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Abstract 

The method of geometrical optics has been applied to the analysis of weak and 
short waves in one-dimensional deformed elastic materials [Tokuoka, J. Acoust. Soc. 
Am. 69, 66-69 (1981)]. Since the conditions on the amplitude of the wave required 
for the order estimation may be violated after a time interval, in general, the obtained 
result holds only for a small time interval. This note improves the above result, and 
obtains a partial differential equation of a parabolic type for the displacement which 
remains valid for a longer time interval. The difference of the distortion of the wave
form according to the original and the improved equations is discussed briefly for an 
example. 

In a recent paper0 Tokuoka analyzed, by use of the method of geometrical 
optics, the distortion of the waveform in one-dimensional inhomogeneous nonlinear 
elastic materials. We first summarize his result and show that, in general, it remains 

valid only for a small time interval. 
The amplitude a and the wavelength ..t of the wave are assumed to be small, 

respectively, in comparison with ..t and the distance/, such that a and the inhomoge
neities of the prestrain and the material property change considerably. Then the 
displacement u due to the wave motion can be expressed as 

u(X, t)=a(X, t)f[if,(X, t)], (1) 

where X denotes the co-ordinate in the reference configuration, t the time, f the 
waveform, and if, the eikonal. The wavenumber k, the frequency w, the wavelength 
..t, and the propagation velocity V are, respectively, defined by 

(2) 

The constitutive equation of the inhomogeneous nonlinear elastic material is 
given by 
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<1=<1(e, X), 
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(3) 

where <1 is the stress and e is the strain. Tokuoka estimated the order of the 
quantities concerned with a, k, w and the strain and the stress ahead of the wave. 

Here we lay down only the estimations for a and its derivatives 

0( 8a )- 2 8X -e, 

V 2 3 
0( .. )- e a--1-· 

O(a)= Ve2, 

(4) 

By applying the above estimations to the equation of motion, he obtained the pro
pagation velocity and the amplitude equation: 

where 

V=(::r, 
cla f"..2 Tt=-aa+r u-, 

(5) 

(6) 

(7)* 

(8) 

P« is the mass density in the reference configuration, e0, /J 0' = 8/J /8e, /JO"= 82/J /8e2 are 
evaluated values ahead of the wave, r = 821/8¢2, and a /clt denotes the displacement 
time derivative defined by 

(9) 

In a special case where the prestrain is homogeneous and static, and the material 
is also homogeneous, we can put 

ip=kX-wt, (10) 

where k and w are constants. Then a vanishes and r becomes a constant. In this 
case the solution of (6) is given by 

a(0) 
a= 1-a(0)rf"t' (11) 

where we have assumed that 

a(X, 0)=a(0)>0 (12) 

• Expression of a given in the preceding paper1> is corrected here. 
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without loss of generality, and that a satisfies (4) at t=O. From (10) and (11) we 
can calculate 

a2a 2 2 f""t+a(O) r(2f"'f"' -J"f"")t 2 

ax2 =k a(O) r [1-a(O) r f" t]s (13) 

For t of an order smaller than or equal to l/V, by use of (4)1 we can estimate the 
right hand side of (13) as 

o( a2a ) = Ve2 0(/"") ax2 ;.2 t , (14) 

where we have also used the estimation O(r)= V/l2• Thus, we find that if f"" is a 

quantity of order I, (4)4 is fulfilled only for the time t of order el/V. Hence, the 
amplitude equation (6) and the solution (11) hold only for a time interval of an order 

smaller than elf V. 
Next, we return to the general case and derive an equation for u which remains 

valid for a longer time interval than the above. Henceforth, we regard a and u as 
functions of </J and t by transforming the independent variables X and t into </J and t. 

Note that the displacement time derivative is identical with the partial derivative, 
with respect to the time for such functions of </J and t. Taking the displacement 

time derivative of (1) and referring to (6) we have 

/Ju f" Tt=-au+ra u. 

Also, taking the second derivative of (1) with respect to </J we have 

u"=af" +2a'f' +a"f, 

(15) 

(16) 

where a prime denotes the differentiation with respect to¢. If a satisfies (4), we can 

estimate that 

(17) 

Neglecting the terms of the smaller order in (16), by use of (17) and substituting the 

result into (15), we obtain a partial differential equation of a parabolic type for u: 

/Ju " Tt=-au+ruu . (18) 

In general, the displacement u1 governed by (1) and (6) does not coincide with 
the displacement u2 governed by (18) for t >to, where we assume that they coincide 
at t=t0• It is apparent, however, that if u1 remains valid for a time, so does U2 also 
within an error of the same order, because (18) is derived from (1) and (6) by using 
the estimations (4) assumed in the process of derivation of (6). Furthermore, we 
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can show that (18) holds when the estimations, except (4), are fulfilled and when 

there exists a decomposition of u into f and a satisfying ( 4) at each instant. In other 
words, for (I 8) to hold, it is not required that a prescribed amplitude satisfies ( 4) for 

every t in a time interval. In fact, (18) is expressed in terms of u and the given 
functions a and r, and this fact means that the expression does not depend on the 
manner of the decomposition of u into a and f Thus, if the estimations, including 
(4), are satisfied at a time for an a, (18) remains valid at that time. 

To demonstrate the difference between U1 and U2, we consider again a special 
case in which a vanishes identically and r reduces to a constant, and we assume 
that u1 and u2 coincide at t=O. In this case, u1 is given by (I) and (11), and u2 is the 
solution of the equation: 

<JU " Tt=ruu. (19) 

Henceforth we assume that r>O. From (11) the absolute value of U1 at any fixed 

1.5~-------------------------, 

1.0 

0 

Fig. 1. Variation of displacement governed by original equations (I) and 
(6) for a=O and r>O, where r=ruot. 
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us...-----------------------. 

0 
'P 

Fig. 2. Variation of displacement governed by improved equation (18) for 
a=O and r>O, where ,=ruot, 

2 

point </> increases or decreases, respectively, if u1 " at the initial time is positive or 
negative. On the other hand, from (19) the growth and decay of the absolute value 
of u2 depend on the sign of u2" at the present time. This situation is illustrated in 
Figs. 1 and 2, where the initial condition is given by u=u0/(1 +1>2

), and we have 
solved (19) by a numerical calculation. In Fig. 1, u1 at ¢=0 decreases even after 
u1" at the point becomes positive, but such a phenomenon never occurs for u2. 

It is worth noting that if u is always positive, (19) can be transformed into the 
equation of heat conduction with temperature-dependent thermal conductivity2

-
7>. 

That is, by introducing a new variable O=ln u we may rewrite (19) as 

!~ =[r exp(O)O']'. 
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