
50

A Computer-Aided Circuit Layout System
Based on the Functional Structure and

the Physical Structure of Circuits

By

Takao OZAWA* and Hidenori SEKIGUCHI**

(Received March 28, 1983)

Abstract

In this paper, there is reported a computer-aided circuit layout system which is
based on a new design philosophy. For a circuit to be designed and laid out, two
structures called the functional structure (FS) and the physical structure (PS) are
defined. The former is concerned with the behavior of the circuit and is hierarchical,
while the latter is dependent on the physical realization of the circuit. The FS has
"blocks," "components," "connections, "terminals" and "external terminals" as its basic
elements, whereas the PS has "modules," "nets," "pins" and "external pins" as its basic
elements. A circuit description language to specify the FS is designed and its inter
preter is computer programmed. In order to have access to specific basic elements,
data reference formulae are defined. The realizations of the basic elements of the
PS are displayed on a color CRT. Our circuit layout procedure consists of three
steps: (1) inputting the FS by using the circuit description language, (2) assigning
components and terminals to modules and pins respectively, and (3) layouting basic
elements of the PS on the board by using layout and display commands which take
data reference formulae as their operand. The last step is performed conversationally
and the layout of the elements can easily be changed.

1 . Introduction

Many computer-aided IC (integrated circuit) layout systems have been developed

as the sizes of IC's become larger and the manual circuit layout becomes more difficult

because of the increased complexity of the circuits.1> Among them are computer-aided

systems introducing a hierarchical circuit design and layout.2>-5> In these systems an

IC is designed through hierarchical steps: it is first constructed as a system of inter

connected sub-circuits having certain specified macro functions. Then, the sub-circuits

are constructed as collections of sub-sub-circuits, and so on until certain elemental

* Department of Electrical Engineering II.
** A former graduate student at the Department of Electrical Engineering II. Now with Fujitsu

Ltd., Kawasaki.

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits 51

circuits are implemented. The circuit layout is usually considered after or at the later

stages of the circuit design. Unfortunately, the circuit design which ts 'to achieve the

desired overall circuit function an_d :the c~rcuit layout which is to place the circuit on

a semiconductor chip or a printed circuit board, are often inconsistent. The former

is more concerned with the behaviour of the circuit and is more or less software

oriented, while the latter is very much dependent on the .physical realization of the

circuit, and thus is hardware oriented. (This inconsistency will ··become clearer when

the reader proceeds to sections 2 and 3.) The previous computer-aided systems seem

to ignore this inconsistency"' and try to use one hierarchical structure for · both the

design and layout. Therefore, inconveniences arise when the designer wants to ap

proach the laid out circuit with the knowledge on the circuit design. He has to have

a full understanding of the relation between the circuit functions and the laid out
circuit, whi,:h becomes extremely difficult when the circuit size becomes large.

In this paper,. we present a computer-aided circuit design and layout system based

on a new philosophy concerning the structure of the circuit. The structure which

can be defined from the functions of sub-circuits (and sub-sub-circuits and so on),

and the structure which can be defined from the physical realization of the circuit

are clearly distinguished. The former is called the functional structure (FS), whereas

the latter, the physical structure (PS), and a language and a data base for describing

the two structure are designed and computer programmed. Our system is mainly

aimed to layout a hybrid IC, which consists of circuit modules (components) and

electrically conductive wires laid out on a board. However, the system can also be
used to layout other types of integrated circuits.

2 . Two Structures of A Circuit

A. Functional Structure (FS)

As stated in the previous section the process of the circuit design is hierarchical.

The FS is defined in accordance with the design process and is represented by a

rooted tree, such as shown in Fig. 2. I. The tree in the figure indicates that the

circuit A contains Bl, B2 and B3 as its sub-circuits; sub-circuit Bl contains Cl and

C2 as its sub-circuits, and so on. The hierarchy of the structure is indexed by "levels"

in the rooted tree. In Fig. 2. 1 circuit A is at level zero, the highest level, sub-circuits

Bl, B2 and B3 are at level one, sub-sub-circuits Cl, C2 and C3 are at level two, and

so on. Levels of leaves of the rooted tree are called leaf levels. (We assume there

are always more than one level, and thus the root cannot be a leaf at the same time.)

In our structural circuit description, the functional units at each level, except those at
a leaf level, are called "blocks," and those at a leaf level, "components." If a block
at a level contains blocks at one level below. (Level two is one level below level one
and so on.) the latter blocks are called "components" of the former. Therefore Bl,

52 Takao OZAWA and Hidenori SEKIGUCHI

level zero

level one

two

level three

Fig. 2. 1. An Example of the rooted tree
representing the Functional
Structure.

B I

IN

Fig. 2. 2. An example of a block. Block: BI. Com
ponents: CI, C2 and C3. Terminals: IN,
OUT and TRMl of Cl, IN, OUT and
TRM2 of C2, and so on. External ter-
minals: IN, OUT and FBIN. Connec
tions: (IN, IN of Cl), (TRMl, TRM2,
TRM3) and so on.

B2 and B3 are components of A, and Cl, C2 and C3 are components of Bl. B2, Dl,
D2, El and E2 are components at leaf levels.

Components in a block are, in general, electrically inter-connected. This is rep

resented by "connections" which connect "terminals" attached to components. There

are also electrical connections from components within a block to those outside the

block or to external circuits if the block is at the highest level. In order to achieve

such electrical connections a block is provided with "external terminals." In our

system, a connection is specified by a set of terminals and/or external terminals which

it connects. An example of the finer structure in a block is illustrated in Fig. 2. 2.

Obviously, an external terminal of a block is a terminal, if the block is identified to

be a component contained in a block at one level higher.

The "blocks," "components," "terminals," and "external terminals" are called the

basic elements of the FS.

B. Physical Structure (PS)

The physical realization of a circuit varies depending on the form of the circuit

integration. In general, however, it consists of elemental sub-circuits specified by the

manufacturing process and wires connecting them. In our system, the elemental units

of circuit realization are called "modules." A module is equipped with "pins" to

provide electrical inter-connections with other modules. The circuit has "external
pins" to provide electrical inter-connections with external circuits. Wires connecting
electrically equi-potential pins and/or external pins are called "nets." In our system,
a net is specified by the pins and/or external pins which it connects. "Modules,"
"pins," "external pins" and "nets" are the basic elements of the PS of a circuit. Note

that the PS is not hierarchical.

A Computer-aided Circuit Layout System Based on the Functional 53 Structure and the Physical Structure of Circuits

C. Relation Between the Functional Structure and the Physical Structure

The relation between the FS and the PS is schematically illustrated in Fig. 2. 3.

A component at a leaf level of the FS only has a corresponding physical realization,

that is, it is realized as a module or as a part of a module in the PS. (A module may

contain more than one elemental circuit sush as a gate or a fiip-fiop.) The terminals

of such a component at a leaf level correspond to the pins of the module. Also, the

external terminals of the block at the highest level of the FS correspond to the external

pins of the PS. In general, the rest of the terminals in the FS have no correspondence

in the PS. The connections in the FS are realized as nets in the PS. A net, however,

has a finer structure, as will be described in Section 4, which is not directly related

to the connections.

Based on the PS, the laid out circuit is displayed on a color CRT. It can be

approached by the circuit designer with the knowledge of the FS.

root

1 eaves

EXT, TERM,
BLOCK

/ I CONNCTIONS
~ TERM I =EXT I TERM I

COMPONENT,,, COMPONENT=BLOCK

TERM,

.,_-- J CONNCTIONS
TERM,=EXT,TERM,

COMPONENT=BLOCK
~~ CONNCTIONS

J. TERM,
COMPONENT,,,,,,,,,,, COMPONENT

FS
Fig. 2. 3. Relation between the FS and the PS.

3 . Circuit Description Language (CDL)

EXT, PINS

NETS

PINS
MODULES

PS

For the input of a circuit into the system, a circuit description language together

with its associated interpreter has been developed. This language can describe the

FS of the circuit, and has the following features:

1. Sub-circuits can be input block by block.

2. Repeated input of sub-circuits having the same sub-structure can be done by

simple operations.

3. Basic structural elements can be labeled easily by use of group expression.
4. Input errors are checked. Especially the consistency regarding the FS is tested

automatically.

54 Takao OZAWA and Hidenori SEKIGUCHI

Table 3. Formal Specification of Circuit Description Language

(a) basic symbols

[alphabet] : :~AIBICIDIEIFIG]HIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
[digit] : :=0111213141516171819
[name] : := [alphabet] I [name] [alphabet] I [name] [digit]
[number] : := [digit] I [number] [digit]
[interval] : := [number] I [number]: [number]
[identifier] : := [name] I [number] I [name]-[number]
[inentifier group] : := [name] I [interval] I [name]-[interval]

(b) circuit description

[circuit description] : := [block description] I [circuit description] [block description]
[block description] : := [block division] [external division] [component division] [connection

division] I [block division] [component division] [connection division] I [block division]

(c) block division

[block division] : :=:BLOCK; !DLOCKb [qualified identifier] ;I.BLOCKb [qualified identifier]
b [block attribute] ;

[block attribute] : :=~AME([qualified identifier]) l!,IKE([qualified identifier])
[qualified identifier] : := [identifier] I [qualifier] [identifier]
[qualifier] : :=[identifier]. I . I [qualifier] [identifie11J

ld) external division

[external division] : :=EXTERNALb([identifier group row]);
[identifier group row] : := [identifier group] I [identifier group row]b[identifier group]

(e) component division

[component division] : :=COMPONENTb [component declaration row];
[component declaration row] : := [component declaration] I [component declaration row],

[component declaration]
[component tf.leclaration] : := [identifier group] ([identifier group row]) I [identifier group]

lf) connection division

[connection division] : :=CONNCTIONb [connection declaration row];
[connection declaration row] : := [connection declaration] I [connection declaration row], [con

nection declration]
[connection declaration] : := [identifier group] ([terminal identifier row]) I ([terminal identifier

row])
[terminal identifier row] : : = [terminal identifier] I [terminal identifier row] b [terminal identifier]
[terminal identifier] : := [identifier group]* [identifier group] I [identifier group]* [identifier

group]

Note : The parts of keywords not underlined can be omitted. b : blank.

A formal specification of our circuit description language is given in Table 3. I.

The input of a circuit into the system must be in accordance with the hierarchy of the

FS, that is, the block at the highest level must be input first, and a block at a lower

level can be input only after all its ancestor blocks have been given to the system.

(i) identifiers

A basic structural element is labeled by an "identifier" to distinguish it from others.

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits 55

An identifier is a "name," a "number" or a name with a number as its "subscript."

Within a block different identifiers must be given to different components, terminals or

connections respectively, but a terminal, for instance, can be given the same identifier

as a component. A series of numbers can be specified as an "interval," and thus a

group of identifiers can be given using an interval. For example, A-1 : 3 is equal to

a group of identifiers A-1, A-2, A-3. An identifier of a terminal, as a rule, follows

the identifier of the component to which it is attached, and an asterisk(*) is placed

between the two identifiers. If no particular terminal of a component need be spe•

cified, only an asterisk following the identifier of the component, such as Cl*, is input.

An external terminal is specified by an identifier following an asterisk, for example

*EX.

In order to express the relation between a block and a component or a terminal

within it, a "qualified identifier" is introduced. This is a component or terminal

identifier following a "qualifier," which is the identifier of the block followed. by a

period(.). For blocks at level one or below, qualifiers can be repeated. For example,

components X, Y and Z in a levelc-2 block N which in turn belongs to a level- I block

A are specified by A. N, X, A. N. Y and A. N. Z respectively. The three qualified

identifiers as a group can be specified by A. N. X. Y. Z.

(ii) block division

A block division initiates a block description, In the case of the highest level

block this consists of the keyword "BLOCK"

and ";" and in the case of a lower level block,

of BLOCK and the qualified identifier of the

block. If a block to be input has the same

structure as a block already described, the quali

fied identifier of the latter is given as the "block

attribute" of the former, and then the description

of the components, terminals and connctions of

the former can be omitted. The block attribute

"SAME" indicates that the entire hierarchical

structures of the two blocks are the same, and

AMP I

IN IN OUT
G

GIO

AMP2

IN OUT
G

GS

AMP 3

OUT
82 GI

G7 G6

AMP-I
EX-I

-20-----0
-3

-2

-3

Fig. 3. 1. Group expression of con-
nections.

(*EX-1: 3 AMP-1: 3*1N) = (*EX-1
AMP-l*IN), (*EX~2 AMP-2*1N),
(*EX-3 AMP-3*1N). ·

AMP 4 AMP 5

IN OUT IN OUT OUT
G G

G3 G2
Fig. 3. 2. Block diagram of a hybrid IC

56 Takao OZAWA and Hidenori SEKIGUCHI

the block attribute "LIKE" indicates that the two have the same structure of one

level only. (The components in the blocks may have different finer structures.)

(iii) external division

An external division declares external terminals. This division is necessary for the

highest level block only. A lower level

block is a component contained in AMP I

another block at the same time, and

thus its external terminals need not

be given.

(iv) component division

AMP2

(a)
A component division declares all

the components and terminals belong

ing to the block. If the terminal

identifiers of more than one compo

nent are the same, they can be given

as a group. For example, COMP- I:

2(1N OUT) is equal to COMP- I (IN

OUT), COMP-2 which is equal to

COMP- I (IN OUT), COMP-2(1N O

UT) where IN and OUT are terminal

identifiers, and each of components

(b)

Fig. 3. 3. Circuit diagrams of amplifiers

1 BLOCK;
2 EXT <OUT G-2:3 VM-5 G-6:8 VM-9 G-10 IN VP-12);
3 COMP AMP-1:2CIN OUT G>,AMP-3CIN OUT G-1:3>,
4 AMP-4:SCIN OUT G>,POWER-l!4CVP VM);
5 CONN <•IN AMP-l•IN>,CAMP-S•OUT •OUT),
6 CAMP-l:4•0UT AMP-2:S•IN),
7 CAMP-l•G •G-10),CAMP-2•G AMP-3•G-3 •G-8),
8 CAMP-3•G-1:2 •G-6:7),CAMP-4:S•G •G-3:2),
9 C~VP-12 POWER-l•VP POWER-2•VP POWER-3•VP POWER-4•VP>,

10 C•VM-5 POWER-4•VM POWER-3•VM),
11 C•VM-9 POWER-2•VM POWER-l•VM);
12 BLOCK AMP-1;
13 COMP OP-1(1:3>,R-1:4(1:2>,C-1:2(1:2>;
14 CONN C•IN R-1>,CR-1 R-2 C-1>,CR-2 R-4 •G>,
15 CR-4 C-2 OP-1•3>,CC-1 C-2 R-3>,
16 COP-1•1 OP-1•2 R-3 •OUT);
17 BLOCK AM?-V
18 COMP OP-2:3Cl!3~,R-5:9C1:2>,C-3:4Cl:2);
19 CONN C•!N R-5 C-3),CR-S OP-2•3 C-4),CR-8 •G>,
20 COP-2•2 OP-3•2 R-6 R-9),COP-2•1 R-6 R-7>,
21 CC-3 R-7 R-8 OP-3•3>,COP-3•1 R-9 C-4 •OUT>;

Fig. 3. 4. Circuit description of the circuit shown in Figs. 3. 2. and 3. 3.

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits 57

COMP-1 and COMP-2 has terminals IN and OUT. Terminals can be also declared

as a group. For example, IC (l: 8) is equal to IC (l 2 3 4 5 6 7 8), which can also

be given as IC (1 : 4 5: 8).

(v) connection division

A connection division declares connections, each of which is described by a set

of terminal identifiers. It is not necessary to give an identifier to a connection. An

example of connections and their description are given in Fig. 3. 1.

Example

The circuit shown in Figs. 3. 2 and 3. 3 can be inputted by the circuit description

given in Fig. 3. 4. (The description of .AMP.,-3 to AMP-5 is omitted.)

4 . Realization of the Physical Structure

The basic elements in the PS have their physical realiz~tions laid out on a board.

The board may have more than one "layer." Then modules and their pins can be

placed on any of the layers, and nets can go from one layer to another going through

"through holes." The realization of a module is represented by a polygon, which is

specified by a set of "x-y coordinates," that is, the positions of vertices of the polygon

on the board. The realization of a net is represented by a "rooted tree," and the pins

it connects, by "nodes" of the rooted tree. A node of the rooted tree may also represent

a through hole or a "branching point," which is a point where three wires meet. A

branch of a rooted tree represents a wire connecting two of the pins, through holes

and/or branching points. Now such a wire may not be straight. Then it is a collection

of straight wiresegments. A new point (or points) called a "turning point'' where two

straight wire-segments meet, is introduced. (A turning point is not given as a node of

the rooted tree.) Thus, in the PS, a net is specified by a set of pins, but for its

realization on the board the pins, through holes, branching points and/or turning

points together with their positions (x-y coordinates) need be specified. The number of

branches at a node, that is, the degree of a node is limited to three or less from a

practical point of view. An example of a rooted tree is shown in Fig. 4. 1 (e), where

the pin which is specified as the root of the tree is indicated by a black node and

the remaining pins, by white nodes.

In the routing process a net cannot, in general, be completed at one step. First

a single wire of the net is routed, and next unconnected wires are added here and

there, which are then tied up to form a net. In Fig. 4. l, a net connecting five pins

is completed by the process as shown in the figure. Before a net is completed it is

represented by more than one rooted tree. When two rooted trees are merged to

one by the addition of a branch, one of the roots is eliminated. Besides, the directions

of the branches belonging to the tree whose root has been eliminated may have to

58 Takao OZAWA and Hidenori SEKIGUCHI

k,• ek2 ke

I
•

~ k3e ek•

I eks

(a) (b) (c)

(d) (el

Fig. 4. 1. Construction of a rooted tree representing a net.

be changed.

The elements of the PS laid out on a board can be displayed on a color CRT.

The designer may want to approach an element on the CRT. This he can do by

using the graphic cursor equipped with the CRT, that is, if he points out a pin by the

cursor, the system finds out its identifier from the position of the pin which is equal

to that of the cursor. To identify a module or a net he must approach one of its

pins first. To make the above searching process efficient, the board is divided into

"pages," and all the pins in a page are linked to form a list. The page containing

the specified pin is first found from the position of the cursor, and then the pin is

sought on the list, thus minimi.ting the number of pins to be songht.

5, Data Base

The data base of the system reflects the two structure of the circuit, and its

main part consisis of data structures for the basic elements of the FS and PS. For

the FS, there are provided six "entities" which are associated with blocks, components,

connections, terminals and names and subscripts, respectively. The entities for the PS

are associated with modules, nets, pins, x-y coordinates, roots, through holes and pages

respectively. The entities are given in Table 5. 1. As shown in Table 5. 1, each entity

has a descriptor and/or a directory. The location of a descriptor in the computer

memory is called a "code," and a descriptor can be approached by specifying its

code. Codes are generated internally by the system.

FS

PS

A. Descriptors

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits

Table 5. l Descriptors and Directories

block block descriptor (BD)

component component descriptor (CMD)
component directory (CMDR)

connection connection descriptor (CND)

connection directory (CNDR)

terminal terminal descriptor (TD)
terminal directory (TDR)

name name descriptor (NMD)

name directory (NMDR)

subscript subscript descriptor (SD)
subscript directory (SDR)

module module descriptor (MD)

module directory (MDR)

net net descriptor (ND)
net directory (NDR)

root root descriptor (RD)

root directory (RDR)

pin pin descriptor (PD)
pin directory (PDR)

through hole through hole descriptor (THD)

through hole directory (THDR)

coordinate x-y coordinate descriptor (XD)
x-y coordinate directory (XDR)

page page directory (PGDR)

assignment assignment descriptor l (AD l)
assignment directory l (ADR l)

assignment descriptor 2 (AD 2)
assignment directory 2 (ADR 2)

(i) block descriptor (BD)

59

Data for the FS are grouped together by blocks. A block descriptor points such

a group of data, as given in Table 5. 2.

Table 5. 2 Block descriptor

#1 pointer to the CMDR of the relevant block.
#2 pointer to the CNDR of the relevant block.
#3 pointer to the NMDR of the relevant block.
#4 pointer to the SDR of the relevant block.

60 Takao OZAWA and Hidenori SEKIGUCHI

(ii) component descripter (CMD)

Each component has a component descriptor which contains data concerning its

terminals, the block which is identical to ti, and the module to which it is assigned,

See Table 5. 3.

Table 5. 3 Component descriptor

#1 pointer to the initial TD in the series of TD's for the relevant component
#2 pointer to the initial NMD in the linked list of terminal identifiers for the relevant com-

ponent.
#3 pointer to the BD of the block which is identical to the relavant component.
#4 pointer to the MD of the module to which the relevant component is assigned.
#5 pointer to the AD 1 giving the assignment of the relevant component.

(iii) connection descriptor (CND)

Each connection has a connection descriptor which contains data concerning its

terminals and the net corresponding to it. See Table 5. 4.

Table 5. 4 Connection descriptor

#1 pointer to a TD in the linked list of TD's specifying the relevant connction.
#2 pointer to the ND of the net to which the relevant connection is assigned.

(iv) terminal descriptor (TD)

Terminal descriptors are grouped together by components. They contain data as

shown in Table 5. 5.

Table 5. 5 Terminal descriptor

#1 pointer to the CND which is incident to the relevant terminal.
#2 pointer to the next TD in the linked list of TD's specifying the relevant connection.

(v) module descriptor (MD)

Each module has a module descriptor which contains, as shown in Table 5. 6, data

concerning its shape, its pins and the component(s) assigned to it.

Table 5. 6 Module descriptor

#1 the number of pins attached to the relevant module.
#2 pointer to the initial PD in the linked list of PD's for the relevant module.
#3 pointer to the initial XD in the series of XD's specifying the shape of the relevant module.
#4 pointer to the AD 1 or AD 2 specifying the assignment of components to the relevant

module.

(vi) net descriptor (ND) and root descriptor (RD)

Each net has a net descriptor as shown in Table 5. 7. The root of the tree

representing it is pointed by ND# l. If a net is not complete and is represented by

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits 61

more than one rooted tree, root descriptors, as shown in Table 5. 8, are created to

form a linked list of the roots.

Table 5. 7 Net descriptor

#1 pointer to the PD of the reet of the tree representing the relevant net, or pointer to the
initial RD of the linked list of RD's for the rooted trees representing parts of the relevant
nets.

#2 pointer to the next subnet if the relevant net is large and partitioned.
#3 pointer to the AD l specifying the assignment of connections to the relevant net.

Table 5. 8 Root descriptor

#1 pointer to the PD of the relevant root.
#2 pointer to the next RD in the linked list of RD's for the relevant net.

(vii) pin descriptor (PD)

Each of the pins, through holes and branching points has a pin descriptor, as

shown in Table 5. 9. In PD# l and PD#2 are given the data concerning the net

which is incident to it. PD#2 gives the link to the adjacent pin descriptor specified

by the rooted tree which represents the net. PD#4 gives the x-y coordinates of the

pin on the board. Pin descriptors are grouped together by modules. For each page

of the board a linked list of pin descriptors is constructed using PD#6.

Table 5. 9 Pin descriptor

#1 ponter to the ND of the net which is incident to the relevant pin, through hole or branch
ing point.

#2 pointer to the PD of the adjacent pin, through hole or branching point in the rooted
tree representing the relevant net.

#3 pointer to the initial XD in the linked list of XD's specifying the routing of the relevant
net.

#4 the x-y coordinate of the relevant pin, through hole, or branching point on the board.
#5 the layer number or pointer to the THD in the case of a through hole.
#6 pointer to the next PD in the linked list of PD's for the pins, through holes and branching

points contained in the same page.

(viii) through hole descriptor (THD)

For a through hole, a through hole descriptor is attached to the pin descriptor of

the through hole. The code of this descriptor is given at PD#5. Table 5. 10 shows

a through hole descriptor.

Table 5. 10 Through hole descriptor

#1 the layer numbers of the layers which the relevant through hole connects.
#2 pointer to the next PD in the linked list of PD's for the pins, through holes and branching

points contained in same page.

62 Takao OZAWA and Hidenori SEKIGUCHI

(ix) x-y coordinate descriptor (XD)

An x-y coordinate descriptor specifies a point on the board. This descriptor is

given in Table 5. 11. A polygon representing a module is specified by a series of x-y

coordinate descriptors. For a pin, through hole, branching point or turning point, an

x-y coordinate descriptor is also generated to indicate its position on the board.

Table 5. 11 x-y coordinate descridtor

#1 the relevant x-y coordinate on the board.
#2 pointer to the next XD in the linked list of XD's,

(x) name descriptor (NMD) and subscript descriptor (SD)

When being input, the identifiers of the basic elements in the FS are registered

for later use. Name descriptors and subscript descriptors, as shown in Tables 5. 12 and

5. 13 respectively, are created for this purpose. Name descriptors of components and

connections, respectively, are linked in alphabetical order using pointers in ND#4. A

linked list of descriptors is formed for terminals of each component. It a name has

a subscript, its descriptor is linked to the corresponding subscript descriptor by using

NMD#3. If more than one subscript interval are attached to a name, subscript de

scriptors corresponding to the intervals are created, and they are linked by using SD#4.

Table 5. 12 Name descriptor

1 the relevant registered name.
#2 the code of the identifier specified by the relevant name.
#3 pointer to the initial SD in the linked list of SD's attatched to the relevant name.
#4 pointer to the next NMD in the linked list of identifiers.

Table 5. 13 Subscript descriptor

1 the lowest of the relevant subscripts.
#2 the highest of the relevant subscripts.
#3 the number to be added to NMD#2 to find the codes of the identifiers specified by the

relevant name and subscripts.
#4 pointer to the next SD in the linked list of SD's atteached to the relevant name.

(xi) assignment descriptor 1 and 2 (AD 1 and AD2)

As stated in Section 2 C, a component at a leaf level is assigned to a module or

a part of a module. This assignment can be followed using assignment descriptors 1

and 2, as shown in Table 5. 14. An assignment descriptor 1 is provided for each

component at a leaf level, and the level and all the codes of the qualifying blocks of

the component are included. If only one component is assigned to a module, the

code of ADI of the component is written down in MD#4 of the module. If more

than one component are assigned to a module, an AD2 is created to indicate the

assignement and its code is given in MD#4.

ADl

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits

Table 5. 14 Assignment descriptors 1 and 2

#1 1 plus the level number of the level at which the relevant element is.
#2 pointers to the CMD's of the elements qualifying the relevant element.

AD2
#1 pointers to the ADl's of the components which are assigned to the module having the

relevant pins.
#2 the terminal numbers assigned to the relevant pins.

B. Directories

63

Directories contain the numbers of descriptors and some other information concern

ing the entities. The initial locations of the linked lists of descriptors for components

and connections are given in the component directory and connection directory res

pectively.

C. Relation Between the Functional Structure and the Physical Structure

The links connecting the elements in the FS and PS are illustrated in Figs. 5. 1

and 5. 2.

Fig. 5. 1. Links from connction descriptors
to a net descriptor.

I7
(a}

Fig. 5. 2. Links from a component descriptor(s)
to a module descriptor. (a) one com
ponent to one module. (b) more than
one component to one module.

6 . Data Reference

In designing a circuit, a designer specifies the FS of the circuit. However, in the

layout process, the display of the circuit is based on the PS. Thus he may want to

know the element(s) in the PS related to an element in the FS or vice versa. He

may also want to get information concerning the FS or PS itself. Therefore, in our

system, the means are provided for referring to the structural data described in the

previous section. The designer can specify the basic structural elements by the data

reference formulae given below.

64 . Takao OZAWA and Hidenori SEKIGUCHI

A. Basic Data Reference Procedures

In our system, the basic data reference procedures are defined as given in Table
6. l.

BLK TO CMP:
BLK TO CNN:
BLK TO TRM:
LGC TO BLK:
UPPER CMP:
LOWER BLK:
CMP TO TRM:
TRM TO CMP:
CNN TO TRM:
TRM TO CNN:
MDL TO PIN:
PIN TO MDL:
NET TO PIN:
PIN TO NET:
MDL IN LYR:
PIN IN LYR:
MDL TO CMP:
CMP TO MDL:
NET TO CNN:
CNN TO NET:
PIN TO TRM:
TRM TO PIN:
CMP TO PIN:

BLK TO MDL:
BLK TO PIN:
GIN TO MDL:
GIN TO NET:
GIN TO PIN:
ID TO CODE:
SELECT ELM:

B. Data Types

Table 6. l Basic data reference procedures

gets all the components in the relevant block.
gets all the connctions in the relevant block.
gets all the terminals in the relevant block.
gets the block containing the relevant component, connction of terminal.
finds the component inentical to the relevant block.
finds the block identical to the relevant component.
gets all the terminals attached to the relevant component.
gets the component to which the relevant terminal is attached.
gets all the terminals conncted by the relevant connction.
gets the connction which is incident to the relevant terminal.
gets all the pins attached to the relevant module.
gets the module to which the relevant pin is attached.
gets all the pins connected by the relevant net.
gets the net which is incident to the relevant pin.
gets all the modules laid out on the specified layer.
gets all the pins laid out on the specified layer.
gets all the components assigned to the relevant module.
gets the module to which the relevant component is assigned.
gets all the connections assigned to the relevant net.
gets the net to which the relevant connction is assigned.
gets the terminal corresponding to the relevant pin.
gets the pin corresponding to the relevant terminal.
gets the pins attached to the part of the module to which the relevant
component is assigned.
gets all the modules associated with the relevant block.
gets all the pins associated with the relevant block.
gets the module specified by the graphic cursor.
gets the net specified by the graphic cursor.
gets the pin specified by the graphic cursor.
gets the component, connection, or module specified by the given identifier.
takes out the specified codes from a set of codes to form a new set.

In regard to data reference, we assume that the data concerning a basic element

in the FS or PS has a specific "data type." For example, we define BLOCK TYPE

for a block and MODULE TYPE for a module. In addition to the data types defined

for the basic structural elements, we define a data type GIN, which actually is the

positional data specified by the graphic cursor. Basic data reference procedures

generate data of one type from those of another.

C. Data Reference Formula

In order to refer to certain data, the designer gives the system an instruction

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits

Table 6. 2 Data reference formula

[reference formula] : :=<[expression]>
[expression] : := [term] I [expression] [dyadic operator] [term]
[term] ::=@l@[numberJl#l#[numberJl[identifier group]l[qualifier] [identifier group]I

[terminal identifier] I [qualifier] [terminal identifier] I [qualifier] [terminal identifier] I
([expression]) I [term]b[monadic operator]

[dyadic operator] ::=&l!I/
[monadic operator] : :=l!LOCKICOMPONENTICONNECTIONIIERMINALIMODULEI

,NETl.!'INl!JPPERILOWERll,AYER([interval]) ISELECT([interval])

Note : The parts of the keywords not underlined can be omitted.

65

in the form of the data reference formula defined in Table 6. 2. Data reference

procedures to be performed are specified by monadic operators: For example, if the

designer inputs an instruction A BL MOD; BLOCK TYPE data of the block with

identifier A are first obtained, and then MODULE TYPE data are referred by the

basic data reference procedure BLK TO MDL. The data refeired can be stored for

later data reference. The stored data are identified by giving them an "@" mark plus

a specific number. The data just referred to can be referred to again by the input

of @O or@.

The designer can specify an basic element of the PS displayed on the CRT using

the graphic cursor. The reference formula for this specification begins with a "#"
mark. For example, by # NET the NET TYPE data of the net specified by the

cursor are referred. # MODULE can be abbreviated to # only. The layer on which

the basic element is laid out is specified by the layer number following a #.
The designer can get, by specifying the dyadic operators "&," "!" and "/", the

meet, the union and the difference, respectively, of sets of data already referred. The

operand sets of data must be of the same type.

7 • System Configuration

The total configuration of our system is shown in Fig. 7. I. The host computer

of the system is a FACOM M-200 installed at the Data Processing Center of Kyoto

University. A TEKTRONIX color display unit 4027 A is used as the display terminal.

This unit is supported by the sub-routine package IGL supplied by the manufacturer.

The host language of the system is PL/I. Details of the system are as follows.

(i) circuit data file

The circuit data file is a sequential file containing the data described in section 3.

(ii) CDL (circuit description language) interpreter

The first step of the layout design using our system is the input of the circuit

structures. When the FS is inputted by using the CDL, a file of the structural data

is generated by the CDL interpreter. The interpretation is performed block by block

66 Takao OZAWA and Hidenori SEKIGUCHI

CONVERSATIONAL LAYOUT AND LAYOUT DISPLAY SYSTEM

DATA REFERECE
FORMULA INTERTRETER

PLACEMENT-AID
PROGRAMS

CDL
INTERPRETER

ASSIGNMENT-AID
PROGRAMS

CIRCUIT
DATA

FILES
FACOM M-200

Fig. 7. 1. System configuration

c011111and
input

color praphic
terminal

as follows. First the block division is interpreted and a block descriptor is generated.

Next the component division is interpreted, and for each component declaration a

component descriptor is generated. The identifiers of components and terminals are

registered by generating name descriptors. Then the interpretation of the connection

division takes place, and connetion descriptors are generated. By the end of this step

the generation of terminal descriptors is completed.

(iii) assignment-aid programs

The relation between the FS and PS is specified as the second step. This can

be done with the help of the assignment-aid programs. The assignment of components

to a module can be performed first by the input of the identifier of the module and

then the identifiers of the components. Terminals of a component at a leaf level are

numbered in the order as they are input. The assignment of terminals to pins are

specified by these numbers and the result is written down in AD#2. Connections are

assigned to a net by the system considering the hierarchy of the FS. CMD#4, #5

and CND#2 are filled in at this step.

(iv) conversational layout and layout display system

This sub-system is for the layout of the basic elements of the PS on the board

conversationally. As the third step of the layout design, the designer determines the

positions of modules, pins and external pins, and then the routing of nets by the input

of layout and display commands from the graphic terminal. The laid out circuit is

displayed on the CRT of the terminal. The commands for placement and routing

are as follows.

A Computer-aided Circuit Layout System Based on the Functional
Structure and the Physical Structure of Circuits 67

l. PLACE: This command initiates the placement-aid programs and makes it possible

for the designer to use placement sub-commands.

2. ROUT: This command initiates the routing-aid programs and makes it possible for

the designer to use the routing sub-commands.

3. MOVE: This command moves a module from one position to another on the

board. The nets connected to the module are removed automatically.

4. COPY: Copies of a module can be reproduced by using this command.

In general, the basic element to be placed, moved or routed is specified by a data

reference formula given as the operand of a command. The designer can also ask

the system to find an unrouted net with which he is to work on next. He specifies

the routing pattern of a net using the graphic cursor. In this process of routing,

branching points and through holes can be created or added.

The display commands which can be used for layout are as follows.

I. WINDOW: Using this command, the designer can specify the part of the board to

be displayed. The size of the displayed area can also be given. If a basic element is

specified as the operand of this command, the area to be displayed is automatically set

up to include the element. It is possible to select a layer and display the elements

on it.

2. COLOR: This command specifies the color of the elements on a layer.

3. DISPLAY: The basic elements specified as the operand of this command are

displayed in the specified color.

4. IDENTIFIER: The identifier of the specified basic element is displayed.

The operands of the commands are data reference fomulae. Thus, by DISPLAY

(A BL MOD) RED, for example, all the modules belonging to the block A are

displayed in red.

8 . Concluding Remarks

Using our system, the designer can have access to the laid out circuit with the

knowledge of the FS, which makes the circuit layout much easier for him. For exam

ple, he need not trace electrical inter-connections on the circuit diagram and find out

the wires which realize them on the board. Instead, he only has to specify some

terminals connected to them, or has to specify a component if he wants all the inter

connections attached to it. The converse operation of finding the basic elements of

the FS from the layout is also easy. The system takes full advantage of the color

disply for easy recognition of specific elements, especially nets, laid out on a multilayer

board.

Because of the rather complex data structures, the system requires a considerable

amount of memory when the circuit size becomes large. Hence, the system needs to

68 Takao OZAWA and Hidenori SEKIGUCHI

be improved so that data can also be stored in external files. It is not possible to

alter the FS once it is inputted. The addition of sub-programs which achieve changes

in the FS, however, will not be difficult, since data concerning the FS are stored

block by block using linked lists. No automatic placement or routing sub-routines are

installed, and the system functions need to be expanded to handle large scale integrated

circuits.

References

1) Research Committee on the Design Technology of Electronic Equipments, "Computer Aided
Design of Electronic Equipments (3)-The Recent Trends of the CAD Technology in Pysical
Design," Data Processing, vol. 21, No. 1, pp. 50-61, Jan. 1980 (in Japanese).

2) Van Cleemput, W. M., "A Hierarchical Language for the Structural Description of Digital
Systems," 14th D.A. Conference, pp. 377-385, 1977.

3) Preas, B. T, and Gwyn, C. W., "Methods for Hierarchical Automatic Layout of Custom Cir
cuits Masks," Proc. of 15th D. A. Conference, pp. 206-212, 1978.

4) Sato, K., Nagai, T., Shimoyama, H. and Yahara, T., "MIRAGE-A Simple-Model Routing
Program for the Hierarchical Layout Design of IC Masks," Proc. 16th D. A. Conference,
pp. 297-303, 1979.

5) Chiba, T., Okuda, N., Kambe, T., Nishioka, I., lnufushi, T. and Kumura, S., "SHARPS:
A Hierarchical Layout System for VLSI, Proc. 18th D. A. Conference, pp, 820-826, 1981.

