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Abstract 

Mastic deadner is widely used for the vibration reduction of thin plates and beams 
because of its easy treatment and low cost. In this paper, the damping capacity of 
the mastic deadner is investigated theoretically and experimentally. The vibrations 
of a beam and a plate covered with the mastic deadner under an external exciting 
force were analyzed by making use of an eigenfunction expansion method. Experiments 
with the beams and the plates were carried out, and the relation between the vibration 
amplitude and the thickness of the mastic deadner was investigated. From the theo
retical and the experimental results, the foliowing conclusions were obtained. The 
vibration amplitudes at the natural frequencies are remarkably decreased by the mastic 
deadner. The loss factor of the plate covered with the mastic deadner is proportional 
to the square of the ratio of the thickness of the mastic deadner to that of the basic 
beam and plate. The vibration amplitude at the natural frequency is inversely pro
portional to the square of the thickness ratio. 

1. Introduction 

Machines which radiate sound are in many cases covered with thin metal plates 

in order to reduce the noise. However, the plates become new noise sources due to 
their own resonance and radiation properties. In order to reduce the noise generated 

by the plate. mastic .deadner is widely used because of its easy treatment and low 
cost. The vibration damping capacity of the mastic deadner has been investigated 
by many researchers1

-
3>. Most of them discussed it from the viewpoint of the 

decay rate. However, it is desired to know how much the vibration is reduced by 
the mastic deadner, and the relation between the amplitude of the vibration and the 

thickness of the mastic deadner. In this study, the vibrations of beams and plates 
covered with the mastic deadner under an external force were analyzed theoretically 

by making use of an eigenfunction expansion method. Those vibrations were also 
investigated experimentally. The beams and plates were excited by an electro
magnetic exciter with a frequency sweep, and their vibration accelerations were 

measured. On the basis of the theoretical and the experimental investigation, the 
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vibration damping capacity of the mastic deadner was discussed in relation with the 

avibrtion amplitude. 

2. Theoretical Analysis 

2.1 Bending rigidities and loss factors of a layered beam and plate 

In order to analyze the vibrations of a thin beam and a plate covered with a 

damping layer, their bending rigidities and damping loss factors must be determined. 

When the thickness of the plate is small enough, compared with the wave length of 

the flexural vibration, and the loss factor of the basic plate is negligible, the bending 

rigidity and the loss factor of the layered plate shown in Fig. 1 are given by3
> 

( 1 ) 

1 +2a(2E+3e2 +2E3)+a2
,

4 

tc= l+aE 

a 3+6,+4E2+2aE8+a2
,' 

7J= l+a 1+2a(U+3e2+U8)+a2r 1/z 
(2) 

where a=E2/E1, b=pz/Pi, ,=h2/h1, 

E: Young's modulus, p: density, h: thickness and 1/; loss factor The suffixes 1 and 

2 denote the plate and the damping layer, respectively. 

In the case of the beam, the bending rigidity is 

where B1 

The complex bending rigidities of the layered plate and beam are given by 

D*=D(I+i11), 

B*=B(l+h). 

2.2 Vibration of a layered beam 

(3) 

(4) 

(5) 

The lateral vibration of a beam with the internal damping under an external 

exciting force will be analyzed in this section. The differential equation of the 

basic beam or plate 

Fig. 1. Layered plate. 
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deflection curve becomes 

(6) 

where w: deflection, A: cross sectional area, and P: external force. When the 
external force is harmonic and acts on a point (x0), Pis given by Dirac's delta function 
as 

(7) 

The deflection w is assumed to be given in the form of a series of the eigen
functions w.,'s corresponding to the normal modes of vibration as 

Substituting Eqs. (7) and (8) into Eq. (6), we obtain 

B* d'(2JC,,.w,,.) A z=c ( ) dx' pw ~ ,,.w.,=pa{J x-x0 • 

The eigenfunction satisfies the following homogeneous differential equation 

B dw,,.' A z -0 dx' - pw,,. w,,.- , 

where w., is the natural frequency. 
Substitution of Eq. (10) into Eq. (9) gives 

where w,,. *2=w,,.2{1 +i11). 

The eigenfunctions satisfy the following orthogonal relation. 

J:w,,.w,.dx=O for m~n. 

where/: length of the beam. Application of Eqs. (11) and (12) gives 

ApC,,.(w,,. *2-w,,.2)Jw,,.2dx=Paw,,.(xo), 

Paw,..(xa) et .. t 

Ap(w,,. *2-w2)Jw,,.2dx · 

Then, the deflection is obtained by substituting Eq. (13) into Eq. (8) as 

w(x)-~ Paw,,.(x)w,,.(x0) etwt 
- ";;" Ap(w,,. *2-w2)Jw,,. 2dx · 

(8) 

(9) 

(10) 

(11) 

{12) 

{13) 

(14) 

In this study, a cantilever has been considered as an example because of its 
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easy treatment in the experiment. It is well known that the eigenfunctions of the 

cantilever are given by 

w,.. =cosh(k,..x)-cos(k.,x)-a,,. {sinh(k,..x)-sin(k.,x)}, 

cosh(lk,,.) +cos(lk,..) 
a,,. sinh(/k,,.)+sin(/k.,) · 

where k,.. is determined from the boundary condition as 

cos(/k.,)cosh(/k,,.)= -1. 

The natural frequency is given by 

w,..=k,,.2./B/Ap. 

(15) 

(16) 

The integral part of Eq. (14) can be easily calculated'>. When the right end (x=l) 

of the beam is free, 

(17) 

2.3 Vibration of a layered plate 
The equation of the motion of the thin plate with the internal damping under 

an external force becomes 

(18) 

a2 a2 
where /72 = axz + ay2 and w: deflection. 

When the external force Pacts on a point (x0, y 0), Pis given by Dirac's delta function 
as 

(19) 

The deflection w is given in the form of a series of the eigenfunctions as 

w= ~~C,,.,.w,,.,.e1
"'

1
• (20) 

m n 

The eigenfunction w,..,. satisfies 

(21) 

where w,..,. is the natural frequency. 

The eigenfunctions also satisfy the orthogonal relation as 

for m, n ¾ i,J. (22) 
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Substituting Eqs. (19) to (22) into Eq. (18), the deflection w is obtained as 

(23) 

where a>,,.,.*2 =a>,,.,.2 (l+i'1J). 

In the case of a rectangular plate (01 x b1) with simply supported edges, the 
eigenfunction and the natural frequency are given by 

. mnx . nny 
w,,.,.=s1n-- sm-b-, 

01 1 

3. Results of Experiments and Numerical calculations 

(24) 

(25) 

We carried out the experiments with cantilevers and rectangular plates. The 
experimental system is shown in Fig. 2. In this study, the mastic deadner "Sadanok 
FK-100" was used. It was composed of asphalt, synthetic resin, rubber and asbest. 
The cantilevers have a length I= 308 mm, a width b1 = 19 mm and thicknesses h1 =3 

mm and 4.5 mm. The rectangular plates have dimensions 01=405 mm, b1=308 mm 
and h1 =0.8 mm, 1.2 mm, and 1.6 mm. 

In the experiment of the plate, the boundary was clamped, though it was simply 
supported in the theoretical analysis. The purpose of this study is to investigate 

the damping capacity of the mastic deadner, and the boundary condition does not 
have much influence on the damping characteristics. Then, the plate was clamped 
for easy treatment. 

.------1 exciter 

------ -----, 
1 
1 ==~--, 
I 
I 

: L.....C..--'1,-:::....C.-' 
I 
I 
I 

.----~~ ! ~x---Y_.__~ 
~----' \ recorder 

power 
om ifier 

requency 
enerotor 

Fig. 2. Measuring system. 
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counter 
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Impulse shocks were given to the beams and the plates, and the vibration 
acceleration was measured by an accelerometer. The loss factor at each natural 
frequency was obtained by making use of a frequency filter. Figure 3 shows the 

relation between the loss factor 'f/ and the thickness ratio (3. From this figure, the 

relation can be denoted by 

(26) 

This figure is composed from the data of the lowest modes. The loss factors of the 
higher modes were slightly larger than those of the lowest modes. However, since 
this difference was negligible, the loss factor in the numerical calculation was deter
mined from Eq. (26). 

Young's modulus of the mastic deadner was determined by the comparison of 
the natural frequencies obtained from the experimental and the theoretical calculation 
as 

(27) 

Figure 4 shows the vibration acceleration of the cantilever (h1 = 3 mm), where 
a harmonic force acts on the free end of the beam. The accelerometer is also located 
at the free end of the beam. Figure 5 shows the calculated results. 

The comparison of these two figures shows that the experimental results have 
smaller peaks than the calculated ones. This is because of the sound radiation loss 
and the damping at the clamped edges. However, the tendencies of the vibration 
reduction due to the mastic deadner are in good agreement. The vibrations at 
natural frequencies decrease remarkably with an increase in the thickness of the 
mastic deadner. However, the vibrations at the non-natural frequencies do not 

X 10
2 

5 ,------------------~~ 

I:'"' 

4 

3 

2 

• beam ( h=3.0mm) 
0 beam ( h=4.5mm) 
• plate ( h•O.Smm) 
A plate ( h• I. 2mm) 
c plate ( h= 1.6mm) 

Fig. 3. Relation between the loss factor and the thickness ratio. 
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I 

0 500 1000 
Frequency ( Hz) 

Fig. 4. Experimental results of the vibration acceleration of 
the layered cantilever (h1=3 mm). 

500 1000 
Frequency ( Hz) 

Fig. 5. Theoretical results of the vibration acceleration of 
the layered cantilever (h1=3 mm). 

7 

becrease. Since the vibration amplitudes at the natural frequencies are larger than 
those at the non-natural frequencies by more than 30 dB, as shown in Figs. 4 and 
5, we can conclude that the mastic deadner decreases the vibration amplitude very 
effectively. The experiments with other cantilevers had results similar to those 

mentioned above. 
The experiments with the plates were carried out. A typical result with a plate 

(h1= 1.6 mm) is shown in Fig. 6. The calculated results are shown in Fig. 7. The 
experimental results which show the decrease in vibration amplitude as a result of 
the mastic deadner is smaller than those of the theoretical results. This is attributed 
to the sound radiation loss'>. 

Finally, we will discuss the approximate relation between the amplitude of the 
vibration and the thicknesses of the beam and the plate. In the case of the beam, 
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0 200 300 
Frequency ( Hz) 

Fig. 6. Experimental results of the vibration acceleration of 
the layered plate (h1 = 1.6 mm). 

0 200 300 
Frequency (Hz) 

Fig. 7. Theoretical results of the vibration acceleration of 
the layered plate (h1 = 1.6 mm). 

when 71<(1 and the time term of the external force is exp{fo>mt), Eq. (14) becomes 

The complex natural frequency is given by 

Substitution of Eq. (29) into Eq. (28) gives 

(28) 

(29) 

(31) 

Then, the following approximate relation between the deflection and the loss factor 
is given as 
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w(x) oc 1/11. (31) 

Thus, the amplitude of the vibration is inversely proportional to the loss factor. 
The loss factor is proportional to the square of the thickness ratio. Therefore, we 
can say that the amplitude of the vibration is inversely proportional to the square 

of the thickness of the mastic deadner as 

w(x) oc 1/b2
2 • (32) 

For example, the amplitude of a beam with S= l is 1/4 of that with /3=2. This 
decreasing level is 12 dB. This agrees well with the experimental and the theoretically 

calculated results shown in Figs. 3 and 4. 
In the case of the plate, we can have the same theoretical discussion that the 

vibration amplitude is inversely proportional to the square of the thickness of the 
mastic deadner. However, the practical vibration is not reduced so much, because 
the sound radiation loss is considerably large compared with the internal loss. 

4. Conclusions 

The damping capacity of the mastic deadner depends on many factors, such as 

temperature, composing materials, condition of drying and others. However, the 
relation between the vibration amplitude and the thickness of the mastic deadner is 
the most important for practical usage. With respect to this, theoretical and experi

mental investigations were carried out, and the following general tendencies were 

obtained. 
I) The vibrations of the beam and the plate are dominated by the vibrations of 

the normal modes. The vibrations at the natural frequencies are remarkably 
decreased by the mastic deadner, though the vibrations at the non-natural 
frequencies are not. 

2) The loss factors of the beam and plate covered with the mastic deadner are 
proportional to the square of the thickness ratio of the mastic deadner and the 
basic beam and plate. 

3) In the case of the beam, the vibrational amplitudes at the natural frequencies 
are inversely proportional to the square of the thickness of the mastic deadner. 
That is to say, the vibration amplitude is reduced to one-fourth by doubling 
the thickness of the mastic deadner. However, the vibration of the plate is not 
reduced so much, because of the sound radiation loss. 
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