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Abstract 

This paper presents two algorithms for finding solutions to the problem of school 
districting, which is the dividing of an administrative area into some school districts 
consisting of several population units. The problem is formulated as a set partitioning 
problem, after having enumerated the feasible districts satisfying all the given requirem­
ents. An algorithm for finding an exact optimal solution is first proposed. Using the 
population units as indivisible elements, the first phase enumerates all the feasible dist­
ricts which satisfy the given requirements, such as contiguity, capacity, and so on. The 
second phase determines the optimal school districting that minimizes the sum of the 
distances traveled by all students. 

Since the computation time of the exact algorithm increases very quickly as the num­
ber of population units increases, an improved algorithm is derived for finding an opti­
mal or near-optimal solution within a reasonable computation time. This algorithm 
constructs the core of each school district before enumerating the feasible districts. 
The core of each school district is composed of the population units which are assigned 
to the school, with the minimal distances traveled until the given bound on the popula­
tion is satisfied. Computation results show that the improved algorithm can find an 
optimal or near-optimal solution for a problem having 122 units within one minute. 

1. Introduction 

The problems of school districting have arisen from the viewpoint of racial 

balance in the United States. On the other hand, school administrators in Japan 

have been facing changing enrollments that require new school redistricting. A 

problem on school redistricting for a junior high school actually occurred several 

years ago in the city where one of the authors lived. It was due to the remarkable 

differences in the number of students in the schools. 

Many of the school districting problems in the United States are taken into 

consideration such as attending school by bus and assigning students in a certain 
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population unit (for short, unit) to some schools [2], [3], [8]. On the other hand, 

in Japan it is significant to consider the problem of assigning all of the students in 

a certain unit to only one school [10]. However, the problem where all the stu­

dents in a certain unit are assigned to only one school and where school districts are 

constructed from contiguous units does not seem to have yet been considered. 

The purpose of this paper is to propose exact and improved algorithms for solving 

the school districting problem with all the given requirements, including those 

mentioned above. The political districting problem which Garfinkel and Nem­

hauser considered is similar to the school districting problem [6]. A school dis­

trict differs from a political district in the existence of a district center, that is, a 

school. 

In Section 2, the school districting problem is explained. The problem is 

formulated as a set partitioning problem in Section 3. Section 4 gives an exact 

algorithm by combining an approach for a set partitioning problem with .an 

implicit enumeration method. Section 5 proposes an improved algorithm where 

the construction of a core of a school district is annexed to the exact algorithm. 

In Section 6, computation results using the two proposed algorithms are shown for 

several numerical examples. The effectiveness of the concept of core is shown by 

the fact that an actual problem having 122 population units could be solved within 

one minute by the improved algorithm. The possibility of using other optimality 

criteria and other requirements is discussed in Section 7. 

2. School Districting Problem 

An administrative area such as a prefecture, a sub-prefecture or a city is 

assumed to be divided into school districts consisting of several units. Each school 

district has one and only one pre-assigned schoolhouse which is located in one of its 

units. To distinguish this unit from other units without any schoolhouse, it is 

called a school unit (for short, s-unit). School districting is considered as a process 

of partitioning an administrative area having N units into M school districts, each 
of which contains one and only one s-unit where M <N. 

Various requirements should be taken into consideration in the school dis­

tricting problem. This paper introduces the requirements mentioned in the 

preceding section: (i) Each district should contain one and only one s-unit; (ii) 

Each unit should belong to one and only one district; (iii) Each district should 

consist of contiguous units, that is, no district should contain isolated units; (iv) 

The number of students in each school should be restricted within specified capa­

city limits; (v) The distance of each unit from the s-unit should not be greater 
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than a specified exclusion distance, in order to restrict the distances traveled by 
the students. 

In this paper, an optimality criterion for school districting is the minimiza­

tion of the sum of the distances traveled by all the students. Therefore, the school 

districting problem (for short, SD problem) is a minimization of the sum of the 

distances traveled by all the students subject u, the above mentioned five requi­

rements (i)-(v). 

3. Formulation as a Set Partitioning Problem 

The SD problem is one of the combinatorial optimization problems whose 

computation time tends to increase rapidly as the size of the problems becomes 

larger. To find the optimal solution to the SD problem, our exact algorithm 

consists of two phases. In Phase I, the feasible districts are enumerated by an 

implicit enumeration method. In Phase II, the optimal school district is obtained 

by regarding the feasible districts as subsets. 

Let the elements of the matrix A for 

the feasible districts be a;;, where for fixed 

j and for i = 1, .. •, N, a;;= 1 if the feasible 

district j contains unit i; otherwise a;;=O. 

A feasible district j can correspond to a 

column vector a; of the matrix A. Let a set 

of the feasible districts for each school k be 

Gk. The set Gk can be expressed by the set 

of column vectors a;, such that ak;= I. The 

structure of matrix A is shown in Fig. 1, 

where the entries of the first to the Mth row 

are assumed to be the value of unity at the 

position specified by the symbol II]. It 

takes the value of zero at the other positions. 

The entries of the other rows (i.e. M+l, ... , 

O or 1 

Fig. 1. Matrix A. 

Nth rows) take either zero or unity. It is assumed that the matrix A of the feasible 

districts with N rows and J columns has been obtained, where J is the number of 

the feasible districts. Matrix A gives the coefficient matrix in a set partitioning 

problem. Let the labels of s-units be 1 to M, and let the labels of the other units 
be M+l to N. 

Thus, the SD problem means selecting exactly the M column vectors from 

matrix A, so that the row-wise sum of the entries of the column vectors selected be 

equal to unity. The first to the Mth rows in the structure of matrix A show that 
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.T 

the constraint ~ x ;=M is not required because one and only one column vector 
j=l 

should be selected from among each set Gk in order to satisfy this restriction of 

the row-wise sum. Then, SD problem can be formulated as a set partitioning 

problem and expressed as follows: 

(3.1) mm1m1ze 

(3.2) 

(3.3) 

subject to 

X;E {O, l} 

for i = l , · · ·, N , 

for j = l, ···, J, 
N 

where the weight c; for jEGk is expressed as~ a;;P;d;k in terms of the population 
j=l 

p; of unit i and its distance d;k to school k. The value of the decision variable x; 

is as follows: x;=l if the column vector a; is selected for the school districting, 

otherwise x;=O. It is noted that the problem (3.1),....,(3.3) is NP-complete [l], 

[4]. From the structure of matrix A, equation (3.2) can be rewritten as follows: 

(3.2a) 

(3.2b) 

~ x; = l for k = l, ···, M, 
JEG-1, 

JC .T 

~ -~ a;;X; = l for i = M+l, ···, N. 
i=l JEG-i 

These formulations indicate that the optimization can be done by modifying the 

algorithm for the set partitioning problem [5], so as to use the feature of matrix A. 

4. Exact Algorithm 

In this section, an algorithm is proposed for solving the SD problem exactly. 

The exact algorithm consists of two phases: (I) the enumeration of the feasible 

districts and (11) the optimization. The first phase consists of a systematic method 

for enumerating all the feasible districts by taking advantage of the structure of 

the requirements (i) to (v), explained in Section 2. In particular, the contiguity 

requirement (iii) and the distance requirement (v) simplify the enumeration 

effort. This phase uses a modified procedure of an implicit enumeration method 

[7] with the features of the given requirements. This is suggested from the algori­

thm for the political districting problem [6]. With these enumerated feasible 

districts, a feasible district matrix A is formed by adjoining together the column 

vectors associated with each feasible district. The SD problem has been for­

mulated as a set partitioning problem in the preceding section. The second 

phase is the search for the optimal solution, using a modified form of the search 
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algorithm for the set partitioning problem [5]. In this section, the outline of 

each phase is only sketched. 

4.1 Enumeration of feasible districts 

This phase gives a listing of all the feasible districts by the tree search algorithm 

for each s-unit. In particular, the set of all the feasible districts is partitioned into 

subsets Gk, the set containing the s-unit k for k=l, ··•,M. Before enumerating set 

Gk, the labels of s-unit k(=l, ··•,M) and units i(=M+l, .. ,,N) are renumbered 

according to the decreasing order of population so as to reduce the computation 

time. 

Let the sets of all s-units and the other units be denoted by S and T, respec­

tively. For each Gk, the procedure starts with the set Bk= {i I dik~e, i ET}= {b;k} 
of all the units within the exclusion distance e from the s-unit k (requirement 

(v)), where b;k is the unit number i. From the elements of this set B,,, a contiguous 

unit to the s-unit k is selected. A candidate set I is constructed from the s-unit 

and the selected unit for the district. Next, from the elements of set B,, is selected 

a unit contiguous to some unit of the resulting candidate set I (requirement (iii)). 

Then, the unit is included to form an augmented candidate set I. 

This process is repeated until, the lower bound Lk of the capacity requirement 

(iv) is satisfied. If this lower bound requirement is satisfied, then it is examined 

whether the augmented set I satisfies the upper bound Uk (requirement (iv)). If 

requirements (i), (iii), (iv) and (v) are satisfied, then the augmented candidate set 

I is a feasible district. Further, from the elements of set Bk, a unit contiguous to 

some unit of the above augmented candidate set I is chosen, and a new augmented 

set I' which satisfies requirement (iv) is formed. 

When the augmented set I' does not satisfy some of the requirements, a back­

track to the previous set I is made. That is, the unit which has been added lastly 

to set I' is deleted, and a new unit from set Bk is selected. The new unit is added 

to the deleted set I. It is examined whether the new augmented set satisfies all 

the requirements. The procedure is repeated until all the feasible districts are 

constructed. 

Finally, the feasible district matrix A with N rows, described in Section 3, is 

constructed from the set of all the feasible districts enumerated. First, to each 

feasible district corresponds an N dimentional column vector, whose components 

indicate whether corresponding units are included in the feasible district. Next, 

these column vectors are adjoined to form the feasible district matrix A. The 

column vectors in each set Gk are rearranged in an increasing order of the cor­

responding weights c;, 
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4.2. Optimization 

In Phase II, an optimal school districting is found by using matrix A, shown in 
Fig. 1. Before performing this phase, the column vector set Gk of matrix A is 

rearranged and renumbered in an increasing order of the number of elements of 

set G,. for s-unit k, in order to reduce the computation time. First, the first column 
vector is selected from set G1 for the first s-unit. Next, choose a column vector 

with as small a weight as possible from among each set Gk for each s-unit k( =2, ···, 
M) so as to satisfy equations (3.2a) and (3.2b). In this procedure, it is assumed 

that one feasible solution has been found. The same procedure leads to the optimal 

solution by enumerating implicitly a potential set of the feasible solutions which 
have less weight than the weight of the latest feasible solution obtained in the 
preceding stages. 

5. Improved Algorithm 

The numerical examples given in the next section show that the computation 

time using the exact algorithm presented in the preceding section increases very 

quickly as the number of units increases. For instance, a problem with 30 units 

could not be solved within ten minutes by the exact algorithm on the F ACOM 

M-200 computer at the Data Processing Center of Kyoto University. Since the 

number of units in a practical school districting problem seems to be at least thirty, 

a more efficient algorithm should be devised so that optimal or near-optimal solu­

tions of practical problems can be obtained within reasonable computation time. 
It is noted that the exact algorithm requires the enumeration of all the feasible 

districts (Phase I). For example, the number of feasible districts in the example 

with 30 units is 2802, which is the number of decision variables in Phase II. Con­

sequently, in order to devise an efficient algorithm, the number of feasible districts 

to be considered should be as reasonably few as possible. An improved algorithm 

based on the following new idea is devised. The units near ans-unit are expected 

to be in the school district corresponding to the s-unit. The idea forms the heart 

of the procedure in the improved algorithm. A district composed of those units 

and the s-unit is called the core of a school district. The core of a school district 

is constructed by annexing one by one the units having a minimal weight from 

among all units which satisfy the contiguity requirement (iii). Next, the feasible 

districts are enumerated, using the first phase in the exact algorithm, by regarding 

the s-unit in the exact algorithm as the cor,e of a school district. Finally, the 

second phase in the exact algorithm searches for the optimal solution from the 

feasible districts. The effectiveness of the concept of core in solving the SD pro­

blem is shown by the fact that an actual problem with 122 units could be solved 
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within one minute by the improved algorithm. 

The elements of sets S and T are renumbered in a decreasing order of popu­

lation, respectively. First, for each school kES, the set Bk= {b;k} of units i E Twhich 

satisfy the distance requirement (v) is selected. The elements of set Bk are rear­

ranged in an increasing order of weight w;k, where W;k=p;d;k• Next, to the school 

k ES, unit i EBk with the minimal weight W;k is assigned one by one from the 

units which satisfy the contiguity requirement (iii) and the upper bound Uk of 

population (iv). The assignment of units i to school k is repeated until the speci­

fied population L~=rkLk (O<rk::s; 1) is satisfied for all schools kES. It is noted 

that L~ is not greater than the lower bound Lk of population (iv). It may occur 

that a unit is assigned to two schools. In such a case, the unit is assigned to the 

school with the smaller weight. This procedure constructs the core of a school 

district for each school. The unit constructing the core 1s called a core unit. 

The other unit is called a remaining unit. 

The enumeration of feasible districts 

starts with the set H of all the remaining 

units iEBk for each school k. That is, the 

remaining units, not belonging to any of the 

cores of school districts, are annexed to the 

cores by regarding the cores as the s-units. 

A feasible district matrix A is typically shown 

in Fig. 2. Next, the optimal solution for the 

feasible districts is found by optimization 

(Phase II), as in the exact algorithm. These 
procedures result in a rapid decrease in the 

number of feasible districts, and an appre­

ciable reduction in computation time. The 

improved algorithm can quickly find the 

optimal solution if the value of rk can be pro­

perly determined, otherwise a near-optimal 

solution. In this section, the outline of the 

improved algorithm has been only sketched. 

detail in the Appendix. 
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Fig. 2. Feasible district matrix A. 

The algorithm will be described in 

6. Numerical Examples 

The algorithms were coded in FORTRAN. Several numerical examples 

were solved on the FACOM M-200 computer at the Data Processing Center of 

Kyoto University. The results are given in Table 1. The examples with 70 
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Table 1. Summary of numerical examples. 

No. of No. of Values Improved algorithm Exact algorithm 

No. 

al Value of I Computation Value of Computation units schools C r obj. func. time (sec) obj. func. time (sec) 

I 20 3 40 0.1 0.8 l.82X 104 0.09 l.81Xl04 10.32 

2 0.2 1.82 0.10 1.81 56.18 

3 30 4 40 0.1 0.8 l.82X 105 0.15 - >600 
4 0.2 1.84 0.11 - -

5 40 4 40 0.1 1.0 3.12X 105 0.16 - -
6 0.2 3.11 0.19 - -

-
7 70 4 50 0.1 0.8 5.22X 104 5.88 - -
8 0.2 0.9 5.06 2.27 - -

9 122 4 200 0.1 0.9 l.58X 105 16.99 - -
10 0.2 1.54 41.70 - -

units used data similar to those of Holloway et al. [9]. The last examples with 

122 units used actual data taken from the school redistricting problem of the city 

where one of the authors lived, while the data for the rest of the examples were 
randomly generated. 

In all the numerical examples, the lower bound Lk and the upper bound Uk 

in the requirement (iv) were set as L,.=(1-a)p and Uk=(l+a)p, respectively. 

Here, the value lO0a(0<a~ 1) is the maximum allowable percentage deviation of 

the population Q,. of each school district from the average district population p 
(=}Jf.1 p;/M). Moreover, rk was fixed as rk=r. The exact algorithm in Section 4 

found the optimal solutions for examples 1 and 2. The last column of Table 1, 

however, shows that the computation time increases very quickly as the number 

of population units increases. The exact algorithm could not solve a numerical 

example with 30 units within ten minutes. The number of units in practical 

school districting problems seems to be at least thirty. 

The improved algorithm in Section 5 can find the optimal solution if a sui­

table value of rk is given. The results of Table 1 show that the improved algori­

thm takes a very short computation time. For example, it solved the actual 

school districting problem within one minute. Moreover, the computation time 

increases very slowly as the number of units increases. The computational ex­

periments show that the improved algorithm is extremely efficient. Since the 

construction of cores plays a very important role in the improved algorithm, the 

newly introduced concept of cores has a marked effect on the algorithm efficiency. 

Table 1 shows that the number N of population units seems to more signi-
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ficantly affect the computation time than the number M of schools or the values 

e and a. It seems desirable that the value of rk used in constructing cores should 

be about 0.8,-,().9 for a satisfactory reduction in the computation time. Since the 

same values of rk for all schools kin the these examples are used, the optimal solu­

tions may not be obtained for all the examples. As shown in examples 1 and 2, 

however, the solutions obtained are quite near-optimal. 

Fig. 3 will give a better understanding of the improved algorithm. The data 

of examples 3, 6 and 8 are shown in Fig. 3. The shaded areas represent the s­

units. Each unit is identified by an integer together with its population in paren-

23 
(253) 

17 
(308) 

25 
(199) 

29 
(144) 

Fig. 3. 

27 
(173) 

16 
{354) 

30 
(103) 

40 
(745) 

36 
(349) 

38 
{256) 

(1) Example 3 

(2) Example 6 
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(3) Example 8 

Fig. 3. 

thesis. The school districtings obtained by the improved algorithm are shown 

by heavy boarders. 

7. Discussion and Conclusion 

In this paper, the optimality criterion is the minimization of the sum of the 

distances traveled by all the students. That is, weight c; in equation (3.1) is given 

by C;=~f-1 a;;P;d;k for jEGk, where d;k means the distance between the centers 

of unit i a:nd school k, and Gk means a set of feasible districts for the school k. The 

distance d;k> however, may be specified by the actual travel distance or time be­

tween unit i and school k. Moreover, weight c; may also be given by: C;=~f-1 

a;;P;djk or, more generally, c;=~f-1 a;;J(p;,d;k), wheref is any real valued func­

tion. In these cases, the algorithms can be applied without any modification. 

When some units should belong to the same district because of a social background, 

those units can be regarded as one unit. Consequently, the data can be com­

bined as if it were of one unit. It is also noted that some other requirements, if 

they exist, can be easily incorporated in the proposed algorithms. 

In this paper, the SD problem has been formulated as the set partitioning 

problem. An exact algorithm has been proposed for finding an optimal school 

districting in Section 4. In Section 5, the improved algorithm has been proposed 

for a quicker way of finding an optimal or near-optimal school districting. The 

improved algorithm gives sufficiently suitable solutions to ten numerical examples 
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in a very short time. The new idea of cores played an important role, because 

the enumeration of feasible districts is materially reduced in number. The results 

of Table I show that an actual school districting problem with 122 units can be 

solved by the improved algorithm within one minute. The computation time 

by the improved algorithm increases very slowly as the number of units increases. 

Moreover, the improved algorithm is suitable for an interactive procedure check­

ing various solutions by changing the parameters. It is noted that thirty el­

ements of the feasible district matrix are stored within one word. Therefore, the 

improved algorithm requires about J·N/30 words. These facts show the effi­

ciency of the improved algorithm. 

The improved algorithm uses the parameter rk in constructing cores of school 

districts. It is not easy to determine the best value of the parameter rk. There­

fore, the solutions obtained by the improved algorithm are usually approximate 

ones. It is also quite difficult to estimate the differences between optimal solu­

tions and approximate ones obtained by the algorithm. However, it seems re­

asonable to believe that the solutions obtained are near-optimal. 

Appendix 

Details of the Improved Algorithm 

As noted in Section 5, the improved algorithm for the school districting pro­

blem consists of three phases. The exact algorithm is derived by deleting Phase 

I in the improved algorithm. 

(I) Phase I : Construction of a Core 

Step I (Enumeration of assignable units): The labels of s-units k(=l, .. •,M) and 

units i(=M+I, .. ,,N) are renumbered according to the decreasing order 

of population. Set S= {1,2, ··•,M}. For each school kES, find the set 

Bk= {h;k}, as defined in Section 4. If some units do not belong to any set 

Bk, then there is no feasible solution and the algorithm is terminated. 

Otherwise, for each set Bk, rearrange the element h;k in an increasing 

order of the weight W;k• 

Step 2 (Assignment of s-units): Assign each s-unit kES to the corresponding school 

k, that is, Sk={k}, where S,. is the set of units assigned to school k. Set 

j=l. 

Step 3 (Assignment of units): Let k be thejth element of set S. For an assignment 

to school kES, select unit iEB,. with the minimal weight w;k from among 

those units which have the positive element h;,., and which are contiguous 

to any unit of set S,., and which also satisfy the upper bound U,., that is, 
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Q,.+p;s U,., where Q,.= "i:Jp;=p(S,.). Set bu,=-b;k> where a negative 
;es,. 

element of b;,. means that the unit i had been checked already. If there 

is not such a unit, then set j j+ 1 and repeat this step until j > IS 1- If 

the unit i selected above has been already assigned to another school 

k'( =l=k), then go to Step 5 in order to resolve the conflict. Otherwise, 

set S,.=S,.U {j} andj j+l. If j> ISi, then go to Step 4. Otherwise, 

repeat this step. 

Step 4 (Test for the specified population): Examine whether the population Q,.= 

P(S,.) for each school k is greater than the specified population LH =r,.L.). 
If Q,. ~ L~ for all schools k ES or all the elements of the set Bk for any school 

kES are exhausted, then go to Phase II. Otherwise, replace S by the set 

of schools for which the relation Q,.<L~ holds. If S is empty, then go to 

Phase II. Otherwise, return to Step 3. 

Step 5 (Comparison between two weights): Compare the weight w;,. with the weight 

W;1,' for unit i(=-b;11=-b;11,). If wu,>w;,.,, then unit i is left in the set 

S,., and return to Step 3 in order to find another unit for an assignment to 

school k. Otherwise, remove the unit i from set S,., and add it to set S,.. 

Check the contiguity constraint for all the units which are added to set 

S,., after unit i has been assigned to school k'. If any units in set S,., do 

not satisfy the contiguity constraint, then remove all such units from set 

S,., and set b;,.,= -b;11, for all of them. Set j=j+ 1 and return to Step 3. 

(2) Phase II: Enumeration of Feasible Districts 

Step 6 (Initialization): From each set B,. exclude the core units (i.e. b;11 <0). 

The tested units are represented by a vector V, with the labels of the 

units as elements appearing in the order of testing. The vector V=(v;) 

is used to indicate the units included in the current partial solution, that 

is, V;=i if unit i is to be included, otherwise v;= -i. First, set k= 1, I =Si, 
G,.= r/> and j = 1. Next, set V = (S 1), which means to give all the elements 

of set S1 to the vector Vas its elements. If P(J) ~L,., then go to Step 8. 

Step 7 ( Unit annexation): From set B,., find the unit i with the minimal index of 

set B,. in the set of units which satisfies the upper bound U,. of popula­

tion, and which i~ contiguous to any unit of set S,., and is not included as 

an element of the vector V. A rearrangement of set B,. in Step 1 results in 

a reduction of computation time in this step. If such unit i does not 

exist, then go to Step 9. Otherwise, set V = ( V, i) and I =l U {i}. If the 

relation P(J) ~L,. is satisfied, then go to Step 8, otherwise repeat Step 

7 in order to annex other units. 
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Step 8 (Registration ef feasible district): A feasible district has been found. If 

district j agrees with any district n E Gk, then set v;= -i, I =I- {i} and 

return to Step 7. Otherwise, record it in the matrix A as a column vector, 

such that the elements a;;, corresponding with units i which are included 

in the feasible district, take unity. Then, set G•=G•U {j} andj=j+l, 

and return to Step 7. 

Step 9 (Backtracking): Let m be the rightmost non-negative unit of the vector V, 

Replace m by -m, and remove all entries to the right of m from vector V, 

and all the corresponding units from set I. If m$Sk, then return to 

Step 7. Otherwise, as every vector a; for s-unit k has been enumerated, 

rearrange the elements of set Gk for s-unit k so that c;sc1 for i, lEGk> and 

then set k=k+l. If k>M, then go to Step 10. Otherwise, set l=Sk, 
V=(S.) andj=l. If P(I)~Lk, then return to Step 8; otherwise, return 
Step 7. 

Step 10 (Test for the zero row vector): If the ith row vector r; of the matrix A is not 

a null vector, set D=</J where D is the set of districts in the optimal solu­

tion, and. go to Step 11. Otherwise, since no feasible solution exists, 

from each 'set s. exclude one by one the recently annexed core unit, as 

some core units seem to have to be assigned to another school, and return 

to Step 6 with the constructed set G.. If any set Sk is empty, then stop, 

since there is no feasible solution. 

Step 11 ( Test for unit row vector): If the ith row vector r; of the matrix A is a unit 

vector with the jth element unity, then x;= 1 in every feasible solution. 

The partial solution D should include the feasible district j, that is, set 

D=D U {j}. Then, let k be the s-unit that is included in the column vector 

a;, Every column vector a1 with lEGk (l=t:-j) can be deleted from the 

matrix A, and every column vector aq for column q$ Gk such that apq=ap;= 

1 (q=t:- j) for some row p can be also deleted. In addition, the row vector r; 

and every row vector rP such that ap;= 1 for some row p may be deleted. 

If some r; results in the unit vector, then repeat Step 11. Otherwise, go 
to Phase I II. 

(3) Phase III : Optimization 

Step 12 (Initialization): Rearrange all the feasible district sets so that I G1 IS I Gk I 
for l<k, where I• I denotes the number of elements of the set. Set z0= 00 

and d1=0, where d,. is an indicator. Compute d,.=d,._ 1+ I Gk-I I for k=2, ···, 
M. Setk=0. 

Step 13 (Choosing next s-unit): Set k=k+ 1 and n=d•· If D n G.=t:-¢, then return 

to the top of this step. Otherwise, go to Step 14. 
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Step 14 (Constructing the partial solution): Find the column where n<jEGk> Q(D) n 
H;=<I>, and z(D)+c;<z0, where Q(D) is the set of units included in all 

districts belonging to the set D, where H; is the set of units included in 

district j, and where z(D) is the weight l] c; of the partial solution D. 
JED 

If there is such a columnj, then go to Step 15. Otherwise, go to Step 16. 

Step 15 (Backtracking): Set D=D U {j}. If k=l=M, then return to Step 13. Other­

wise, if Q(D) =l=K, then go to Step 16, where K is the set of all units. If 

Q(D) =K, then a new and better solution has been obtained. 

z(D). Let l be the feasible district included in the set D n GM. 
Set z0= 
Exclude 

the feasible districts that need not be considered as follows: Set G,.= 

G,.-{jjz0~c;,jEG,,,} for m=l, ··•,M-1 and GM=GM-{jlj~l,jEGM} 
and D =D- {l}, as the elements of set Gk are rearranged in an increasing 
order of weight c;. Go to Step 16. 

Step 16 (Test solution): If D=<I>, then go to Step 17. Otherwise, let {d} be the 

element added most lately to set D, put D=D-{d}, and put k=k-1. 
Return to Step 14. 

Step 17 (Determination of solution): If z0= oo, then no feasible solution exists. If 

z0< oo, then the solution that attains Zo is optimal. 

Acknowledgement 

The authors wish to thank D. Norberto Navarrete Jr. of Kyoto University for 

several improvements in the use of English for this manuscript. 

References 

1) Aho, A.V., Hopcroft, J.E. and Ullman, J.D.: The Design and Anagsis of Computer Algorithms. 
Addison-Wesley Co., 1974. 

2) Belford, P.C. and Ratliff, H.D.: A Network-Flow Model for Racially Balancing Schools. 
Operations Research, Vol. 20 (1972), 619-628. 

3) Clarke, S. and Surkis, J.: An Operations Research Approach to Racial Desegregation of 
School Systems. Socio-Economic Planning Science, Vol. 1 (1968), 259-272. 

4) Garey, M.R. and Johnson, D.S.: Computers and Intractability: A G1,ide to the Theory of NP­
Completeness. W.H. Freeman & Company, San Francisco, 1979. 

5) Garfinkel, R.S. and Nemhauser, G.L.: Integer Programming. John Wily & Sons, 1972. 
6) Garfinkel, R.S. and Nemhauser, G.L.: Optimal Political Districting by Implicit Enumera­

tion Techniques. Management Science, Vol. 16 (1970), B495-508. 
7) Geoffrion, A.M.: An Improved Implicit Enumeration Approach for Integer Programm­

ing. Operations Research, Vol. 17 (1969), 437-454. 
8) Heckman, L.B. and Taylor, H.M.: School Rezoning to Achieve Racial Balance: A Linear 

Programming Approach. Socio-Economic Planning Science, Vol. 3 (1969), 127-133. 
9) Holloway, C.A., Wehrung, D.A. and Zeitlin, M.P.: An Interactive Procedure for the School 

Boundary Problem with Declining Enrollment. Operations Re.tearch, Vol. 23 (1975), 191-206. 
10) Liggett, R.S.: The Application of an Implicit Enumeration Algorithm to the School Desegre­

gation Problem. Management Science, Vol. 20 (1973), 159-168. 


