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Abstract 

The design method proposed here is a frequency-domain method and uses a certain 
class of generalized Gershgorin bands mapped onto the gain-phase plane, which are 
referred to as the generalized Gershgorin pseudo-bands. The main advantages are that 
the generalized Gershgorin pseudo-bands have the same width for all loops, that the 
width of the pseudo-bands is invariant under the changes of the diagonal compensator 
and under the changes of the unit system at outputs and inputs, that no diagonal domi­
nance is required at high frequencies, and that a quantitative guide line for pseudo­
diagonalization is given based on the interaction index which is a satisfactory scalor 
measure of the cross interaction. 

1. Introduction 

During the last ten years, the INA (inverse Nyquist array) method of 

Rosenbrock19' •20> has received much attention from engineers as a practical means 
for the computer-aided design of multivariable control systems. One of the dis­
tinctive features of the INA method is the use of the Gershgorin bands. Rosenbrock 
showed that each Gershgorin band includes the inverse polar-plot of the frequency 
response from one input to the corresponding output, if the controllers of the other 
loops satisfy certain constraints. Later, this result was generalized, and it was 
shown that there are many other bands which have properties parallel to the Gersh­
gorin bands2>. In the same paper, it was also shown that the bands obtained from 
the maximum eigenvalue of a certain nonnegative matrix (referred to as the inter­
action index in the following), have favorable properties which enable us to apply 
Nichols' chart technique and work out a balanced design based on the ordinary (i.e. 
not inverse) transfer matrix. In addition, we can show that our interaction index 
is a reasonable scalor measure of the cross interaction among loops. The purpose 
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of this paper is to present a design method which takes advantage of these new 
knowledges. 

2. Bounds for the Transfer Functions of Multivariable 
Feedback Systems 

Consider the n-input n-output system of Fig. 1. Here, r, e and y are n-vectors 
representing the reference, error and controlled variables, respectively. P is the 
permutation matrix corresponding to the renumbering of inputs to the plant, 
G(s)=G'(s)P is the transfer matrix of the plant after the renumbering, L(s) is the 
precompensator to make Q(s)=G(s)L(s) nearly diagonal and F(s)=diag(/j(s)) is 

the diagonal main controller. (For the details of this structure, refer to Rosen­
brock.11>-20>) The .d=diag(OJ) is placed in the feedback path for the convenience 

of treating such situations where some loops are closed and the others open. Thus, 
the OJ takes the value I or 0, and .d=I if the system is in normal operation. 

Main Controlled 
Controller Precompenaat or Object 

~-------~~~~~~7~=~~ 

Fig. 1. Structure of the control system 

Now, let hhlQF) be the transfer function from eJ to YJ when 01: are 

01= ... ==lJJ-1=1, tJJ=O, OJ+1= ... =lJ,.=l (I) 

In other words, hJCsl QF) is the open-loop transfer function of the j-th loop when the 
other loops are closed. If the off-diagonal elements q1,1(s) (k-¥=/) of Q(s) are all zero, 

hJCslQF) is equal to fh)qJi(s). When q1,1(s)-¥=0 (k-¥=1), the difference of hJCslQF) 

and jj(s)qn(s) is bounded by the size of lq1:1(s)I as given in the following. Define 
the interaction matrix C(slZ)=(cJhlZ)) of a square transfer matrix Z(s) by 

c,hlZ)=O, cJhlZ)= lzJh)/z1,1,(s)I (j-¥=k) ( 2) 

Define the interaction index l(slZ) of Z(s) as the maximum eigenvalue of C(s!Z).t 
Then, the next theorem holds true. 

Theorem 1: The difference of h.,(slQF) andfjs)qJJCs) is bounded as 

lhJiwlQF)-fj(iw)qJJiw)I < l(iwlQ)IJJCiw)qJJ(iw)I if l>O ( 3) 
= 0 if l=O 

t A nonnegative matrix (i.e. a matrix with nonnegative elements) has a nonnegative eigenvalue 
which is larger than, or equal to any other eigenvalue in magnitude.6> This nonnegative eigen­
value is called the maximum eigenvalue. 
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if the next inequalities are satisfied fork= 1, .... , j-1, j+ 1, ... , n. 

(4) 

The above theorem is a special case of the Theorem 1 of Araki & Nwokah2>. 

Evidently, (3) holds true for allj if (4) is satisfied for all k. The inequalities (3) and 

(4) can be rewritten as, when ).(iw/Q)*O, 

lhiiwlQF)-f,(iw)q1JOw)I < ).(iwlQ) 
1/,(iw)q,i(iw}I 

(3') 

( 4') 

respectively. Based on the above expression, we can restate Theorem 1 as follows: 

"The relative deviation of h1(iwl QF) from f,(iw)q"(iw) is less than ).(iwl Q) if the 

relative distance of fi:(iw)qkiiw) to the point (-1, 0) is larger than ).(iwl Q)." Here, 

we should note that the right-hand sides of (3') and (4') do not depend on F(s), i.e. 

the assumption and the result of Theorem 1 are independent of the diagonal controller 

F(s) so long as we consider the relative quantities. This property turns out to be 

very useful when we carry out our design procedure on the gain-phase plane. 

Before proceeding to the study of the graphical implication of the theorem, let 

us clarify an important property of the interaction index. From (2), we obtain 

C(slQB)=C(slQ) 

C(slBQ)=B· C(sl Q) • B-1 

(5) 

(6) 

for a. diagonal matrix B with positive diagonal elements. Since the interaction 

indices of Q, QB and BQ are the maximum eigenvalues of C(sl Q), C(sl QB) and 

C(slBQ), respectively, we obtain 

(7) 

Thus, we can conclude that the interaction index is invariant under the multiplication 

of a diagonal matrix. This implies that the interaction index ).(s I Q) is invariant 

under scaling at the output and in.put .of Q(s). t The above property .of the inter­

action index is also the main reason for the fact that the right-hand sides of (3') and 
(4') do not depend on the diagonal controller F(s). 

Now, let us study the graphical implications of the theorem. Let Di:(iw) be 

the disk with the center fliw)qkiiw) and the radius ).(iwlQ)lfliw)qu(iw)I on the 

complex plane. Also, let I' k be the band swept out by Dliw) when w changes from 

·-
t Scaling at the input implies multiplication of a diagonal matrix from the right, and scaling at 

the output implies that from the left. 
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-oo to +=. We refer to Dt(iw) and I' k as the k-th GG disk (generalized Gershgorin 

disk) and the k-th GG band (generalized Gershgorin band), respectively. As explained 

by Araki & Nwokah,2
> Theorem 1 implies that the polar plot of hiiw!QF) lies inside 

the j-th GG band if the· GG bands of the other loops do not include the point ( -1, 

0). Here, let us consider the matter on the gain-phase plane (i.e. consider the log­

modulus plots). Let Dt(iw) be the image of Dk(iw) mapped on the gain-phase plane. 

It can be easily derived that the boundary of Dt(iw) is given by 

(=20 loglfhw)qkt(iw)I +20 log I 1 +J.(iwl Q) exp (i0)I 0<0<2ir ( 8) 

~=arg[ft(iw)qkliw)]+arg[I +J.(iwl Q) exp (i<J)] 0<0<2ir ( 9) 

where ( and ~ are the log-modulus gain (vertical coordinate) and the phase angle 

(horizontal coordinate), respectively. For J.(iwl Q)< 1, (8) and (9) describe a closed 

curve surrounding the point (20 loglfiiw)qkk(iw)I, arg[h(iw)qkiiw)]). The Diiw) 

is the inside of that curve (Fig. 2a). For J.(iwl Q)::::::I, (8) and (9) describe a curve 

(not closed) passing above the point (20 Ioglfk(iw)qkiiw)I, arg[fliw)qkiiw)]). The 

Dk(iw) is the lower-side of that curve (Fig. 2b). Note that the shape of Diiw) is 

determined completely by J.(iwl Q) and is the same for all k. Also note that the 

-2 
-1ao·-m·-1 - - - - - - - - - - - -, - - -10 o -· 

Fig. 2. Size of the GG Pseudo-disk 
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change of f,.(iw) only causes parallel displacement of the Diiw) of the corresponding 

loop, and does not influence the .DJCjw)'s of the other loops. Now, let i\ be the 

territory swept out by .D,.(iw) when the frequency w changes from -oo to +oo. 

We refer to .D,.(iw) and I',. as the GG pseudo-disk (generalized Gershgorin pseudo-disk) 

and GG pseudo-band (generalized Gershgorin pseudo-band), respectively. Just like 

the case of the polar plots, we can obtain the following result from Theorem 1: 

"The log-modulus plot of hJ(iwl QF) lies inside the j-th GG pseudo-band if the GG 

pseudo-bands of the other loops do not include the point (OdB, - 180°)." 

3. Stability and Generalized Diagonal Dominance 

For simplicity, let us assume that Q(s)F(s) has no unstable poles. t Define the 

lower absolute-value matrix A(slZ)=(a,hlZ)) of a square transfer matrix Z(s) by 

Then, we can restate the stability theorem of Araki & Nwokah2> as follows. 

Theorem 2: The system of Fig. 1 is stable for any ,4 if 

(a) the Nyquist locus of fj(s)q,JCs) does not encircle (-1, 0) for j= 1, ... , n, and 

(b) the lower absolute-value matrix A(s I I+ QF) of the return difference matrix 

I+QFis an M-matrix everywhere on the Nyquist contour.tt 

The above theorem can be related to the GG bands and GG pseudo-bands by 
the next corollary. 

Corollary 1: The system of Fig. 1 is stable for any A, if the conditions (a) and 
(b') are satisfied where 

(b') each GG band does not include the point ( -1, 0) (, equivalently, each GG 

pseudo-band does not include the point (OdB, -180°)); 

[Proof] We have only to prove that (b') is a sufficient condition for (b). The 

condition (b') implies that (4) is satisfied everywhere on the Nyquist contour for 

all k. From (4) we obtain, for the off-diagonal elements, 

c ,.(iwlI+QF)J lf,.(iw)q,,.(iw)I 
' = ll+J,.(iw)qH(iw)I 

lh(iw)q,,.(iw)I 
< l(iwlQ)IJ,.(iw)q,.,.(iw)I 

As for the diagonal elements of C(sll+QF), we have 

c,,.(iwlQ) 
.t(iwlQ) 

j-:t=k (11) 

t When Q(s)F(s) has unstable poles, the conclusion of Theorem 2 holds true for J=I if (a) is 
replaced by "the total number of anti-clockwise encirclements of the Nyquist locus around 
( -1, 0) is equal to the number of the unstable poles." 

tt A square matrix is said to be an M-matrix if the off-diagonal elements are nonpositive and the 
principale minors are positive. 
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cJJ(iwll+QF)=cJJ(iwlQ)/..l(iwlQ)=O (12) 

by definition. From (11) and (12) we can conclude that the maximum eigenvalue 

of C(iwll+QF) is less than the 1/..l(iw!Q) times of the maximum eigenvalue of 

C(iw!Q).8> On the other hand, ..l(iwlQ) is nothing but the maximum eigenvalue of 

C(iwlQ). Hence, the maximum eigenvalue of C(iwll+QF) is less than 1. This 

implies that 1-C(iwll+QF) is an M-matrix.'> Here, note that the matrix A(sl 

I+QF) is related to the matrix C(sll+QF) by 

A(sll+QF)=[l-C(sll+QF)] diag (I l+jj(s)q,h)I) (13) 

Therefore, the matrix A(sll+QF) is also an M-matrix on the Nyquist contour. Thus 

we obtained (b). [Q.E.D.] 

Now, let us consider the relation of the above stability conditions to the diagonal 

dominance condition of Rosenbrock. A square transfer matrix Z(s) is said to be 

diagonally row dominant at s, if 

j=l, ... , n (14) 

Diagonal column dominance is defined in parallel.20> It can be easily shown from the 

properties of M-matrices that A(sJZ) is an M-matrix if Z(s) is diagonally row or 

column dominant.41 Thus, Rosenbrock's stability condition18> can be viewed as 

a corollary to Theorem 2. 

Corollary 2 (Rosenbrock): The system of Fig. 1 is stable for any A if the 

conditions (a) and (b 6
) are satisfied where 

(b") the return difference matrix I +Q(s)F(s) is diagonally row or column domi­

nant on the Nyquist contour. 

Considering the above relation, we say that Z(s) is G-diagonally dominant 

(diagonally dominant in the generalized sense) at s, if A(sJZ) is an M-matrix.t The 

G-diagonal dominance has 3 invariance properties: i.e. it is invariant under transpose 

operation, invariant under multiplication of a diagonal transfer matrix, and invariant 

under the change of the unit system (i.e. scaling) at the outputs and inputs. t t How­

ever, from the viewpoint of the feedback system design, it has the drawback that 

the condition is not loopwise and not graphical. This fact forces us to use Corollary 

1 or 2 instead of Theorem 2 in the design procedure. Both corollaries use sufficient 

conditions for the G-diagonal dominance, and neither is implied by the other. In 

t This terminology is also supported by the relation of the Gershgorin's theorem19> and the 
Fan's theorem.5> 

t t The second and the third are the two different interpretations of the same mathematical fact. 
These invariance properties can be easily derived from the properties of the M-amtrices. o 
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this respect, the two corollaries are even. However, Corollary 1 has an advantage 
over Corollary 2 in that the condition (b') succeeds the invariance properties of the 
G-diagonal dominance, whereas the condition (b") does not. These invariant pro­

perties are the origin of the nice properties of the GG pseudo-bands described in the 
last section. 

4. Cross Interaction of the Closed-Loop System 

In multivariable control systems, it is often required that a change of one refer­

ence does not heavily influence the uncorresponding outputs; i.e. the "cross inter­
action of the closed-loop system" is required to be small, In this section, we show 
that the interaction index is a suitable measure for the cross interaction in the above 
sense, too. Then, we study the relation of the closed-loop and open-loop interaction 
indices. 

Denote the transfer matrix of the closed-loop system of Fig. 1 for ,:f-I by 
H(s); i.e. 

H(s)=(I +Q(s)F(s))-1 Q(s)F(s) (15) 

Consider the situation where each output y 1 is expected to be mov.ed within 
- Y1<Ji;;;;;; Y1, and the operator manipulates the reference signals assuming that the 
system is completely decoupled (i.e. that the change of each reference signal causes 
only a change of the corresponding output). Then, in order to obtain the maximum 

chi,mge y1= ± Y, at the j-th output, the j-th reference signal should be set as 

(16) 

Thus, the maximum error Jyk,maz at the k-th output caused by the operation of 
other reference signals turns out to be 

(17) 

Hence the relative error e1c defined as the ratio of the maximum error to the nominal 
maximum change is given by 

(18) 

In the above, we considered only stepwise inputs. Evidently, we can extend this 
consideration to the case of sinusoidal inputs, and show that the relative error eiiw) 

at the frequency w is given by 

et(iw)= i} I h1ciiwt\.IL 
Ja.1;J# hJJ(iw) Y1c 

(19) 
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where Y1 is the nominal maximal amplitude of the sinusoidal output. t Taking 

the minimax point or view, let us measure the degree of the deterioration of the 

control performance caused by the cross interaction with the maximum relative error 

em,....(iw) given by 

e,,.a.,,(iw)=max(e1(iw), ... , e,.(iw)) (20) 

Now, for the purpose of theoretical development, let us tentatively assume that we 

can choose Y1 arbitrarily. Then, we would naturally ask: which set of Yi, ... , Y,. 
makes e,,....,,(iw) minimum and how large is that minimum value. From (19) and 

(20), and by the definition (2) of the interaction matrix, we obtain 

(21) 

where Ct.,(s\H) are the elements of the interaction matrix of H(s). Since cthw/H)"2:;.0, 

we can apply the theory of nonnegative matrices6> and conclude that the minimum 

value of e,,.a.,,(iw) is the maximum eigenvalue of C(iw\H) and is attained when (Y1, 

... , Y,.) is the corresponding eigenvector. Here, the maximum eigenvalue of C(iw\ H) 

is nothing but the interaction index of H(iw). Thus, we have shown that the inter­

action index of the closed-loop transfer matrix H(iw) gives the minimum value of 

the maximum relative error e,,.a.,,(iw) at the outputs. Here, we must note that we can 

not set Y1, ... , Y,. at our will, and so the above minimum is not attained in most 

practical cases. But the interaction index remains as a useful measure of the cross 

interaction in the sense that a small interaction index is a "necessary condition" for 

a small cross interaction. 

Now, let us study the relation of the closed-loop interaction index ..t(iw\ H) to 

the open-loop interaction index ..t(iw\ Q). When fhw)qJJ(iw) are small enough 

compared with 1, it is indicated by (15) that ..t(iw\H)~..t(iw\Q). Whenf,(iw)q1.,(iw) 

are large enough, we can expect that the cross interaction is suppressed by the "high 

gain feedback" effect and so ..t(iw\ H) becomes very small. But the relation of 

..t(iw\ H) and ..t(iw\ Q) for the intermediate values of f,(iw)qJJ(iw) is not simple. To 

clarify this point, we made a numerical study, and the results are shown in Fig. 3 for 

the case of n=4. In this study, the same loop gain is chosen for all loops; i.e. 

\J;.(iw)qu(iw) I= ... = \f,.(iw)q,.,.(iw) I ~K(iw) (22) 

In Fig. 3a, each pair of lines gives the range of the values of the closed-loop index 

..t(iw\ H) obtained from 3000 examples with the values of K(iw) and ..t(iwl Q) as in-

t Sinusoidal outputs would not be required in most situations. But the value of .k(iw) is im­
portant for the transient interaction; i.e. a large ,;k(iw) over a certain range means a strong 
transient interaction. 



36 

1.5 

A(iwjH) 

0.5 

o.o 
-20 

-20 

Mituhiko ARAKI, Koichiro YAMAMOTO and Bunji KONDO 
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Fig. 3. Relation of the closed-loop and open-loop interaction indices 
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dicated. The off-diagonal elements are chesen at random. The phase angles of 
fliw)q"(iw)are chosen at random in the region which avoids the inside of the Mp= 1.3 

curve and also avoid the part ~>180° and lfhw)q1hw)l>l. In Fig. 3b, only the 
maximum values of the closed loop index ;,(iw I H) are shown. From these figures, 
we can estimate how small the open-loop interaction index should be made for the 
intermediate range of frequencies at which l.fi(iw)q1J(iw)J is near 1. 

5. Design Method 

Here, we propose our design method; i.e. explain how to determine the com­
pensators P, L(s) and F(s). The roles of these compensators are as described in §2. 

We determine these compensators in this order. Our basic policy is trial-and-error 
so that the earlier steps should be repeated whenever it is felt necessary. For the 
purpose of illustration and comparison, we use the gas-turbine example which was 
studied by McMorran18> using the INA method. For this system, the transfer 
matrix G'(s) is 

G'(s)=-l-[14.96(s+l.7) (s+lO0) 
p(s) 85.2(s+ 1.44) (s+ 100) 

95150(s+ 1.898) (s+ 10)] 
124000(s+2.037) (s+ 10) 

p(s)=(s2+3.225s+2.525) (s+ 10) (s+ 100) 

(23) 

(24) 

The best method to determine P is to make use of any physical knowledge and 
to choose the most closely coupled input-output pairs. If such cannot be done, 
compute the interaction index A(iw I G' P) for all possible P, and choose the P which 
gives a small A(iw I G' P) as average. For our example, we have two possibilities for P: 

(25) 

The interaction indices of G' P 1 and G' P2 are as shown in Fig. 4. Based on this 
information we choose P2• t 

To determine L(s), we can use the variety of the pseudo-diagonalization methods 
proposed before. Above all, the successive cancelling using unimodular matrices20> •23>, 

the modified Hawkins' method20>, the Bode diagram method17>, and the integral 
measure methodm can be used in our context without any modification because they 

generally decrease the ratio of the off-diagonal elements to the diagonal elements. 
To apply the CARDIAD method20 and the function minimization method0> in our 
context, we must replace the diagonal dominance condition by a condition on the 

t When n=2, the interaction index of Z(s) is given by .l(slZ)= lz12(s)z21(s)/z11(s)zds)l 112• Hence, 
we have .l(slG'P1)=l/.l(slG'P2). Thus, we actually need either .l(slG'P1) or .l(slG'P2). When 
n~J, the situation is not so simple. 
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2.0 

r 1.5 
1.0 

). 

10 100 1000 
w---

Fig. 4. Interaction index of the controlled object 

interaction index. For the gas-turbine example, we applied the Bode diagram 

method17
> and obtained 

L(s)=[ _ 1450(:+ 12)/(s+ 100) 
-1 ] 

63 lO(s+ 12)/(s+ 100) 
(26) 

With this L(s), ,l,(iw/Q)<0.1 is realized for lO<w<lOOO. 

To design f,(s), draw the GG pseudo-band on the gain-phase plane, regard the 

upper boundary of the GG pseudo-band as the frequency response of the controlled 

object, and design each f,(s) applying the classical methods8
'•

18> of cascade com­

pensation. In this step, the properties of the GG pseudo-bands described in §2 

become important. Note that the above procedure usually results in assigning 

conservative (i.e. smaller) values to the gain constants offj(s). In order to obtain 

quick settling, it is recommended to increase the gain constants gradually checking 

the log-modulus plots of h,(iwl QF). If we keep the point (OdB, -180) outside the 

GG pseudo-bands in the last adjustment, the resulting system possesses integrity in 

the sense that stability is guaranteed for any J. The GG pseudo-bands of the 

example are shown in Fig. 5. From these figures, we could easily determine F(s) as 

F(s)=diag (0.18, 0.0096 (1 + O,;s )) (27) 

The step responses of the closed-loop system obtained by our design procedure 
are shown in Fig. 6 together with those of the system designed by McMorran. The 
two results do not differ very much except that our design is a little more successful 

in suppressing the interaction from r1 to J2. This seems to have resulted from the 
fact that we concentrated our pseudo-diagonalizing efforts on the intermediate 

frequency range (see below). The main advantage of our procedure is that we can 

reach this result much easier with a clearer guideline; i.e. we do not need to scale the 

inputs and outputs in order to balance G(s) because our GG pseudo-bands 
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Fig. 5. The GG pseudo-bands of the gas-turbine example after 
pseudo-diagonalizing compensation by L(s) 

automatically have the same width for all loops. Also, we need not care about the 

interaction in the high frequency range (see below), and we know which frequencies 

our pseudo-diagonalizing efforts must be concentrated upon and how much of 

pseudo-diagonalization should be attained (see below). 
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Fig. 6. The responses of the closed-loop system 
-; our design, -------: McMorran's design 

Now, let us consider the problem: "How small should the interaction index 

,t(iwl Q) be made at each frequency?". As explained in §2, the GG pseudo-disk 

covers the lower side of the curve given in Fig. 2b when ,t(iw IQ)> 1. Hence, if 

,t(iwl Q)~l at low frequencies, it becomes impossible to increase the loop gain keeping 

the point (OdB, -180 °) outside the GG pseudo-bands. Therefore, the interaction 

index ,t(iw IQ) must be made less than 1 in the low frequency range [O, w0]. Here, 

the upper bound frequency w0 is the frequency at which fj(iw)qJJ(iw) is expected to 

become sufficiently small and can be estimated as follows; i.e. when the main com­

pensator is expected to be made up of the P, PI or phase-lag element w0 can be 

chosen as the maximum w at which arg[q"(iw)]::::::: - I 80 °. When the main com­

pensator is expected to include the D or phase-lead element w0 should be chosen a 

few times larger than the above. For the high frequency range, we need not pay 
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too much attention to the interaction index ,l(iwj Q) because Jj(iw)qJJ(iw) becomes 
small in that frequency range and, therefore, the GG pseudo-bands lie much below 
the point (OdB, -180°). 

The above reqirement is sufficient when the cross interaction of the closed-loop 
system does not matter; i.e. in the case of constant control systems. When the 
cross interaction of the closed-loop system must be made small, as is the case with 
the follow-up control systems, it is necessary to make the open-loop interaction 
index considerably small in the range of frequencies at which ijj(iw)q1J(iw)I become 
near 1. This is because the closed-loop interaction index ,l(iwjH) can become much 
larger than the open-loop interaction index ,l(iwl Q) at these frequencies (see §4). 

Therefore, the efforts of pseudo-diagonalization must be mainly concentrated on 
the intermediate frequency range [wo', w0] in which 1.fJCiw)qJJ(iw)I becomes near 1. 
Figures 3a and 3b give necessary information concerning about how small the open­
loop interaction index should be made in this frequency range. t In the design of 
L(s) for the gas-turbine example, the intermediate frequency was estimated as 
[10,1000] and ,l(iwjQ)<0.l was realized there as described above. 

6. Remarks 

The theoretical basis of the design method proposed here is the theorem of Araki 
& Nwokah.2> Further research has been reported concerning this theorem.m, 15> 

If the design of the main controller .f Js) is carried out based on the Mp=a (a is a 
constant usually around 1.3 ) criterion, the width of the GG pseudo-bands can be 
reduced as shown by Yamamoto et al.24> The interaction index was already used 
by Araki & Nwokah2> and Nwokah14>. Its implication given in §4 is due to Araki1>. 
The interaction functionals of Gray & Taylor7> have close relation to the consideration 
given in §4. To be exact, by considering the mini-max problem we constructed a 
scalor measure, whereas Gray & Taylor used the vector quantities to give more 
specific information for each loop in a graphical form. The use of Nichols' chart 
for a multivariable design is also proposed by Pak et al. m and Leininger11>. Further 
examples of the application of our method are reported by Araki et al. 3> and Shibata 
et at. 22> 

If we consider the fact that the GG pseudo-bands give the maximum range of 

the deviation of h1(iwl QF) fromjj(iw)q"(iw) caused by the off-diagonal terms of Q(s), 

and that the influences of the off-diagonal terms, which are vector quantities, are 
seldom aligned in reality, we can expect, when n:::2:3, to reach a reasonable result by 
using narrower bands. Our previous experience tells us that the band which is 

t We usually use J,.(iw/Q)~0.2 as our guide line for the intermediate frequency range. 
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1/(n-1) times narrower can work fairly well, though this modification does not 

have any theoretical basis. 

7. Conclusion 

The main contribution of this paper is the proposal of a new design method. 

In this design method, the interaction index defined as the maximum eigenvalue of 

the interaction matrix (see (2)) plays a crucial roll. The interaction index is a suitable 

measure of the interaction in the sense that 

(i) (concerning closing loops) it gives the upper bound of the relative deviation 

of the open-loop transfer function seen from one input-output pair which is caused 

by the feedback at the other input-output pairs (see §2), and 

(ii) (concerning control operation) it gives the minimax optimal value of the 

relative error at the output caused by the operation of the uncorresponding reference 

signals (see §4). 

The interaction index possesses satisfactory invariance properties: i.e. it 

is invariant 

(iii) under the transpose operation, 

(iv) against cascading a diagonal transfer matrix, and 

(v) under the changes of the unit systems (i.e. scaling). 

The interaction index is related to the generalized diagonal dominance condition by 

the proposition: 

(vi) the transfer matrix Z(s) is diagonally dominant in the generalized sense, if 

and only if its interaction index is less than 1. 

The proposed design method succeeds Rosenbrock's idea as its principle policy, 

but differs from his method in that we use the generalized Gershgorin pseudo-bands 

of the ordinary transfer matrix instead of the Gershgorin bands of the inverse transfer 

matrix. Furthermore, we use the interaction index as the measure of pseudo­

diagonalization. The main advantages of our method are 

(a) that the generalized Gershgorin pseudo-bands are balanced (i.e. have the 

same width for all loops), 

(b) that no generalized diagonal dominance is required at high frequencies, and 

(c) that a quantitative guide line is given for the pseudo-diagonalization of the 

closed-loop system. 

The item (a) releases us from the work of balancing the transfer matrix. Actually, 

McMorran needed to apply a preliminary operation Ka in order to balance the 

transfer matrix13>. The dominance sharing operation by Leininger has a similar 

purpose10>. Our method solves this balancing problem by using the generalized 

Gershgorin bands which are inherently balanced. As indicated by Araki & N wokah, 2> 



A CAD Method of Multivariable Control Systems Using Generalized Gershgorin Bands 43 

it is possible to assign an arbitrary proportion to the widths of the bands among 

different loops. 
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