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Abstract 

In this paper, we consider the assignment problem with stochastic side constraints, 
and propose a practical algorithm for solving it. Such a problem may arise, for 
example, when the assignment requires some scarce resources and the total amounts 
of those resources are subject to a random variation. Therefore, the problem seems 
quite general and significant in practice. This algorithm takes a special structure of 

the problem into account, and may be regarded as a heuristic modification of the 
method for two-stage linear programming under uncertainty. Although we cannot 
guarantee that the solution obtained by the proposed algorithm will coincide with the 
true optimal solution of the problem, our limited computational experience on small 
test problems indicates that good approximate solutions can be obtained in a fairly 
small computation time. 

1. Introduction 

The classical assignment problem is formulated as follows: 

Minimize 

subject to t X;;= l 
j=l 

for i= 1, 2, ... , n, 

X;;=O or 

where condition ( 1. 4) implies 

for j= 1, 2, ... , n, 

for all i and j, 

( 1. 1) 

(1. 2) 

(1. 3) 

(1. 4) 

X··={ 1 ., 0 
if man i is assigned to job j 

otherwise. 

( 1. 2) and ( 1. 3) require that there is a one-to-one assignment from the set of men 
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to that of jobs. The assignment problem is one of the most fundamental topics in 

network flow theory, and has been extensively studied in the context of linear pro

gramming. In particular, a number of effective solution techniques, e. g., [l] [2] [6] 

[8], have been developed and are widely used to solve various problems in practice. 

In the classical assignment problem, the cost is minimized ( or the profit is 

maximized) under the only condition that man i should be assigned to job j one to 

one. In practical applications, however, it may sometimes be necessary to incorporate 

additional constraints in the problem [4]. For example, suppose that we need some 

resources when we assign man i to job j. Then, we have to consider such constraints 

whereby the total amount of each resource to be used should meet the available amount 

of that resource. Furthermore, we suppose that the amount of each resource to be 

supplied is not known exactly when the decision is made, i. e., the right-hand-side of 

those constraints is a random vector. Then, the problem may be stated as follows: 

Minimize 

subject to 

or, using the vector-matrix notation, 

Minimize ex 

subject to Ax=b, 

Tx=e 

xE.X, 

for i= 1, ... , n, 

for j=l, ... , n, 

for k= 1, ... , m, 

for all i and j, 

(2. 1) 

(2. 2) 

(2. 3) 

(2. 4) 

(2. 5) 

(3. 1) 

(3. 2) 

(3. 3) 

(3. 4) 

where constraint (3. 2) corresponds to (2. 2)-(2. 3), constraints (3. 3) and (3. 4) cor

respond to (2. 4) and (2. 5), respectively, and e = (~i, ... , e .. ) is a random vector. 

Problem (3) can be regarded as a stochastic programming problem, for which 

various formulations have been proposed to obtain its deterministc equivalent. One 

of such formulations is the so called two-stage program which can be stated in its 

simplest form as follows: 

Minimize cx+E,{inf q+y++q-y-lx} (4. 1) 

subject to Ax=b, (4. 2) 

Tx+y+-y-=~, (4. 3) 

xE. X, y+~O, y-~O, (4. 4) 
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where y+ and y- are recourse vector, q+ arid q- are constant vectors such that q+ + 
q-:;;:::o, and E,{ • } means expectation. The problem of this type is commonly called 

a complete problem [ 12], or a stochastic program with simple recourse [ 15]. It is 

interpreted as follows : The decision maker first selects an assignment, say x=i, then 

he observes the random event e ={, and finally he takes a corrective action (y+, y-) 

in such a way that q+y++q-y- is minimized, subject to y+-y-=f-Ti, y+:;;:::O, y-:;;:::o. 
If the elements of x are not restricted to be 0- l but are allowed to take 

continuous values, then problem ( 4) becomes a problem which is well known a:s the 

two-stage liner program under uncertainty. H may be solved by a method such as 

the one proposed in [12]. However, since the solutions of the assignment problem 

have to satisfy the 0- l condition, problem ( 4) is considered a two-,-stage stochastic 

program in whi<;h the first stage variables, x;j, are 0-l. For such problems,· Wollmer 

[13] proposes an algorithm that combines the Van Slyke-Wets method [ll] and an 

implicit enumeration method [5]. Yudin and Tsoy [14] also propose an algorithm 

for discrete stochastic programs under a slightly different setting. 

As far as problem ( 4) is concerned, however, the deterministic constraint ( 4. 2) is 

merely the constraint of the ordinary assignment problem. Taking this special structure 

of the problem into account, we propose in this paper a practical algorthm for solving 

problem ( 4) approximately. The algorithm can be viewed as a heuristic modification 

of the algorithm for two-stage linear· programs under uncertainty, developed by Van 

Slyke and Wets [ll]. Although we cannot guarantee that the solution obtained by 

the proposed algorithm will coincide with the true optimal solution of problem ( 4), 

our limited computational experience on small test problems indicates that good 

approximate solutions can be obtained in a fairly small computation time'. 

2. Basic Properties of Two-Stage Stochastic Programs 

We can rewrite problem ( 4) as the following equivalent problem: 

where· 

Minimize ex+ Q(x) 

subject to Ax=b, 

xEX, 

Q(x) =E,{inf q+y++q-y-ly+-y=e-Tx, y+;;;:::O, y-:;;:::O}. 

In what follows, we assume that Ee; {t} exists for each i. Then, the function Q is 

everywhere finite and convex, and is expressed as 

Q(x) = i; Q;[ (Tx);] 
i=l 

=t;{-q;- ~ {e;-(Tx);}dF;(t)+qt ~ {e;-(Tx);}dF;(O} (6) 
fi5. (Tz); f;> (Tz>; 
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where F, is the marginal distribution function for e,. (See [12].) 

Now let / be a set of indices and {x1 : lE/} be a set of feasible solutions to 

problem ( 5). For each x1, define the vector ir1 = (irl, ... ,. ir~) and the scalar p1 by 

iri~qt-(qt+l[i") ) dF,<e,), 
t

1
:i;cT,h, 

pl=qtE,,{e.} -(qt+l[i") s e,dF,(~.)' 
e

1
:i;cT,h, 

. ( 7) 

Then, .ir
1 and p1 t_hus defined determine a sµpporting hype,rplane of Q at x1 [ll]. 

Namely, we have 

for any x 

and 

Therefore, the problem: 

Minimize cx+O 
z,I 

subject to ir1Tx +8?:.p1 

Ax=b, 

xE.X, 

for lE.I, 

( 8) 

is an outer approximation of problem (5) in the sense that the minimum value of 

problem (8) is no greater than that of problem (5). Moreover, it is not difficult to 

see that, if the inequality 

( 9) 

where (8, .t) is an optimal solution to (8), is satisfied, then .t is actually an optimal 

~olution of problem (5). On the other hand, if the inequality (9) is violated, then .t 
is added to the set {x1

}. As a result, we obtain a finer outer approximation problem 

of the form (8) . 

3. Algorithm 

Based on the observations in the previous section, we are now ready to state an 

algorithm for solving problem ( 5) . 

Step O: Set /=0 and l= 1. 

Step 1 : Solve the problem 

Minimize cx+O (10) 
z, , 
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Step 2: 
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subject to n'Tx+8?:.p', rE.l, 

Ax=b, 

xE.X, 

and let (x1, 81
) be its optimal solution. Here, if J =0, then 8 is set equal 

to - oo and is ignored in the computation. 

Calculate tr1 and p1 by (7), and put Q!,=p1-n1Tx'. 

as x1 is an optimal solution to problem (5). 

increase l by one and return to Step 1. 

If Q!,~81, then terminate 

Otherwise, set /=/U{l}, 

This algorithm is essentially a simplified version of the one proposed by Van 

Slyke and Wets [11] for two-stage linear programs under uncertainty. Whenever 

we return to Step I, a new constraint is generated and problem (10) is solved with 

the augmented constraints. Obviously, the algorithm terminates in a finite number 

of iterations, because if a certain feasible solution is generated twice during the 

iterations, i.e., x1 =x'' for some l>l', then we must have 81 = Q!, in Step 2. That is to 

say that the stopping criterion is satisfied.' Therefore, the algorithm should terminate 

finitely, since the number of feasible solutions of problem (5) is finite. 

Problem (10) is in general a 0-1 mixed integer program which can be solved, for 

example, by an implicit enumeration technique [5]. However, it seems quite expensive 

computationally to solve problem ( 10) by such a technique at each iteration. This 

is because a large number of iterations is usually required to obtain the termination of 

the algorithm. To avoid this computational burden, we employ here a simple method 

of obtaining an approximate solution to problem (10) by taking account of a special 

structure of the problem. This method is based on the subgradient algorithm [7] 

[10] for maximizing the dual of problem (10) and is implemented quite easily. 

Let us define the Lagrangian for problem (10) by 

fi'(x, 8, u) =cx+8+u(d-Bx-8e), 

where u is the vector of Lagrange multipliers, d is the vector whose elements are p', 

rE.l, B is the matrix whose rows are n'T, rE.l, and e is the vector of ones. Then, 

the Lagrangian dual problem for problem ( 10) is expressed as follows: 

Maximize L(u) (11) 

subject to u";;::.O, 

where 

L(u) =inf{fi'(x, 8, u) I Ax=b, xE.X}. 
"·' 

Since 
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L(u) =ud+inf{(c-uB)xl Ax=b, xEX} + inf{ (1-ue) 8}, 
., ' 

it is easy to see that L(u)>-oo if and only if ue=l. Therefore, problem (11) is 

rewritten as 

where 

Maximize 

subject to 

ud+w(u) 

ue= 1, 

u~o. 

(l)(u) =min{(c-uB)xl Ax=b, xEX}. ., 

(12) 

(13) 

It is noted that w(u) is easily evaluated for each u by solving an ordinary assignment 

problem. Furthermore, it is not difficult to show that a subgradient of the function 

w, which is a concave function, at the point u is given by - Bl, where 1 is an 

optimal solution of the assignment problem ( 13). (For the definition of subgradient, 

see [9].) 

On the basis of the preceding arguments, Step I of the algorithm is modified as 

follows: 

Step I a: Select u0 and a small positive number e, and set k=O. 

Step 1 b: Solve the assignment problem (13) with u=u\ and let xi be its optimal 

solution. Put ft=d-Bxi. 

Step I c: Update ui by the formula 

(14) 

where ai is a properly chosen step length [7] [ 10], 1,i is an overestimate of 

the optimal value of problem (12), and Pu is the projection operator on 

the set U={ulue=l, u~O}. 

Step Id: If uH1 satisfies l1uH1-uil1/llu'l!<e, then put x1=xi and 81=min{818e~d-Bxi}. 

Go to Step 2. Otherwise, increase k by one and return to Step Id. 

It is noted that the value of L(ui) in (14) coincides with that of the objective 

function of problem (12), since u' is contained in the set -U. Thus, L(ui) is readily 

evaluated, using w(ui) obtained in Step lb. 

By employing this modification, the algorithm may be implemented quite easily, 

because Steps la- Id only require repeated solutions of ordinary assignment problems. 

It is noted, however, that the solution obtained by the algorithm, in which Step I 

is replaced by Steps la- Id, may not be an optimal solution to problem ( 5) in general, 

since the solution x 1 generated by Steps la-Id does not necessarily solve problem (10). 
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Therefore, in order to obtain a better solution, the whole algorithm is ,eventually 

modified as follows: 

Step 0: Set 1=0, l= 1 and v*= +oo. 
Steps la-ld: As above. 

Step 2: Calculate 1r
1,p1 and Q: as before and put v1=cx'+Q'.. If v'<v*, then set 

v*=v' and x*=x1• If Q'.~81, then terminate. x* is an approximate soluton 

to problem (5). Otherwise, set /=/LJ{l}, increase l by one, and return to 

Step 1. 

It is to be noted that this algorithm also termh1ates ti.nitely due to the. same reason 

as before. 

4. Computational Results 

• We have implemented the proposed algorithm to solve problem ( 4). The algorithm 

,was' coded in FOllTRAN IV, and the subroutine LSAPR [3] was used to solve 

ordinary assignment problems in Step lb. The program was run on a FACOM'M-200 

computer at the Kyoto University Data Processing Center. 

In our computational experiments, we solved three groups of small test problems 

with n=7 and m=3, each group consisting of ten problems. Each element of the 

random vector ~ was assumed to be distributed uniformly ,on the interva~, ~a, fi], 
where [a, fi] = [30, 40] for Group l, [a, fi] = [10, 30] for Group 2, and [a, fi] = [20, 

50] for Group 3. Coefficients of the problems, c, q+, q-, T, were randomly generated 

within the ranges [50, 100], [0, 5], [0, 5] and [O, 10], respectively. 

The computational results are summarized in Table l. · In order to evaluate the 

Table I. 
(a) Group I : [a, ft]= [30, 40] 

Problem V* (X 103) 
I 

V ( X J03) 
I 

V-V* 

I 
NCON. 

I 
NAS. I c. P. u. TIME 

~ (%) (sec) 

I 0.42880 0.42880 0.0 4 92 0. 118 
2 0.42429 0.42429 0.0 4 89 0. 119 
.3 .0. 43779 0.43816 0.08457 2 37 0.057 
4 0.41952 0.41952 0.0 6 129 0.184 
5 0.47659 0.47802 0.29948 2 32 0.050 
6 0.46421 0.46421 0.0 3 52 0.068 
7 0.45512 0.45512 0.0 4 98 0. 128 
8 0.47342 0.47342 0.0 5 95 0. 140 
9 0.48807 0. 51821 6.17378 2 32 0.043 , 

IO 0.44150 0.44999 I. 92314 2 43 0.050 

Average I 0. 84810 I 3.4 69.9 0.0957 
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(b) Group 2 : [a, ,'l] = [10, 30] 

Problem I v• ( X 103) I V (Xl03) V-V* I NCON. I NAS. 
~ (%) I 

C. P. U. TIME 
(sec) 

I 0. 50611 0. 50611 
2 0.44123 0.44123 
3 0.47133 0.47133 
4 0.44939 0.44939 
5 0.49069 0.49069 
6 0. 52995 0.52995 
7 0. 54471 0.54471 
8 0.59567 0.60471 
9 0.49132 0.49132 

10 0. 53764 0.53764 

Average 

(c) Group 3 : [a, ,'l] = [20, 50] 

Problem I V* ( X 103) I V (X 103) 

1 0.45608 0.45608 
2 0. 44151 0.44151 
3 0.44473 0.44473 
4 0.43913 0.43913 
5 0.49473 0.49496 
6 0. 50183 0.50183 
7 0.49676 0.49676 
8 0.50936 0.50936 
9 0.51741 0.53077 

10 0.47827 0.47827 

Average 

V* Exact optimal value. 

0.0 I 

0.0 3 
0.0 2 
0.0 3 
0.0 2 
0.0 2 
0.0 2 
1. 51756 2 
0.0 I 

0.0 2 

o. 15176 I 2.0 I 

V-V* I I ~ (%) NCON. 

0.0 1 
0.0 5 
0.0 1 
0.0 5 
0.04783 3 
0.0 3 
0.0 4 
0.0 2 
2.58275 3 
0.0 4 

0.26306 3.1 I 

2 0.007 
27 0.044 
3 0.011 

32 0.048 
3 0.011 

12 0.022 
3 0. 011 
7 0.015 
2 0.007 
3 0.011 

0.0187 

NAS. I C. P. u. TIME 
(sec) 

2 0.007 
63 0.098 
2 0.007 

79 0.111 
15 0.030 
47 0.064 
22 0.041 
3 0.010 

48 0.069 
33 0.047 

31. 41 0.0484 

V 
(V-V*)/V* 
NCON 

Approximate optimal value found by the proposed algorithm. 
Relative error. 
Total number of constraints generated. 

NAS Total number of assignment problems solved. 

proposed algorithm, true optimal solutions for the same test problems were also 

obtained by enumerating all feasible solutions. The proposed algorithm performed 

satisfactorily for those small test problems. For most of the problems, the objective 

value was attained within a few percent of the true optimal value. The numbers of 

problems for which the true optimal values were actually attained are six for Group l, 

nine for Group 2 and eight for Group 3. In terms of the average CPU time and the 

average numbers of NCON and NAS, Group l was the most difficult to solve, while 

Group 3 was the second and Group 2 was the easiest. The reason for this may be 
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explained as follows: First, note that the function Q, in (6) is quadratic on the 

interval [a, fi], and is linear outside of this interval. Since the mean value of each 

element of T is 5. 0 and only seven of the variables x,i can take value one for a 

feasible solution, each component of the vector Tx is expected to take a value of 35. 0 

approximately. For Group 2, the fact of 35. 0~ [a, fi] implies that a considerably 

large portion of the feasible solutions lies on one of the regions in which Q is linear. 

(See Fig. 1-b.) Thus, the function Q for Group 2 may be well approximated by a 

smaller number of supporting hyperplanes than for other groups. Moreover, comparing 

Qi 

(a) 

30 40 
(Tx) i 

(b) 

30 
(Tx)

1 

(c) 

20 50 
(Tx)

1 

Fig. X : feasible points 
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Group 1 with Group 3, it may be observed that a larger number of the feasible 

solutions for Group 1 are scattered in both parts outside the region in which Q is 

nonlinear (See Fig. 1-a, c). For that reason, it would be more difficult to get relatively 

good approximations for Q in Group 1 than in Group 3. 

5. Conclusion 

We have formulated the assignment problem with stochastic side constraints as a 

two-stage stochastic . program, and proposed an algorithm for obtaining an approximate 

solution of the problem. We have also made an experiment on small test problems so 

as to compare the solutions obtained by the algorithm with the true optimal solutions. 

The computational results were encouraging. Although we have not solved large 

problems, it might be expected that the proposed algorithm would produce fairly good 

approximate solutions even for large problems in a relatively small computation time. 
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