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Abstract 

A spherical flaw model in linear viscoelasticity and a simple double cantilever 
model were proposed by Williams and Freund respectively, with the hope that 
they would lead to a qualitatively similar phenomenon as a common crack model. 
Although both models were very simple, they had jump discontinuities of stress 
at the crack tip (or the like) at any time. In this paper, a general expression 
for the energy release rate in such crack models is derived and is evaluated for 
each model. Also, Nuismer's modified interpretation of Williams' model is discus
sed. Furthermore, the expressions of a partition for the energy release rate into 
the usual quasi-static part and a dynamic contribution are evaluated in Freund's 
model. 

I. Introduction 

Recently we1
i gave a unified treatment of dynamic energy release rate €,, for a 

sharp, straight crack. It was based on a classical smoothness hypothesis; for in

stance, the neighborhood of the crack tip is assumed to be free of shock waves. 

On the other hand, Williams2•3i proposed a spherical flaw model in linear visco

elasticity, and Freund4l analysed a very simple model of the double cantilever beam 

with the hope that they would lead to a qualitatively similar phenomenon as a com

mon crack model. Although both models were very simple, they had jump discon

tinuities of stress at the crack tip (or the like) at any time. This motivated us to 

examine the expressions of the energy release rate in such models. 

After giving the basic equaitons in section 2, we define the dynamic energy 

release rate €, and get the simple relation on €, in Section 3. Using this general 

idea, we first discuss Williams' model2•3i and the modified interpretation by Nuismer6
i 

in Section 4. We show that Nuismer's modified expression does not give the energy 

release rate correctly, except for the linear materials. In the final section, extending 

Freund's model to a two-dimensional one, we discuss and evaluate the partition 11, 
and /}{ of €, defined by Gurtin and Yatomi1i. 

* Department of Aeronautical Engineering. 
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We consider a three-dimensional regular body £ which identifies with the 

regular region of R 8 it occupies in a fixed reference configuration. 

The displacement u(x, t), the (Piola-Kirchhoff) stress S(x, t) and the work 

w(x, t) obey the energy equation 

w=S • rit (2 • 1) 

and the equation of motion 

div S=pu (2 • 2) 

with r>O the density in the reference configuration. We assume throughout that (J 

is constant. The above equations are appropriate to both the finite and infinitesimal 

theories. In the infinitesimal theory S is symmetric. 

3. Energy-release rate 

We assume that the regular sub-region qJc£ contains a smooth moving surface 

d(t) with a velocity c=lcln, as indicated in Figure 1, where n is a continuous unit 

vector field normal to the surface d(t). 

p+ 

Fig. 1. 

We also assume that the fields <[)(x, t), such as w, S and u, suffer a finite jump 

discontinuity across d(t), but are smooth everywhere else. We write 

<[)±(x, t) =lim <[)(x+(3n, t), xEd(t) 
o-+0+ 

for the values of their fields on the back and front faces of d(t) and 

[<[)]=(/)+-<Ir 

for the jump in (/) across d(t). 

The function 6 defined by 

€,(t) = f s • uds- ddt f (w+k)dv Ja~ J~ (3 • 1) 



54 Chikayoshi YATOMI 

is called the dynamic energy release rate from d(t). * 

Here, k= ~ u2 is the kinetic energy per unit volume, and 8 in a boundary integral 

denotes the surface traction: 

8=Sn. 
Applying the divergence theorem to the two regions tj)+ and tj)-, bounded by 

atj)++d(t) and atj)-+d(t) respectively, and by (2 • 1) and (2 • 2), we have 

f 8. uds= f (w+k)dv-f [8 · u]ds. Ja;, );, J .c!(t) 

Since 

d
d f (w+k)dv= f (w+k)dv+ f [w+k]c • nds 
t );, );, Leo 

the relation (3 • 1) yields the simple formula: 

G(t)=-f ([8•u]+[w+k]JcJ)ds. J ,!(t) (3 • 2) 

4. Spherical flaw model 

Because of its analytical simplicity and qualitatively similar results as a crack 

model, Williams3' proposed a dynamic spherical flaw fracture model in infinitesimal 

theories of linear viscoelasticity. He considered an incompressible viscoelastic 

sphere t/?,(t) of radius b with a concentric spherical cavity of radius a(t). The 

sphere was subjected to a uniform radial loading at its outer bounary. 

Then the rate of increase of surface energy S was computed by 

S= f 8 • uds- ddt f ft(~+k)dtdv, Jaso lgctJJo 
(4 • 1) 

where ad?,0 is the outer surface. 

Regarding d (t) as the surface of the spherical flaw, that is, the inner surface, 

and taking tj)=t/?,(O), tj)-=£(t) and tj)+=t/?,(O)/t/?,(t) in (3 • 1), we find that E,(t) 

in the definition (3 • 1) is exactly the same as S in (4 • 1), since 8=0 at the inner 

surface and w=k=O in ti?,+. Thus, (3 • 2) gives the simple formula for€,:** 

G(t) = f cw-+ k-)a (t)ds. J J(t) 

Cherepanov6' and Knaussn extended Williams' analysis2' to the case of a Griffith 

crack in a quasi-static growth. Using a power balance as a fracture criterion, they 

obtained results similar to those of Williams2
'. Different conclusions were reached, 

however, by Graham8
i who used a virtual work argument, and by Nuismer~' who 

used a thermodynamic power balance in a form used by Achenbach and Nuismer9
'. 

That is, the quantity like 6 which governs the initiation and growth of crack did 

* Formally (3.1) is the same as (4.2) defined by Gurtin and Yatomi1'. 
** Williams3' evaluated (4. 1) directly. 
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not involve the time-dependent part of the viscoelastic material behavior, but only 

the elastic portion. Then, Nuismer5' gave an interesting interpretation of Williams' 

analysis, the results of which became identical to those obtained by Graham8
' and 

himself. 

First of all, to eliminate the difficulties encountered by having a disappearing 

mass in tj)+, behind the advancing flaw surface dCt), he assumed that the strains 

E do not vanish in tj)+, although stress S vanishes there. As a result, the fields 

were given in the form* 

S(r, t) =u(r, t)H(r-a(t)), 

E(r, t) =e(r, t)H(r-a(t)) +E(r, t), 

(4 • 2) 

(4 • 3) 

where u, e and E are continuous functions in the domain considered, E-0, if the 

material is elastic, and H is the unit Heaviside step function. Nuismer5J then em

ployed the power balance (4 • 1) in a slightly modified form 

I'= ( s • uds- ( wdv, 
J a.so J ,iHo> 

(4 • 4) 

where w was interpreted as the generalized function. Since w=S • E, applying the 

divergence theorem and using (4 • 2), (4 • 3), and the relation used by Nuismer5
': 

( f(r)h(r-a(t))8(r-a(t)dv= 
2
1 f f(a(t))ds, J~w J.Jm 

where a is the Dirac delta function and f (r) is continuous in the neighborhood of 

r=a(t), we have 

I'= -(f _1_ u • [E]ds)a(t), J"(t) 2 

= (L(t) t u. eds )a(t). (4 • 5) 

It is easy to check that this gives exactly the same fracture condition as (23) in 

Nuismer5
i, which does not involve the time-dependent part of the viscoelastic ma

terial behavior. 

On the other hand, even in this modified interpretation of the fracture process, 

we consider that the simple application of (3 • 1): 

€,(t)=( s • uds- ddt ( wdv (4 • 6) 
Jaso J.scoi 

gives the rate of increase of surface energy correctly. Then, since 8=0 on d(t) and 

w=O in tj)+, (3 • 2) yields 

6(t) = (f w-at)a(t), J J(t) 

where 

* These expressions may be derived from (12), (13) and (15) in Nuismer5l. 
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It is important to note the difference of the results between (4 • 4) and (4 • 6). 

Note that the expression ( 4 • 4) yields the form of a linear type just as ( 4 • 5) inde

pendently of the materials, as long as the fields are given in the forms of (4 • 2) 

and (4 • 3). However, since w¾ 1 u • e in general non-linear materials, the power 

balance relation ( 4 • 4), which was modified to account for all the materials by 

Nuismer0\ does not give 6 in (4 • 6) except for the linear materials. Interestingly, 

we find10> that a similar restriction appears in Achenbach's expressionm for 6 in the 

common crack problem. 

5. Double cantilever beam model 

Freund•> analysed a very simple one-dimensional model of the double cantilever 

beam (deb) dynamic crack propagation to understand the details of the physical 

process. 

Extending his model to a two-dimensional one, we will discuss the dynamic 

energy release rate 6, and examine the partition U and /}{, which was defined by 

Gurtin and Yatomi1>*. 

The finite specimen £ contains a propagating plane crack along the center 

plane. (See Fig. 2.) The material ahead of the crack tip surface d(t), the cross 

section which is across the crack tip line l(t), is assumed to be undeformed. The 

material behaind d(t) is constrained to deform as shear body symmetrically with 

respect to the center plane. That is to say, the cross-sections can translate only in 

Fig. 2. 

* Rice12> made this partition first for the common crack model. Gurtin and YatomiD reduced 
fl< to a simple form and proved f}<;<;;,.O assuming the neighborhood of the crack tip to 
be free of any shock wave. 



Note on the Energy Release Rate of Simple Ci-ack Models 
with Finite Jump Discontinities 

57 

the transverse direction. The amount of translation is denoted by w(x, t), where x 

is the point in the center plane. 

tion: 

We assume the linear elastic constitutive equa-

u=µq, (5; 1) 

where u(x, t) is the shear stress vector, µ the shear constant, and q=f'w. Then 

we have 

µ 
w= 2 Jql2

, 

p • 
k=2w2. 

(5 • 2) 

(5 • 3) 

Assuming that w and q have a finite jump at l(t), make qJ in the neighborhood of 

the crack tip surface sufficiently small to make q and w smooth in the center plane 

a in qJ, except l(t). By the assumption w(x, t) =0 for all xEa-+l(t) and t, all 

the fields considered vanish in a - and 

(5 • 4) 

where c=JcJn is the velocity of the crack tip surface with an unit normal n. 

and 

Using (5 • 1)~(5 • 4), we have 

-Cs· uJ = µ(q+ • n) 2JcJ, 

[wJlcl= ~ Jq+l2l<-i, 

[k]JcJ= ~ (q+. n) 2Jcl8• 

Hence, the dynamic energy release rate from d(t) in (3 • 2) yields 

6(t)=2hf [.!:{2(q+ • n) 2 -lql+2)lcl-~(q+ • n) 21cJ3]ds, 
Jz<t) 2 2 

where 2h is the total height of qJ. 

(5 • 5) 

Since [w] =0 and, therefore, the strain in the tangential direction of d(t) vani

shes on the back face of d(t), we have 

iql+=q+ • n. 

Then (5 • 5) becomes 

<S(t)=µhf (l-lcl2/v2)lcl ltJ+l2ds, 
Jz<t) 

where v=-,/ µ/p is the shear velocity. 

On the other hand, by (3 • 1), we have 

6(to) =2h{ta, (uc0 • n)Wt0ds-( it )Jir, (w1+k1)da }, 

where ( it )c. stands for the derivative with respect to t at t=t0• 

* Cf. Freund0 , Eq. (3 • 3). 

(5 • 6)* 

(5 • 7) 
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The first integral in (5 • 7) is equal to 

r (wc.+kc.)da-f (oc/. n)w+c.ds. Ja, J !(to) 

Since q+=lql+n and w++lqllcl=O, this equals 

r (we.+ kc.)da + r (oc/ • qc/)I Co Ids J a, Ji(to) 

= f (oc, • tic0 +pwc0Wc0)da+lim f [ot • (qt-qt.) 
J11 t-to J1ct) 

+()Wt(Wt-Wt0)]Ct • nds 

= ( it )Ja, {ot • (qt-qt.) +t;wt(wt-Wt0 )}da. 

Hence, (5 • 7) yields 

6Cto) =2h( it )Ja, L {(ot-O,) • iJ.+p(wt-w,)w.}d).da, 

Then the partition of 6 is defined by1
l 

f/i(to) =2h( it )Ja, [cot-O,) • q.dMa, 

/X(to) =2h( it )Ja, L()(Wt-w,)w.d).da. 

For this simple model we may easily evaluate f/i(t0 ) and /X(t0) as 

and 

f/i(to)=2h{( it )Ja,01• (qt-qt.)da-( it )Ja,wda} 

=2h[{f wt0da+f (ot/•qt/)lcolds}-{ wt,da Ja, Jw,l 11, 

+ 2
1 

f Cot/· q,/)lco Ids}], Jwol 
=µhr I qt.+ 1

2
1 Co Ids, (>O) JiccoJ 

/XCto) =2h{ ( it )Jct ()wt(w,-w,0)da-( ;t )Ja, t pw,2da} 

= 2hu a, kt.da -(1 a, k,.da + L.) t ()Wt/ 2
1 Co Ids)} 

= -phf w,.+ 2lcolds Jicc,J 

(5 • 8) 

(5 • 9) 

Let A be the whole center plane of £, a as before and WA, Wa, KA, and Ka 

designate the strain energy and kinetic energy in A and a respectively. When the 

power supplied by the enviroment of £ vanishes, we have 

in general 



Note on the Energy Release Rate of Simple Crack Models 
with Finite Jump Discontinities 

59 

It is important to note that the values of 11 and /X are independent of the shape 

of a, althugh other quantities have a shape dependency in general. 

Thus 1J, and /J< together with 6 seem to be more intrinsic and important to the 

dynamic behavior of the crack tip than others. In Freund's model of the deb with 

constant crack velocity c, both WA and kA have a sudden jump at the instant the 

stress wave reflects from the fixed end of the arms. (KA changes the sign there.) 

This reflection should not affect the behavior of the crack tip until such informa

tion is transmitted to the tip by the stress wave. Then both 11 and /X in (5 • 8) and 

(5 • 9) are constant from the initiation of fracture until the instant the reflected 

stress wave overtakes the crack tip. 

Finally, for this simple model, we may easily show that 

11Cto)= lim Wa,, 
area of (t-O 

/J<Cto) = - lim Ka,. 
area of lt-+O 

Hence, 11 is the relased rate of strain energy and /J< is the generating rate of 

kinetic energy in a, in the limit, that is, from the crack tip surface. 
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