
460 

State Estimation of Jump Parameter Systems with 
State-Dependent Observation Noise 

By 

Y oshiki TAKEUCHI and Hajime AKAsHI* 

Abstract 

A least-squares state estimation algorithm is obtained for a general class of stochastic 
systems having 1) system nonlinearity; 2) an unknown jump parameter and 3) state
dependent observation noise. The algorithm developed is consistent in the sense that for 
each special case with the properties 1) and 2) or 3 J, it reduces to the algorithm the authors 
have already developed. Illustrative examples of numerical computation are given for 
better understanding of the result. 

1. Introduction 

The object of this paper is to present an easily calculable method of least

squares state estimation for a general class of stochastic systems. The system for 

which we consider the state estimation is "general" in the following sense: 

i) The system is nonlinear in the system state. 

ii) The system has an unknown, abruptly changing parameter. 

iii) The statistics of the observation noise are explicitly dependent on the system 

state. 

For each class of systems having one of the properties i)-iii) but not all of them, 

there are a large number ofstudies.1J-i5J As far as the authors are aware, however, 

there is no state estimation algorithm which is applicable for all the situations i)

iii). 

For systems which are nonlinear in the system state, many studies have been 

devoted to obtain finite dimensional state estimators. These studies are sum

marized in the textbook of Jazwinski.5l On the other hand, for class ii), the 

exact and approximated filters have been studied rather independently of the 

nonlinear filtering problem. Nahi6J considered the filtering problem for the 

linear systems with time-varying uncertainty of the signals in the observation. 

Similar problems were discussed by Jaffer and Gupta7l,Bl via Bayesian approach. 

Ackerson and Fu9l considered the case where the statistics of the noise process 

* The authors are with the Department of Precision Mechanics, Faculty of Engineering, Kyoto 
University, Kyoto 606,Japan. 
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change suddenly by the dependence on a finite state Markov chain. These pro

blems were treated by Takeuchi10>,11> for continuous-time systems in a unified for

mulation. 

In contrast to the case of additive white Gaussian noise, there are a relatively 

small number of studies dealing with case iii), especially for continuous-time sys

tems. For linear continuous-time systems, McLane13> obtained a linear filter by 

restricting the filter-structure to a linear class with respect to the observation. 

The corresponding result for nonlinear systems was obtained by Sunahara et al.14> 

The least-squares suboptimal filter for nonlinear systems was given by Takeuchi 

and Akashi15>. 
The approach used in this paper is based on the general nonlinear filtering 

formula developed by Takeuchi and Akashi15>. A feasible state estimation al

gorithm is constructed by employing the extended stochastic linearization technique 

developed by Takeuchi10>. Also, the results of the numerical experiments are 

shown to demonstrate the applicability of the algorithm. 

Throughout this paper, column vectors are denoted by lower case letters, 

and matrices are denoted by capital letters. The prime denotes the transpose of 

a vector or a matrix. The Euclidean norm is denoted by I • I , The trace of square 

matrix A is tr[A]. If A is nonsingular, A-1 denotes the inverse matrix of A. If A 

and B are symmetric, then [A, B]4 ~ a;i;; and IIAll,4, {[A, A]} 112
• The triplet 

i:ii,J 

(D, 9', P) is a complete probability space. E{•} and E{• lg}, gcq denote re-

spectively the expectation and the conditional expectation, given g, with respect 

to P. a { •} is the minimal sub-a-algebra of 9' with respect to which the family 

of 9'-measurable random variables { •} is measurable. 

2. Problem Formulation 

We are concerned with the following dyna~cal system having an abruptly 

changing parameter a, which takes values in L4 {l, 2, ···, l}. 

( 1 ) {
dx, = f(t, x,, a,)dt+k(t, x,_, a,_)dn1+G(t, x,, a1)dw, 

Xo=x0
, OstsT, 

where x1ER" is the state vector; w1ER4
1 is a standard Brownian motion pro

cess; x0 ER" is a Gaussian random vector independent of a 1 with mean .f0 and 

covariance matrix Q0 ; and n1 is a right-continuous counting process16> denfined by 

( 2) n14,{number of jumps of a., Ossst such that i-+j,jES;, iEL}, 

and is adapted to 
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( 3) 

The set S; in (2) is a subset in L-{i} for each iEL. The transition of random 

parameter a1 is dependent on the state process x1 and has the property 

(C-1) lim J__ {P(t+s,j It, x, i)-i;;} = a;;(t, x) uniformly in (t, x) , 
qo s 

where 

P(t+s,j ft, x, i)d,P {a1+, = j I (x1, a 1) = (x, i)} . 

It should be noted that due to the second term in the right-hand side of (1), the 

state process x1 is discontinuous at the time when n1 increases, namely, when a 1 

makes a jump: i-j such that jES;, iEL. Clearly, combined process (x1, a1), 

O<ts Tis a right-continuous Markov process with values in Rn XL. 

All the information which can be obtained about (x1, a 1) is assumed to be con

tained in the observationy., Ossst generated by 

( 4) {
dy1 = h(t, x1, a 1)dt+R(t, x1, a 1)dv1 

Yo= 0, Osts T, 

where v1ER4
2 is a standard Brownian motion process independent of x0

, {w1 ; 

Osts T} and {a 1; Osts T}. An important feature of (4) is that noise coefficient 

R is dependent on (x1, a 1) and, therefore, the additive noise is the so-called state

dependent noise. 

The state estimation problem is to compute the least-squares estimate of the 

state vector x1 based on the datay., sst given by (4), i.e., to compute the condi

tional expection: 

( 5) x(t)JE {x1 I QJ1} , 

where Q/1 is the a-algebra: 

( 6) QJ14a{y,; Ossst}. 

Introducing 

( 7) x(t I iM,_E {x1 I a1 = i, QJ1} , iEL 

and 

( 8) n (t, i)4P {a, = i I QJ,} , iEL, 

we have the representation: 

I 

( 9) x(t)d 21 x(t I i)ll (t, i) . 
i=l 

We will consider the problem of computing {x(tli), ll(t,i), iEL} in order to 
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compute x(t). For the purpose, we will assume the following conditions: 

(C-2) For all iEL, 110(i)>O 

(C-3) For all i,jEL and xER", a 1;( •, x) is continuous on [O,T] 
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(C-4) For all i,jEL, a1;(•, •) is the bounded function on [O,T] XRn such that 

either a1;( •, •) =0 or O< I a;;(•, •) I -5:,M 

(C-5) For all iEL,j( •, •, i), k( •, •, i), G( •, •, i), h( •, •, i) and R( •, •,i) are con

tinuous functions on [O, T] x Rn satisfying the Lipschitz and the linear 

growth conditions 

(C-6) There exists a positive constant C such that det I R0(t, x, i) I ~ C for all 

t E [O, T] and (x, i) ERn XL, where R0~RR' 

(C-7) For all i,jEL, and tE[O,T], the function kj 1 : Rn-Rn defined by 

kj1 (x)dx+ z(j, i)k(t, x, i) , 

is one-to-one and invertible. 

In (C-7), 'i(i,j) is the indicator function given by 

{
1 ·es-( .. )J ,J' 

z i,J = o ·,±s. 
' Jq;;; " iEL. 

3. Fundamental Formulas 

In this section, we will give fundamental formulas for the estimation problem 

in the form of the stochastic differential equations. First, let us define process 

Z 1 by 

where 

and 

lz(s)~E {h(s, x., a,) I CZJ.} . 

Then, Z 1 is the quadratic covariation process of the square integrable martingale 

111, and is given by 

(10) dZ1 = R0(t, x1, a 1)dt, 

As we have pointed out15>, this process Z 1 plays an important role ih the state esti

mation problem with the state-dependent observation noise, i.e., the optimal esti

mate is given in terms of the conditional distribution of {x1; 0-5:,t-:5:, T} subject to 

{Z,; s-5:, t}. Because of the singularity of this conditional distribution with re-
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spect to the a priori distribution of {x,; O=:;;;t=:;;; T}, it is difficult to compute the 

optimal estimate ~(t). An effective suboptimal scheme15
) is to approximate the 

conditional distribution subject to {Z,;s< t} by the one subject to {z;, s< t} defined 

by 

(11) 

where V, is an m x m-dimensional symmetric matrix-valued process whose triangular 

components are mutually independent standard Brownian motion processes. The 

straight-forward generalization of the result in Takeuchi and Akashi15> yields the 

following statement: 

Theorem 1. Let ¢: RnxL-+R be such that Elr/J(x,,a,)l 2 <oo for all t. 

Then, approximate estimate cM of ¢,~r/J(t,, a,) having the property 

satisfies the stochastic differential equation: 

(12) 

I 

(13) J/:tjr(t, x, i)4~ ai;(t, x),fr(t, kJ,(x),j)+J'(t, x, i),frit, x, i) 
j=l 

+_!__ tr[G'(t, x, i)-ifr:u(t, x, i)G(t, x, i)], 
2 

and where ,fr,, and ,fr"" respectively denote the gradient vector and the Hessian 

matrix of ,fr. D 
Based on (12) in Th. I, we will derive fundamental formulas for the present 

problem. Let x1(j) be the indicator function on L defined by 

(14) 
for j= i 

for j=t=-i, i,jEL. 

Then, by taking <l>,=z1(a,) in (12), we have the following stochastic differential 

-------equation for ll(t,i)~X1(a,)'t. 

t It would be better to write Il'(t,i), since this is an approximation of Il(t,i). For the sake of 
simplicity, however, we will use this 11otation. 
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where 

(16) 
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I 

[

dll(t, i) == lJ fi;;(t lj)Il(t,j)dt 

~

1

/1 (t, i) {A(t I i)-h(t)}' {k0(t) +r( e)}-1 {dy,-A(t)dt} 

+ (e)-1/1 (t, i) [ {Rc,(t I i)-ko(t)}, {dZ:-ko(t)dt}] 

/1(0,i) = II0(i), tE[O, T], iEL, 

:(tli)4:(i) and :<0.:1~'. 
= II(t, i) 
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On the other hand, taking ¢,1=p(x1)Z;(a,) in (12) and applying it with (15) and 

(17) ·ctli) = ~' 
P II(t, i) ' 

it follows from Ito's stochastic differential formula that 

(18) dp(tli) = :E II(t,~) {~p>-8Ji(tlj)p(tli)}dt 
J•l II(t, ,) 

+ 1:fpodt+ ! ~<i>dt 
,,,,....__ 

+ {ph<•>-.o(t I i)A(t Ii)}' {ko(t)+r(e)}-1 {4,,,-A(t I i)dt} 

+(e)-1[{~(i)_p(tli)Ro(tli)}, {dz:-.ka(tli)dt}]. 

Equations (15) and (18) are the basic (approximated) formulas for the estimation 

problem. Although the convergence of these estimates to the optimal estimates 

is guranteed by Th. I, (15) and (18) generate an infinite dimensional filter. In 

order to obtain a finite dimensional filter, it is necessary to apply a certain moment 

truncation technique. 

4. Derivation of a State Estimation Algorithm. 

In this section, we will construct a feasible state estimation algorithm by ap

plying the extended stochastic linearization technique developed by Takeuchi10>. 
According to this method, a nonlinear function is expanded into a linear from by 

selecting the coefficients in such a way that the mean square error due to the ex

pansion becomes minimum. The result shows that 

(19a) 

(19b) 

(19c) 

J(t, x1, i) Q!,l(t Ii) +F2(t, i) {x1-.f(t Ii)} 

k(t, x,, i) :;;;,,:k(t Ii) +K2(t, i) .{x,-.f(t Ii)} 

h(t, x,, i) :;;;,,:li(t Ii) +H2(t, i) .{x,-.f(t Ii)} 
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(19d) 

(19e) 

and 

(19f) 

where 

(20) 

(21) 
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G(t, xi, i) Q,:G(t Ii)+ iJ G;(t, i) {xf-xi(t Ii)} 
J=l 

R(t, x,, i) s=:R(t Ii)+ IJ R;(t, i) {xf-xi (t Ii)} 
J=l 

Fi(t, i}dU(t, x,, i)-/(t Ii)] [x,-x(t I i)]'<i)Q. - 1(t Ii) , 

~,
Q(t I iM[x,-x(t Ii)] [x,-x(t Ii)] <•> 

and the other coefficients K2, H2, G;, R; and a;; are given by a form similar to 

(20). For the details of the extended stochastic linearization technique, see Takeu

chi10> and Akashi and Takeuchi12>. 

Using (19) to (18), and taking p(x1)=~!.k=l,2,3,···,l, we can easily obtain 

(22) 

where 

(23) 

(24) 

(25) 

(26) 

and 

{

dx(tli) = e'(tli)dt+/(tli)dt 

+Q(t I i)H; (t, i) {Ro(t) +r( e)}-1 {dy,-h(t I i)dt} 

+ ( e) -IQ. ( t I i) dJ. ( t, i) 

x(0 Ii) = f 0 , t E [O, T] , i EL , 

e'(tli)~iJll(t,!) {8;;(tlj)c;;(t)+Q(tlj,i)7J;;(t)}, 
j=lll(t,i) 

[dJ.(t, i)h~[ {R(t I i)RW, i) +Rk(t, i)R' (t Ii)}, {dz:-Ro(t I i)dt} J , 
(k = 1, 2, 3, ···, n), 

c;;(t)~x(t I j) + i(j, i)k(t I j)-x(t Ii) , 

Q(t I j, i)d[I+ i(j, i)K2(t,j)]Q(t I j) , 

(27) Ro(t Ii) = I! [Q(t I i)]k,Rk(t, i)R:(t, i) +R(t I i)R' (t Ii) . .. , 
For Q(t Ii), since we can write 

-------dQ(tli) = dx,x:Ci>-d{x(tli)x'(tli)}, 

it follows from (18), (19) and (22) that 

{

dQ(t Ii) = D(t I i)dt+F2(t, i)Q(t I i)dt+Q(t I i)FW, i)dt 

+Go(t I i)dt-Q(t I i)H~(t, i) {Ro(t) +r( e)} - 1H2(t, i)Q(t I i)dt 

(
23

) -(e)'-1Q(tli) CTJ(tli)dt-dA(tli)}Q(tli) 

Q(0li) = Q0 , tE[0, T], iEL, 
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(29) 

(30) 
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D(t li)t± JI(t,!) [B;;(t lj) {Q*(t lj, i)-Q(t li)+c;;(tM;(t)} 
J=l JI(t, t) 

+ Q(t I J, i)TJ;;(tM, (t) +c;;(t)TJ~, (t) ct (t I j, i)] , 
[dA(t I i)]u~[ {Ri(t, i)RHt, i) +Ri(i, t)RW, i)}, {dz:-Ro(t I i)dt}] , 

(k, l = I, 2, 3, ···, n), 

(31) [l:!(tli)h, 

and 

J[ {R .. (t, i)R(t Ii) +R(t I i)RW, i)}, {R,(t, i)k (t Ii) +R(t I i)RHt, i)} J , 
(k, l = I, 2, 3, ... , n) , 

(32) Q*(t U, i)d[I+x(j, i)K2(t,j)]Q(t lj) [I+z(j, i)K2(t,j)]'' 
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Here note that the coefficients /(t Ii), F2(t, i), i(t Ii), K2(t, i), h(t Ii), H 2(t, i), 

G(tli),G;(t,i),R(tli),R;(t,i),a;;(tlj) and 7/;;(t) (i,jEL) aregivenasfunctions 

of .f(t Ii) and Q(t I i) 10>. Then, since 

I 

Ro(t) = 2! Ro(t Ii) JI (t, i) 
i=l 

and 
I 

li(t) = I! li(t Ii) JI (t, i) , 
i=l 

we can compute {JI(t,i),.f(tli), Q(tli); iEL} recursively by (15), (22) and (28). 

Hence, the suboptimal state estimate .f(t) is given by (9). Thus, we have con

structed a suboptimal state estimation algorithm. 

Remark I. For the case of linear systems where Eqs. (I) and (4) are linear 

in x,, apd a;; does not depend on x1, we can construct a truncated moment esti

mator by setting 

[x,-.f(tl i)] [x1-.f(t I i)]'[x,-.f(t I i)]1Ci) = 0, 

(k = 1, 2, ···, n) . 

The result, however, coincides with the above algorithm, and the coefficients are 

directly given by the following relations:/(t Ii) =f(t,.f(t Ii), i), F2(t,i) =(:)'f(t,x,i) 

and etc. 

Remark 2. This algorithm, which is applicable in a wide class of state esti

mation problems, is consistent with the specializations. Namely, for each special 

case treated by Takeuchi10> and Takeuchi and Akashi15>, the above algorithm 
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coincides with the algorithm, developed by them. For the digital computer imple

mentation of the state estimation, therefore, we only have to prepare a computer 

program of the above algorithm. 

5. NUD1erical Examples 

Consider the scalar case where the dynamical system and the observation are 

respectively given by 

(33) 

and 

(34) 

{
dx, = a(a1)x1dt+gdw1 

x0 = x0
, tE[0, 2] 

{
dy1 = h( a1)x1dt+r1x1dv} +r#v! 

Yo = 0 , t E [0, 2] , 

where the coefficients g, r1 and r2 are 

(35) g = 0.25, r1 = 0.15, r2 =0.10. 

The initial distribution of x1 is given by 

(36) x0 = 5.0, Qo = 10.0. 

In this system, as we have noted, the important point is that (33) and (34) are 

"the jump parameter system with state-dependent observation noise". At present, 

there is no other state estimation algorithm applicable to this class of systems. 

In this section, we will give two examples of the numerical computation for (33) 

and (34). 

Example 1. (System with interrupted observation and state-dependent obser

vation noise). Let a 1 be a binary-valued Markov chain which takes values in 

L= {1,2} and has the transition rates: 

(37) {

all =-1.0 

a21 = 1.0 

G1z = 1.0 

a22 =-1.0. 

The initial distribution of a, is given by 

(38) .ll0(l) = .ll0 (2) = 0.5. 

The coefficients a(i) and h(i), iEL are given by 

(39) {
a(l) = a(2)= -0.30 

h(l) = 4.0 h(2) = 0.0. 

In this case, the event {a1= 1} describes the normal operation of the observation 
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12.0 

4.0 

0. 4 0.8 1.2 1.6 2.0 

TIME 

Fig. l. One sample run results of x1 and ~(t) (Example 1) 

~:1~~--------+---!: ~ 
~:1 .. . flO.[ 

0 0 .4 0.a 1.2 1.6 2.0 

TIME 

Fig. 2. On the sample run of a, and the corresponding run of Il(t, 2) 
(Example 1) 
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mechanism, whereas {a,=2} is the fault situation where the observation signal, i.e., 

the first term in the right-hand side of (34), is interrupted. In the digital com

puter simulation, the step size dt is selected as 10-3 dividing the interval [0,2] into 

2,000 steps. 

In Fig. 1, one sample run of x1 for x0= 10.0 and the corresponding sample run 

of the suboptimal state estimate by the proposed algorithm are shown. For the 

same sample, the trajectories of a 1 and JI(t,2) are shown in Fig. 2, where we can 

see that the value of a 1 is identified with good accuracy. An interesting fact in 

Fig. 1 is that even when JI (t, 2) is nearly equal to 1, for instance 1.1 ~ t ~ 1.4, the 

transition of the suboptimal estimate is not so smooth as in the case of the additive 

wihte Gaussian noise. (See Ex. 5.1 in Takeuchi10
'.) This implies that, due to the 

dependence on x1 of the noise term in (34), there is available information in y 1 

even when h(a1)=0, and that the proposed algorithm uses this information effi

ciently. 

Example 2. Let L= {l,2,3, ···,4} and a1 be a Markov chain with values in 



470 Y oshiki TAKEUCHI and Hajime AKASHI 

L having the transition rates: 

1
-2.0 

fJ;; = 0.0 

1.0 

and the initial distribution: 

for i =j 

for i+j = 5 

otherwise, 

The system parameter a(i) and h(i), i EL are 

a(l) = -2.0 

h(l) = 4.0 

a(2) = 2.0 

h(2) = 4.0 

a(3) =-2.0 

h(3) = 0 

a(4) = 2.0 

h(4)=0. 

This case describes the situation where, under the existence of the state-dependent 

observation noise, abrupt changes of system parameter a( a 1) and interruptions of 

the observation take place independently. 

In Fig. 3, one sample run results of the system state and the suboptimal esti

mate are given. For the same sample, the true value of the parameter a(a1) and 

the a posteriori probability for a(a1) =2.0 are shown in Fig. 4. The true value of 

h(a1) and the a posteriori probability for h(a1)=0 are shown in Fig. 5. As we 

have pointed out1°>, the identification of a system parameter is more difficult in 

the dynamical system than in the observation. Comparing Figs. 4 and 5, we can 

confirm this property. The filter performance in Fig. 3, however, is good enough 

for application. 

By these results, and by comparing them with the results for the case of the 

additive white Gaussian noise, one may well say that the performance of the pro-

12. 

8.0 

4.0 

TIME 

Fig. 3. One sample run results ofx1 and ~(t) (Example 2) 
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fl.O~·~· . 
., 0.5 

~ 
~ 

0. ._.._...__.c....i==-=-'----,f------,f------!-----1 
0.4 0.8 1.2 1.6 2.0 

TIME 

Fig. 4. One sample run of a(a1) and the corresponding run of P{a(a1)=2.0\Q}1} 

(Example 2) 

TIME 

Fig. 5. One sample run of h(a1) and the corresponding run of P{h(a1)=0.0\Q}1} 

(Example 2) 
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posed algorithm is satisfactory, and that the proposed algorithm is applicable in a 

wide class of state estimation problems. 

6. Conclusions 

A least-squares state estimation algorithm was derived for a general stochastic 

system with l) system nonlinearity; 2) a jump parameter and 3) state-dependent 

observation noise. The performance of the algorithm was examined by numerical 

computations. Because of limited space, we cannot show all the results of com

puter simulation. It should be reported, however, that for each case, the proposed 

algorithm was shown to be effective. 
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