁ (Er)inZl] (7)
kyep=1 s } (25)
Wi+ — iy ) (§,+1)"I+IW£',] .
k=1 "
Therefore, the matrices ZI)(r) and W™ are given by
. : M oo
Z(r) = ZU(r)+ 33 {21 (4)H 2} ()}
o l':l h[=l } (26)
W — WS {SY ()WY
=1 =1

From Eq. (26), we can obtain X™(z)=ZWMlexp (WMr),

3.1 Correction of the solution

When we try to apply the multistep perturbation method, we repeatedly use the
perturbation method. Therefore, the solution comes to include accumulated
errors. Accordingly, the algorithm must be such an accurate one that the errors
become as small as possible.

Let us compute the coefficient matrix eP(z) from the numerical results of
step I. Substituting Xt1=2Z1exp (W) into both sides of Eq.(23),, we have

dXt1 _ { 4 Zu1(ry 4 ZUY() Wm} exp (W)
dr dr
= (P 3] 4P} Z1(E) exp (WU) @)
From Eq. (27), we obtain the new coefficient matrix P(z) given by |
Pi(0 & (L 206+ 20 Wi |(206) ). (28)
Let us put
Py(r) = (Pt} 8Py} —PI(r) | (29)

Then, ¢”P,(r) must become very small. Therefore, we seek the solution of the
unperturbed system of the equation ‘

% — {Pi(x)+¢"Pi(r)} X. (30)

The solution of Eq. (30) is a more accurate solution than X1,

4. Some techniques of numerical computation

In this section, we describe the numerical method by which we need to carry out
the multistep perturbation method.
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4.1 Computation of W,

We obtain Eq. (21) by the actual calculation of the left-hand side of Eq. (19).
However, if Eq.(21) is computed by a numerical integration, then the error of
the values W becomes large. This is because the method of integration is diff-
erent for each side of Eq. (19). Therefore, we must compute both sides numeri-
cally. Here, we evaluate the values of the elements W by the trapezoidal rule
as follows:

1
=0 (di=2;)
w® 2 (31)
i= AT *)
2 1—e® N U] (4%2;)

A7 13 ePm AT | _ 2052«

where 4 is the step size.

4.2 Computation of the derivative of Z!'l(z)

When we correct the solution X')(z), we compute its derivative by the DFT.
Because the matrix ZU'1(z) is periodic with the period 27, it is expanded by the
Fourier series

N
Z'"1 = Fy+3) {F,, cos kr+ F,, sin kr} (32)
k=1

where F,, F,, and F,, are real nxXn matrices. Therefore, we differentiate both
sides of Eq. (32) with respect to = in order to obtain the derivative of Z'')(z). The
algorithm is as follows:
SO : Compute F,, F,, and F, by the DFT of the sequence {Z!1(z,)} p=0,
1, -, N.
Sl : Set Fy<0, F,,«<F,,, F,,< —kF,, and obtain the sequences {F,} and
{F,} k=0,1, ., N.
(03]

S2 : Compute the sequence {ddZ
T
{F sk} .

4.3 Convergence of the series
If the condition

} by the IDFT of the sequences {F,,} and

Emax !

[|eXmax Wi Il el Wil (33)

k=0

is satisfied, the series 1s considered to be numerically converged. Here, ¢, is a
small positive number and K., is the order of approximation. The norm of the

matrix is given by [|A|| A max >3|a;;].
i 5
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5. Algorithm
The above consideration leads us to the following algorithm of the perturba-
tion method:
SO : Give the sequence {P(r,)} p=0, 1, +--, N and ¢, Kpux.
S1 : Compute P, by Eq. (3) and set W,«P,, Zy«1, P\(v,)<—{P(r,)—FPy},
p=0, 1, -««/ N.
S2 : Compute the eigen values of W, and determine S,, J, and S§5'.
S3 : Compute exp (Wr,) and exp (— Wr,) for p=0, 1, .-+, N.
S4 : Set Uy(r,) < Py(z,), p=0, 1, -+, N.
S5 : Set k<1.
56 : Compute U(z,) by Eq. (12) for p=0, 1, .-+, N.
S7 : Compute W, by Eqgs. (20) and (31).
S8 : Compute Z,(z,) by Eq. (15) for p=0, 1, .-, N.
S9 : Set k<—k+1. If k is larger than K., then go to S10. Otherwise,
return to S6.
S10 : Test the convergence of W by Eq. (33).
Comment; At this step, we can examine the stalibity of the solution
by the eigenvalues of W.
S11 : Transform Eq. (6) into the principal value.
S12 : Compute the harmonic component of {Z(r,)}by the DFT.
S13 : Stop.

6. Some applications
6.1 Mathieu equation

To assure the multistep perturbation method, we are going to obtain the
Floquet solution of the Mathieu equation written by

x, 0 1l x,

d
£ = 34
dr | x, —-%—-—4q cos T 0| » (34)

We choose the parameters a=1.0, ¢=0.75. For these parameters, we can not obtain
the solution by the conventional perturbation method, because the solution does
not converge. However, by the multistep perturbation method we can obtain the
solution as indicated in Table 1. We take the period of Z(r) as 47 to make W
real and set N=256. To compare the result, we demonstrate the solution by
the method of the matrix function®. Both results are in good agreement.

In Fig. 1, we show the step size of ¢ on the Mathieu chart, for which the solu-
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Table 1. Computational results for Mathieu equation

Multistep perturbation method Method of matrix function
w [ 0 —0.10113x10°*7 | [ 0 —0.10115x10'1:|
| —0.12026 x 102 .. 0 J | L—0.12025x10? 0
| eigenvalues of W +0.34873 +:0.34876

Z® [[0.64104 % 10* 0 7] | [0.64098x 10t 0 :I
‘ | o 015877] | L 0 0.15877

Z o 0447201 | [ 0 0.44720:|
: | —0.85832 x 10 0 || L—os85825x%10t 0

Z® [ —0.33447 x 10* 0 ]| [—0.33444x10 0 :I
) . o 058541 | L o0 0.58542

Z® [ o 036773 | [ 0 0.36772 ]
:  0.59478 0 | | Lo.59470 0

7o [—0.17542 x 10* 0 ] [—0.17540 % 10 0]
’ . o 022008 | L 0 0.22008 |

7 o 0.08094 I: 0 0.08093]
* [ 0.34122 10t 0 0.34118 x 10* 0

e [—0.28548 0 7| [—0.28544 0 ]
¢ 0 003204 | L O 0.03294 |

ZD [ o 000859 | [ © 0.00859 |
: | 0.89591 o | Losgsso 0o

Zo [ —0.02457 0 ]| [~—0.02456 0
¢ . 0 0002671 | L O 0.00267

Z® o 0.00054] | [ O 0.00054 |
f | 0.10409 0 ]| Lo.10407 o |

Notes 1. We take 6 step sizes of ¢(=4¢). These are 0.085, 0.206, 0.376, 0.629, 0.734, 0.85.
We start at ¢=0.

K
2. Z(t)=ZO® +§1 (Z®cos kt +2Z$Psin kr).
3. There exist the odd harmonic components Z$, Z$® for £>11. Both methods

are in good agreement for these components.
4. N=256 for the multistep perturbation method. N=128 for the method of matrix
function.

tion converges. The dots on the straight lines indicate the steps of the multistep
perturbation method. For example, in the first unstable region, the solution does
not change its form. Therefore, we can take the large step size. However, when
q takes its value near the boundaries, the small step size must be taken, because

the solution does not converge for the large step size. In Fig. 2, we show the
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Ty

—F
=

[ ’I P /
AT

0 1 2 3 4 5

q —>

I
I
)
!
A

Fig. 1. Mathieu chart and the step size of g.

(The dashed line is the boundary of two regions where the harmonic

components of Z () are all odd and all even.)
enlarged charts of Fig. 1 near the boundaries. The perturbed solution has a very
small convergence radius near the boundaries, illustrated by the dashed lines.
When the step size ¢ takes so large a value as to be across the boundary, the solution
takes another form. On the real lines, the solution is periodic and characteristic
exponents are purely imaginary numbers.

In this example, we correct the solution by the method stated in section 3.1

at every four steps.

6.2 Equation derived from resonant transfer circuit®

As an example of the system of the higher order, we deal with the resonant
transfer circuit, as shown in Fig. 3. The inductor and capacitor are parame-
trically excited to compensate the circuit losses. The inductance and capacitance
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f 0.904 1 0.80- 0.75-

0.894 0.79
~_ \

. [
0.88—\, 0.78- ™ o

0.87 ¢ 0.77-
\\‘.
\:\
\‘ [ ]
0.86- ! 0.76-
0.85 ' 0.75 0.65
a=0.5 a=1.0 a=1.5

Fig. 2. Enlarged charts near the boundary.

Fig. 3. The resonant transfer circuit.
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are varied by
L = L,{l —7r; cos 2wt+6)}

C' = %C{l—rc cos (4wt+¢)}

respectively, where @? = 1/L,C.
Putting T =wl, ii=wlg, i}= ol
and xé'(vb Vg, U3, l{: ié) »

we-have Eq. (1), where the 5 x5 periodic matrix is given by

(35)

1.60 7
-1.20
0
1.20 '1
-l.SD T T T 1 -0.60 T T T 1 -2.40
o M,1) o= o (4,3) 2 o (4,5)
2.00 7 2.00 1 6.00 7
‘0.80 1 ‘8-00 T T T
Y [3, 5] 2n
1.00 2.00 9
~0.40 -0.80
1.20 1.60 1
-0.20 -1.
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1
l—7 cos(2r+6)

1

—47,sin (471-0)

—1

k

-1
k

1—7.cos(4r+0) 1 —r,cos (4v+0) 1 —7. cos(4r+0)

, —1 —27,sin (274-0)
1—7,cos(2740) 1 —y cos(2z+6)
—1

l—7pcos(204+8) 1 —7,cos (27 +6)

—27,5in(20+0)

1—y,cos(2r+6)

1 601
-1.20 — T
o (5,1)
1.20 A
-1.60 T T T
o (4,1) 2n
2.00
-0.80 +— T
0 (3,1)
1.00 A
-0.40 —— 7
0 (52, 1) 2m
1.20 -\ /
-0.20 — r——

o (1,1)
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As an example, we take k=1.5, 7;==0.2, 7,=0.6 and #=¢=r/2. The com-

putational results are shown in Fig. 4 for each order of approximation.

and dashed lines show the results by the RKG method and the perturbation method,

respectively.

In this example, we don’t need to use the multistep perturbation

method. As shown in the figures, the order of approximation is higher, and

both results are in good agreement.

.80

0

\\.f/ :
5.1) 2
0

W
2

-~ ‘,,l?
(3.1) a0
]

\

(2.1) o2
p s}
TITEE. R

.80

.80

.60

.00

.80

.56

;<%

0 ][5:31' 2n
)

A A

VRN

° 4,3 =

T T T
° (3,3)
“‘\ -
3 p N N
(7 v
T T T
° 2,3) =
,\\
\\ £
\ y \\
T T T 1
o (1,3} 2

.20

.40

.20

.40

.00

.00

.00

0.80

.60

1.20

0

The real
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Kmax= 4

1.60 1 0.80 A 3.20 1 /\
N A A AN
\ / \//
-1.20 T T T v -0.60 T -2.40 T T T
o (5,1) 2n o (5,3) o (5,5) 2"
1.20 17 0.80 1~ 3.20
A
~/ AN AN
~ N\ \/
-1.60 T T T ~-0.50 T T T -2.40 T T T 1
0 (4,1) 2 o (4,3} 2 0 (4,5) 2n
2.00 1 2.00 1 6.00 1
-0.80 T T T -0.80 T T T v -8.00 T T T d
o (3,11 @ o (3,3) o (3,5) 2m
1.00 0.56 A 2.00 1
\ 2
~0.40 T T T 1 0.00 T T T 1 -0.80 Y T T
o (2,1} = ° (2,3) 7 ° (2,51 7
1.20 1 0.56 1 1.60 1
: NN
\
\
-0.20 T T T ' 0.00 T T T 1 -1.20 T T T g
o (1,1) 2 o (1,3 = 0 (1,5) =
Fig. 4(d).

7. Conclusion

We have discussed the perturbation method for analysing the parametrically
excited system of the higher order, and have shown the algorithm for the numerical
computation. By this algorithm, we can know the wave form of the solution as
well as the stability of the system. Furthermore, we have proposed the multistep
perturbation method. This method is effective when the parameters defined as
the perturbation terms are large. When we apply the multistep perturbation
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Kmax =

1.60 7 0.80 1 3.20 9 /
N AN RN
N 7 N\
-1. T T T v -0, T T T y -2.40 T T T 1
!200 (5, 1) 2n 060( [5'3) 2n 0 {5,5) 2n
1.20 1 0.80 3.20 -
N AN
\j N~
-1.60 T T T T 0. T T T 1 -2.40 T T T 1
L T ) a2 w2 0 4,5 =
2.00 7 2.00 1 6.00 -
£ w /\/\/
-0.80 T T T 1 -0.80 Y T T y -8.00 T T T (]
o (3,1) = ° (3,3 = o (3,5) =
1.00 A 0.56 A 2.00
\
) T
-0.40 T T T 1 0.00 T T T ] -0.80 T T T ]
o (2,1 o (2,3) o (2,5)
1.20 7 0.56 1 1.60 7
\ / 7
-0.20 T \|/ T 1 0.00 T T T y -1.20 T T T 1
0 (1,1) 2n 0 (1,3) 2x 0 (1,5) 2m
Fig. 4(e).

Fig. 4. The wave forms of X (7). The symbol [i, j] denotes the ij element of X (7).

method, we must determine the step sizes of the parameters so that the errors of the
solution may be as small as possible.

For all numerical examples we have used the computer FACOM-M200 at
the Data Processing Center of Kyoto University.

Authors wish to express their gratitudes to a student of Kyoto University,
Kenichi Ishii who helped to check our program.
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Appendix

We need some numerical techniques for Z(z) and W to be real matrices. If
X (2"x) (m=1, 2, --+) has negative eigenvalues, then log X (2"z) (m=1, 2, ++-)

becomes a complex matrix. Considering this, we can rewrite Eq. (2) as
X (7) = Zim(r) exp (Wimr) m=1,2, - (A.1)
where Zm)(v)=Zm(t+2"7)=2Z(7), Zm(0)=1 (m=1, 2, --).

The matrix W, is given by

Wom = —1— log X (2"7)
DA 4
gA(,,,>+j2imB(m) m=1,2, (A.2)

where A, and B, are real commutative matrices. Here, By, is of the form
B, =8SD(0, 1)S!. (A.3)

where D(0, 1) is a diagonal matrix, the elements of which are equal to unity at
the positions corresponding to the negative eigenvalues. They are zero at all

other positions. Therefore, Eq. (A.1) can be written as
X(T) = Z(m;l-l)(r) €xp (A(m)‘l') m=1,2, - (AA')

where Z,.,;) is a periodic matrix with period 2**!z and is given by
.1
Zaso () = Zon(@) xp(f g Bet)  m=12, (A

We note that Eq. (A.4) can not be uniquely expressed when the eigenvalues of
A are complex numbers. Hereafter, we are going to obtain the unique ex-
pression. We assume that A, has a simple structure. The Jordan canonical

form of A, is given by
Ty = ST AwmS = Ry(Timv) +iln(Timsn) (A.6)

where Re( ) and Im( ) denote the real and imaginary parts of Ji,.1), respectively.
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Let the imaginary parts of the eigenvalues of Ay be 8; (i=1, 2, -+, I<n).
We consider the decompositiop of f; such that

4

Bi= ;—,:.‘f‘bi (A7)

where g; is an integer and b; is a real number satisfying the inequality

1
bl < s (A8)
Substituting Eq. (A.7) into Eq. (A.8), we have
2*fi— L <a<ompt L. (A9)
2 2
From Eq. (A.9), we can determine one and only one integer a; given by
for £;>0 g — [2";9,. +%] (A.10),
for ;<0 a4 = [2",9,. —%] (A.10),

where [ ] denotes the Gaussian symbal. Thus, the real number 4; is determined
by

e _.._!._ " +_];| >

b,‘ = ﬂ,-_ 2 /9, for ﬁ' 0 (A.ll)l
= __...l_| ” ._._1_. l :

b,‘ ﬂi 2 /9,. for ﬂ,<0 (A.ll)z

In section 2.3, including both cases, we define R,( ) by
Ry(x) = 2%. sgn (x) [2’”];:1 +%] : (A.12)
Therefore, Ji,,.1) decomposes as

Toner) = Re(Timsn) Fidomsn+iFemsn (A.13)

where j(m+1) is a diagonal matrix, the elements of which correspond to a;/2".
Jm+n is also a diagonal matrix, the elements of which correspond to b;.
Therefore, Eq. (A.4) can be rewritten as

X(5) = Zien(e) exp (Wimenr) (A.14)
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where

ZA’(m+1)(T) = Zn+1(r) €Xp (ij(,,,.,_l)S'l‘r) } (A.15)

Wnrn = S{R(Tons0) +iSmsn} S
As is easily assured, ZA(,,,“)(':) is a periodic matrix with the period 2**'z.

From the above consideration, we have the modification algorithm shown
in section 2.3.



