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Abstract 

This paper proposes a method for a digital simulation of hysteretic loops based 
on the use of the Preisach diagram. The hysteretic characteristic is expressed by an 
integral equation the kernel of which is discretely given. As examples, using the 
method proposed, we obtain the major loop, minor loop and so forth. 

1. Introduction 
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The hysteretic characteristics of the magnetic materials can be studied by the 

Preisach diagram or the electrical circuit containing bimetal switches1> ,2>. In these 

methods, the hysteretic characteristics are expressed by an integral equation. The 

distribution function in the integral equation is given by a continuous function with two 

independent variables. However, in a practical problem, we obtain the approximate 

values of the distribution function by an experiment discretely. Therefore, it is 

significant for the hysteretic characteristics to be obtained by a discrete distribution 

function. In this paper, we develop a method for simulating the hysteretic characteristics 

by means of the Preisach diagram, and give an algorithm. By this algorithm, we 

can obtain the hysteretic characteristics, for examples, a major loop, a minor loop 

and so forth. We express the method by using the terminology of the magnetic 

materials. 

2. Elementary dipole 

We assume that the magnetic material consists of a large number (not infinite) 

of the magnetic dipoles. Each dipole is characterized by a rectangular magnetizing 

loop in the HJ plane, where H and J are the strength of the magnetic field and the 
intensity of the magnetization, respectively. As shown in Fig. 1, the dipole has the 
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Fig. Magnetizing characteristics of elementary dipole. 

magnetic coercivities x and y corresponding to the ascending and descending sides, 

respectively. The remanent intensities of the magnetization are ± 1/2. We call this 

magnetic dipole the 'elementary dipole' or simply the 'dipole'. When the strength of 

the magnetic field H is less than y, the dipole is called negatively magnetized. When 

the strength of the magnetic field H is greater than x, the dipole is called positively 

magnetized. Here, because we assume that the magnetic material is composed of a 

finite number of dipoles, the coercivities x and y are assumed to be distributed from 

- H, to + H, of the magnetic field, where H, is the saturating strength of the magnetic 

field. 

3. Distribution function 

We define a distribution function K(x, y) where the variables x and y are 

independent each other. Because we assume that the magnetic material is made up 

of a large number of dipoles, the number of dipoles in the intervals [x, x+dx] and 

[y, y+dy] is given by K(x, y) dxdy. This function K(x, y) is referred to as the 

distribution function. Here, we also assume that the distribution function is indepen

dent of the external magnetic field applied to the magnetic material. This function 

represents the distribution of the density of the dipoles for various values of the 

magnetic field. 

In a practical problem, we can evaluate the values of the distribution function 
approximately by an experiment3>. Therefore, we can represent the values of the 

distribution function by the constant values on the small two-dimensional region dxdy. 

Because we assume that there are no dipoles which tread reversely the loop shown 

in Fig. 1, we have K(x, y) =0 for the region x<y. For the magnetic saturation, we 
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assume K(x, y) =0 in the region lxl >H,, IJl>H,. Under these assumptions, the 

distribution function K(x, y) is defined in the following three regions: 

( a) OS::.x~H,, y~x 

( b) O~x~H,, -H,S::.y~O, 

( c) -H,~x~O, yS::.x. 

4. Magnetization process 

When the strength of the magnetic field is zero at the begining and when the 

magnetic material is magnetically neutral, there are as many dipoles in the state 1/2 

(positively magnetized dipoles) as those in the state -1/2 (negatively magnetized 

dipoles). Therefore, we can determine the result of applying a given time sequence 

of the strength of the magnetic field to the magnetic material by the following rules: 

(1) If an increasing magnetic field H is applied, all the dipoles in the state -1/2 

switch to the state 1/2 when H becomes greater than x. 

(2) If a decreasing magnetic field H is applied, all the dipoles in the state 1/2 

switch to the state -1/2 when H becomes less than y. 

Applying these rules, we first consider the intensity of magnetization J when we 

increase the strength of the magnetic field H. In this magnetizing process, all the 

dipoles are in the state 1/2 on the left side of the line x=H, and over it in the state 

-1/2. When the strength of the magnetic field H increases, this line shifts parallel to 

itself to the right. Therefore, we integrate the distribution function K(x, y) over the 

region swept by the line. This value of integration means the incremental intensity 

of magnetization dj corresponding to dH in the external field H. Therefore, the 

incremental intensity of magnetization dj is given by an integration of the distribution 

function over the trapezoidal region, swept successively by the parallel lines to the 

y-axis. Therefore, the incremental intensity of the magnetization is given by 

r8 sll+IB 
d]= )_B, 11 K(x, y)dxdy 

and the intensity of magnetization J is given by 

J=J.,.+ s:H,S:H,K(x, y)dxdy 

where J.,. is the minimal intensity of magnetization defined by 

l SB' SB' ].1. ~ --2 K(x, y)dxdy 
-B1 -B1 

( l) 

(2) 

In a similar way, when the strength of the magnetic field H decreases, all the dipoles 

are in the state -1/2 over the line y=H, and below it in the state 1/2. This line shifts 

parallel to itself to the lower side. The incremental intensity of the magnetization 
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corresponding to the decrease -dH in the external field H is given by 

S
H SH' dJ=- K(x, y)dxdy 
H-dH H 

(3) 

and the intensity of the magnetization is given by 

S
H,SH' J=J.,0 .,- H H K(x, y)dxdy (4) 

where J.,°"' is the maximal intensity of magnetization defined by 

1 SH' SH' J .,.,, ~ 2 -H, -H,K (x, y) dxdy. 

5. Computation of intensity of magnetization J 

We describe a method for computing the intensity of the magnetization J when 

the distribution function K(x, y) is discretely given. Let us consider the finite region 

on the xy plane where K(x, y) has already defined. Then, we partition the interval 

I,.~ [-H,, H,] and I,~ [-H,, H,] on the x-axis and y-axis into M subintervals, 

respectively. We express these subintervals on the x-axis and y-axis respectively by 

h,.(i) ~ [x., x1+J 

h,(j) ~ [y" YJ+i] i, j=O, 1, ...... , M-1. } 
( 5) 

where i is the integral position of node x, counting along the x-axis and j the position 

along the y-axis. Therefore, we denote the two-dimensional subregion corresponding 

to these intervals as 

h(i, j) ~ h,.(i)@h,(J), i, j=O, 1,-·····, M-1. ( 6) 

Here, we call the integers i and j the interval number on the x-axis and y-axis, 

respectively. On the subregion h(i, j), we denote the distribution function as K(i, j) 

which takes a constant value. Using these notations, we have the maximal and 

minimal intensity of magnetization ]m.,, and Jm,n, respectively. These' are given by 

1 M-lM-1 • • • 
lmas=-2 :E :E K(i, J) h(i, J) ( 7) 

l=O J=O 

1 M-1 M-1 • • • 
lm,.=--

2 
:E :EK(i,J)h(i,J). (8) 
i"""O J=O 

Let the strength of the external magnetic field be H(t) dependent on time t. 

Then, we can obtain a discrete time sequence {H(t,)}, in which t,~PM (P=O, 1, 

•·····). First, we deal with the case of the increasing strength of the magnetic field. 

For any increasing subsequence {H(t,)}, we can obtain the intensity of manetization 

{J(t,)} in the following way. For each sampling point t,, we search the subinterval 
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h,,(i) to which the value of H(t,.) belongs. Therefore, we can obtain the relation 

between p and i. We denote this relation as 

i=i(P). 

Therefore, the incremental intensity of magnetization D:.] is given by 

1(/>) 

D:.](P) =~K(i(p), ;)h(i(p), j). 
J-0 

( 9) 

(10) 

In the same manner, we can obtain the incremental intensity of magnetization D:.] for 

any decreasing subsequence {H(t,.)}. For each value of H(t,.), we search the sub

interval h,(j) to which the value of H(t,.) belongs, and obtain the relation 

j=j(p). (11) 

Therefore, the incremental intensity of the magnetization is given by 

Jl-1 

D:.](P) = - ~ K(i, j(p) + l)h(i, j(p) + 1). 
l•J(t,)+1 

(12) 

Thus, for the increasing strength of magnetic field H(t,.), the sequence of the intensity 

of magnetization J(P) is given by 

IC,) I 

J(P) =J.,.+ ~ ~ K(i, ;) h(i, J). 
;-o J-0 

and for the decreasing strength of magnetic field H(t,.), J(P) is given by 

Jl-1 Jl-1 

J(P) =J.,,,,- ~ ~ K(i, ;) h(i, j). 
i•J(t,l+ll•J 

6. Introduction of array D 

(13) 

(14) 

In order to facilitate the programing technique and to infer the process of 

magnetization, we introduce a two-dimensional array D. The array D has the same 

dimension as the discrete distribution function K(i, j), and its elements are zero or 

unity. The position of zero or unity varies with the time sequence {t,.}. When the 

sequence of the strength of the magnetic field is increasing, we search the interval 

number i(P) corresponding to the value of H(t,.), and put the column less than or 

equal to i(P) of D to unity. When the sequence of the strength of the magnetic field is 

decreasing, we search the interval number j(p) corresponding to the value of H(t,.), 

and put the row more than j(p) of D to zero. From the position of zero and unity 

for each time point t,., we can infer the magnetizing process. 

Hereafter, for simplicity, we denote K(i, j) h(i, j) as K(i, j). Using the array D, 

we can rewrite Eqs (13) and (14) as 

le,) I 

J(P) =J.,.+ ~ ~ K(i, ;)D(i, j). 
1-0 J•O 

(15) 
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and 

Jl-1 Jl-1 

J(P) =J,..,,- }::; }::: K(i, j) D(i, 1). 
J•JCl)+ll•J 

(16) 

By using the array D, we need not classify the various cases of the distribution of 

positively or negatively magnetized dipoles for each time point t,. Consequently, we 

can easily compute the intensity of the magnetization. 

7. Algorithm 

From the above consideration, we have the following algorithm to draw the hyste

retic loops for the given discrete distribution function. 

S 0 : Give the distribution function K(i, j) for i, j=0, 1, ······, M-1. Set the 

array D(i,J)+-0 for i,j=0, 1, ······, M-1. 
S 1 : Partition the interval [ - H., H,] of the strength of the magnetic field 

into M subintervals, and assign numbers i and j to the subintervals [x,, 

X1+iJ and [yJ, YJ+i] (i, j=0, 1, ······, M-1). 
S 2 : Compute the maximal and minimal intensity of magnetization J,..,. and 

J,.,. by Eqs. (7) and (8), respectively. 

S 3: Give the time sequence H(t,) for P=O, 1, ······, N-1. 

S 4 : Set P+-0. 
S 5: Examine whether H(t1) is increasing or not. If H(t1) is increasing, go 

to S6. Otherwise, go to S8. 

S 6 : Check the interval number i (p) to which H(t,) belongs. 

S 7: Set D(i, j)+-1 for i,j=CJ, 1, •·····, i (p) and go to Sll. 

S 8 : Check the interval number j (p) to which H(t,) belongs. 

S 9: Set D(i, j)+-0 for i,j=j(p)+l, ······, M-1. 
Jl-1 Jl-1 

Sl0 : Set J(P) +-J,..,.- }::; }::: K(i, j)D(i, J) and go to Sl2. 
i--0 J•O 

Jl-lll-1 

Sll: SetJ(P)+-J,.,.+:l:: }::;K(i,j)D(i, J). ,-o J-o 

Sl2: If P>N-1, then set P+-P+l and return to S5. Otherwise, go to the 

next step. 
Sl3: Draw the relation between H(t1) and J(t,) for P=O, 1, ······, N-1 on 

the HJ plane by some interpolation method. 

Sl4 : Stop. 

8. Some examples 

Using the above algorithm, we draw the hysteretic loops on the HJ plane. We 

use the distribution function given in Table 1. Tanaka and Ohotsubo obtained this 
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Table 1. Distribution function 
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Note : The values of the 3rd quadrant are the same as those of the 
1st and are given symmetrically with respect to the line y= -x. 
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table for the magnetic tape (Scotch-111-12) by the experiment31 • We deal with the 

following three cases: 

( a) H(t) =1200cos(2irt), N=5001, step size .o.t=5.0Xl0-6• 

( b) H(t) =700 cos(l00 irt) +500 cos(300 ,rt), N=401, .o.t=5. OX 10-s. 

( c) H(t) = 1310 exp(-15. 5 t) cos(l00 irt), N= 1001, .o.t=2. 5X 10-,. 

These correspond to the major loop, minor loop, and the perfect demagnetizing pro

cess, respectively. The results are shown in Fig. 2-a to 2-c. 

9. Conclusion 

We propose a method for the digital simulation of the hysteretic loops and give 

the algorithm, based on the use of Preisach diagram. When we compute the intensity 

of the magnetization for each time point, we find it convenient to introduce the array 
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N-t---,--.--,----.---.---,---,---,,----,--...---.---.---,---,---,,----,--...--, 

1

-100.00 -140.00 -100.00 -60.00 -20.00 20.f 60.00 100.00 140.00 100.00 
HICEI ■ 10 

g 
~ 

Fig. 2-a Major loop. 

N,;---,,---,---,----,--,--,----.---.-----.--,--,------r--r----.--,--,----,---, 
'-180.00 -140.00 -100.00 -60.00 -20.00 20.00 60.00 100.00 140.t't 1r.:i.oo 

HI CE I • 101 

Fig. 2-b Minor loop. 
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N;---,---,---,----,----,--,---r-~---r--r--~-r---r---ir---r--r----r--, 
'-100.00 -1.0.00 -100.00 -60.00 -20.00 20.00 

HIOEI •101 
60.00 100.00 140.00 18o.OO 

Fig. 2-c Perfect demagnetizing process. 
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D. By memorizing the array D, we can infer the state of the magnetizing process. 

The introduction of the array D facilitates the technique of the programing. 
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