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Abstract 

We studied the steady two-dimensional flow of a viscous incompressibe fluid past 
an elliptic valve of zero angle of attack placed in a rectilinear channel. We apply 
generalized curvilinear coordinates, by which the channel walls and the valve surface 
are mapped onto corresponding coordinate lines, to the solution of the stream func
tion-vorticity formulation of the Navier-Stokes equations. The ADI and the Euler 
explicit method of solution are applied to solve the transformed basic equations. 

Flow patterns, pressure distributions and drag coefficients are obtained for several 
values of Reynolds number between O and 40. 

Symbols 

Cn 

J 
Lo 

p 

drag coefficient of the valve 

Jacobian of the coordinate transformation 

characteristic length (half-width of the channel) 

pressure 

37 

P, Q functions used for an arbitrary gathering of the transformed coordinate lines 

Reynolds number R 

!! 
u, V 

Uo 

Xo 

x, y 

x, y 

time 

velocity 

x- and y- components of the velocity, respectively 

characteristic velocity (mean velocity on the upstream boundary) 

distance from the origin to the upstream and the downstream boundaries 

Cartesian coordinates 

x- and y- components of the force, respectively 
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a, ~' r = coordinate transformation parameters 

µ viscosity 

~, r; transformed coordinates 

p density 

-r shearing stress 

<jJ stream function 

w vorticity 

L1 Laplacian 

Non-dimensionalization of the physical variables. Original variables with dimensions 

are denoted by ( ) *. 
x*=Lox, y*=Loy, 

~•= Uo~, 

t* = (Loi Uo) t, 

p*=po=const, 

P*=poU0 2Rp, 
-r* = µ( Uo/ Lo)-r. 
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1. Introduction 

Butterfly valves are widely used because of their simplicity and versatility. 

Kimura et al. (1980a, b) studied the flow past a butterfly valve in detail and 

determined the pressure drop due to the valve, its drag coefficient and other flow 

parameters from both the experimental and the theoretical view points. They also 

discussed the flow configuration around the valve based on an approximate method of 

solution. Yamashita (1980) studied Stokes flow in a channel past a flat valve with 

finite angle of attack and clarified the effect of angle of attack on the flow parameters. 

Although basic data necessary for the design of a butterfly valve may be obtained 

from the above studies, the exact solution of the flow past a valve would be of value 
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We study a steady two-dimensional flow of viscous incompressible fluid past an 

elliptic valve of zero angle of attack placed in a rectilinear channel. This is a model 

of the flow past a fully open butterfly valve. 

We use a system of generalized curviliriear coordinates proposed by Thompson et 

al. (1976) by which the channel walls and the valve surface are mapped onto the 

corresponding coordinate lines. With this procedure, the numerical solution of basic 

equations can be performed on a rectangular field of variables. The greatest merit of 

this system of coordinates is that no interpolation is required in relation to boundary 

conditions. This method further has the merit that we can arbitrarily gather grid 

points to yield sufficient spatial resolution in the regions of interest. 

We use the stream function-vorticity formulation of the Navier-Stokes equations. 

The ADI method of solution is used to solved the Poisson equation which relates the 

stream function and the vorticity. The Euler explicit method of solution is applied to 

the time integration of the momentum equation. The step size of the time integration 

is constrained to be within the viscous diffusion time, so that the integration may be 

carried out without numerical instability. 

Formulation of the problem and numerical procedures are given in section 2. 

Results and discussion are given in section 3. 

2. Basic equations in a generalized system of coordinates 

The generalized system of curvilinear coordinates or 'body-fitted curvilinear coor

dinates' was proposed by Thompson et al. (1976), and its application is fully discussed 

by Themes et al. ( 1977) and Thompson et al. ( 1977) • Although the basic formulas 

are the same as those in the above papers, we will recapitulate here in order to be 

self contained. 

2.1 Generalized system of curvilinear coordinates 

Let us suppose a steady two-dimensional flow of viscous incompressible fluid past 

an elliptic valve of zero angle of attack placed in a rectilinear channel. The ratio of 

axes of the ellipse is set equal to 0. 2. The upstream and the downstream boundaries, 

on which the in-flow and the out-flow conditions are imposed, are located at x= -20. 

and x= +20., respectively. 

Following the basic idea of body-fitted curvilinear coordinates proposed by 

Thompson et al. ( I 976), we transform the physical plane of the above geometry onto 

a rectangular computational plane. Figs. 1 and 2 illustrate two kinds of mapping proce

dures. Fig. I shows an '0-type' transformation, in which the grid points in the physical 

plane are aligned along 0-shaped curves and are attracted to the valve surface. 
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er--.--,---.---.-----.---.---.--, 

d1----+---+--+---+---+--+--+----1 

C 1----+---+--+---+---+--+--+----i 

b1-----11---11--1--1--+---+---+-------1 

Fig. I. 

2 3 4 5 6 7 8 9 

Correspondence between the physical plane 
and the calculation plane for the case of an 
0-type grid. Corresponding lines have the 
same symbols. 

e~-.--.--.-----.----.----.--,--i 

d 1-----+---+--+---+--+--t---+----1 

C ~-+--+---+--+--t---r--;------, 

b 1-----1---1--+--4---+--+--+----1 

~ 0 ,L--2_j__3L--4-'----5L---'-6-~7=----=a-~9 

+-~ 
Fig. 2. Correspondence between the physical plane 

and the calculation plane for the case of an 
H-type grid. Corresponding lines have the 
same symbols. 

This type of transformation 1s 

convenient for detailed study of 

the flow pattern in the immediate 

neighbourhood of the valve. Fig. 

3 shows an example of the 81 x60 

generated coordinate lines. Fig. 

2 illustrates an 'H-type' transfor

mation in which grid points in 

the physical plane are aligned 

along approximate stream lines. 

This type of transformation is con

venient for studying the pressure 

distribution along channel walls 

and thus the pressure drop caused 

by the valve. Fig. 4 shows an 

example of the 121 x20 generated 

coordinate lines. 

The mapping functions; 

x=x(~, r;), 

y= y(~, r;)' 

(2-l) 

(2-2) 

satisfy Poisson type equations on 

the mapped plane: 

where 

axu - 2fix .. + rx .. 

= -J2[xeP(~, r;) 

+x,Q(~, r;) ], (2-3) 

ay,,-2fiye.+rY .. 
=-J2[y,P(~, r;) 

+y,Q(~, 7])], (2-4) 

(2-5) 

fi =xex, + y,y., (2-6) 

r=x/+y/, (2-7) 

J=xey,-x,Yt• (2-8) 

This system is a quasi-linear 

elliptic system for the coordinate 

functions x(~, r;) and y(~, r;) in 
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the transformed plane. Solution 

of the elliptic system assures us 

that the Jacobian of the trans

formation does not vanish except 

at isolated singular points, Bound

ary conditions are specified on 

straight boundaries, and the spac

ing of the coordinate lines in 

the transformed plane is uniform. 

The inhomogeneous terms P(~, r;) 

and QC~, r;) are sums of decaying 

exponential functions which allow 

us to attract coordinate lines 

towards specified lines and points 

in the physical plane. 

Fig. 3. An example of generated coordinate lines 
for the case of an 0-type grid. 

Fig. 4. An example of generated coordinate lines 
for the case of an H-type grid. 

2. 2 Basic equations in the transformed plane 
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The stream function-vorticity formulation of the Navier-Stokes equations of the 

two-dimensional flow of viscous incompressible fluid is given as follows: 

w, +¢,w,,-<p,,wy= (w,,,,+wyy) IR, 

<p,,,,+<py,= -w, 

(2-9) 

(2-10) 

where ¢ is the non-dimensional stream function, w the non-dmensional vorticity, and 

R the Reynolds number based on the mean velocity on the upstream boundary and 

the half-width of the channel. 

The transformation discussed m 2. 1 transforms equations (2-9) and (2-10) as 

follows: 

w,+ (¢,we-</Jew,) / J= (awee-2~we.+rw,,) / J2R+ (Qw,+Pwe) / R, 

(a</Jee-2~¢e.+r¢.,)/]2+Q¢,+P¢e= -w. 

(2-11) 

(2-12) 

For the case where the Reynolds number is equal to zero, (2-9) and (2-11) are 

respectively modified as follows: 

2. 3 Boundary conditions 

(2-13) 

(2-14) 

Boundary conditions for the stream function ¢ are of Dirichlet type, corresponding 

to the situation in which the velocity distribution becomes of Poiseuille type at the 
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upstream and the downstream boundaries, the in-flow and the out-flow conditions on 

<fa are given by 

¢= (y-y 3/3) • (3/2) at x= ±xo, (2-15) 

where xo is a suitably large number to ensure sufficient accuracy. On the upper and 

the lower wall of the channel, <fa is + 1. 0 and -1. O, respectively. On the stagnation 

stream line, <fa is zero. 

On the upstream and the downstream boundaries, that is x= ±xo, the spatial 

derivative of w with respect to the stream-wise direction is set equal to zero (Roache 

1972a), 

(2-16) 

Based on the no-slip condition and equation (2-12), w on the rigid wall boundaries 

is set as follows (Roache 1972b) : 

w = -r</J,,/ J2 on y = + l and - 1 and on the valve surface, (2-17) 

where the right hand side is to be calculated on the respective boundaries. 

2. 4 Numerical procedure 

Equation (2-12) is solved by the ADI method of solution. The criterion of the 

convergence is that the absolute relative increment of the stream function with respect 

to the iteration is less than a certain tolerance e; 

(2-18) 

where k refers to the iteration step. To avoid unnecessarily strict application of the 

criterion near the zero stream line, this criterion is applied to the flow region for 

which 

where iJ is a certain infinitesimal. In our calculation, e and iJ are set to be 10-2 and 

10-4, respectively. 

Time integration of equation (2-11) (or (2-14)) is carried out by the Euler explicit 

method. The step size is equal to the viscous diffusion time multiplied by a factor. 

The factor is taken rather small ( ~ 10-3) at the beginning and is increased gradually 

to reach the final value of 0. 5. 

These procedures are successively carried out until the relative time derivative of 

the vorticity becomes less than a certain tolerance. The criterion is given as: 

lw,1/[l</J,we/JI + l<faew,/JI +( laweel + 12.Swhl + lrw"l)/j2R 

+ C IQw,I + IPwel)/ RJ<e', (2-20) 
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for the case of non-vanishing Reynolds number and as: 

lw,1/[ I awu I+ I 2fiwhl + lrw,.1)/]2+ IQw,I + I Pwel J<e', 

for the case of vanishing Reynolds number. 
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(2-21) 

Based on the same reasoning as in (2-19), (2-20) or (2-21) is applied to the flow 

region for which, 

(2-22) 

where e' and o' are infinitesimals as above. (Typically e'=J0-2, o'=0.2) 

2. 5 Pressure coefficient 

Once the velocity distribution is determined, the pressure is obtained by a line 

integral based on the primitive form of the Navier-Stokes equations. We start our 

integration from the upstream boundary and set the starting value of the pressure to 

be zero. 

The integration is performed along channel. walls and along the stagnation stream 

line. Based on the correspondence between the (x, y)-plane and the Ce, r;)-plane in 

the case of the 0-type grid, we can take the integrals along the channel wall and 

along the valve surface as the integrals with respect to e for respectively fixed values 

of r;: 

P(eo)-PW =rdP=r(opjoe)de 

= re -R( ( 1,i/2) .,-wv) Xe+Juxe-R( ( 1N2) ,+wu) Ye+Jvye]de 

f rfo = -R[rN2Je°+ Je [ -Rw¢e+ (fiwe-rw,) I ]]de. (2-23) 

Because the flow is symmetric with respect to y in our case of zero angle of 

attack, integrals along the upstream-branch and the downstream-branch of the 

stagnation stream line can be taken as those with respect to r; for respectively fixed 

value of e: 

(2-24) 

If we use the H-type grid, the integrals are all with respect to e for respectively 

fixed values of r;. This situation can easily be seen based on the correspondence 

between the (x, y)-plane and the (e, r;)-plane (see Fig. 2). 

2. 6 Drag coefficient 

The force on the valve surface is given as 
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X= [ -p+2(ou/ox)] (-Yt) + [(ou/oy) + (ov/ ox) ]Xt, 

Y = [ (ou/oy) + (ov/ox) ](-ye)+ [ -p+2(ov/oy) Jxt, 

(2-25) 

(2-26) 

where X and Y is the x- and y-component of the force respectively, and use is made 

of the fact that r; is constant on the surface. 

Combining the equation of continuity and the no-slip conditions on the valve 

surface, we obtain: 

-(ov/oy)xe+ (ou/oy)yt=0, 

(ov/ox) Xe- (ou/ox) Yt=0. 

Using the above, X and Y are modified as follows: 

X=py,+[-(ov/ox) +(ou/oy)]x1 

=PYe-WXt, 

Y = -Pxe+ [ -(ov/ox) + (ou/oy) ]Ye 

=-Pxe-Yt• 

(2-27) 

(2-28) 

(2-29) 

(2-30) 

Drag coefficient CD is obtained by the integration of X along the valve surface: 

(2-31) 

where the factor ( 1/ R) is inserted because of our definition of the non-dimensional 

drag force. 

The lift coefficient i.e. the corresponding integral of Y vanishes because of the 

symmetry of our flow. 

3. Discussion 

3. 1 The results 

We studied cases with Reynolds numbers 0, 3, 7, 10, 20, 30 and 40. These may 

seem to be rather small from a practical view point, but Imai ( 1958) has pointed out 

that if we restrict our attention to the time average, we can get a reasonable model 

of a high Reynolds number flow about a bluff body from a steady flow with an 

effective Reynolds number of 40. 

To examine the accuracy of our solution in relation to the finite value of xo, we 

compare a flow of Reynolds number 40 for x0 =20 (Figs. 5-1 to 5-4) with that for 

xo = 15 ( Figs. 7-1 to 7-4) . Both flow patterns show good agreement near the valve 

and the drag coefficient CD agree to within the order of 1%. Based on these results, 

we use the value of xo=20 for all the other solutions. 

A merit of the O-type grid is that the no-slip condition on the valve surface is 

satisfied to a good accuracy. For example, the largest value of the slipping velocity was 
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0. 0156 for the case with Reynolds 

number of 40. The reason is that 

there are a sufficient number of 

lines of constant r; around the 

valve to give good resolution. As 

the demerit of this grid system, 

the pressure distribution on the 

channell wall could not be calcu

lated with reasonable accuracy. 

This is because there exist only 20 

grid points along the wall. Final 

estimates of the relative error of 

w, are given in Figs. 5-4, 6-4 and 

7-4. H-type grid, in contrast, 

has 121 grid points both on the 

stagnation stream line and on the 

channell wall, and the pressure 

distribution is calculated to a high 

accuracy on both lines. Because 

grid spacing near the valve is rather 

sparse in comparison with that in 

the O-type grid, however, the 

no-slip condition on the valve is 

rather poorly satisfied. The largest 

value of the slipping velocity is 

0. 1223 for the flow with Reynolds 

number 40. The relative errors of 

w, are below 0. 01 in the vicinity 

of the valve, and at most 0. 06 in 

the entire field. The relative error 

in this case, therefore, is not pre

sented. These assure us that the 

final step of our calculation can 

be taken as the steady limit of the 

unsteady flow. 

The flow patterns of the steady 

limit for various Reynolds num

bers are given in Figs. 5-1 to 8-3. 

Fig. 5-1. Stream lines for a case with R=40 and 
x0=20. The 0-type grid is used. 

·-----

~~i~~-_;=~-~ 
Fig. 5-2. Velocity vectors for a case with R=40 

and xo = 20. The 0-type grid is used. 

Fig. 5-3. Equi-vorticity lines for a case with R=40 
and x0=20. The 0-type grid is used. 

Fig. 5-4. A contour representation of the steadiness 
parameter r for a case with R=40 and 
xo=20, where 

r= lw,1/[lefivwt/JI + lefiewv/JI 
+(lawu I+ l2Pwnl + lrwnl)/J2R 
+ Cl Qwv I+ IPwe 1)/R] 

The numbering of each contour gives the 
value of r. The 0-type grid is used. 
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Fig. 6-1. Stream lines for a case with R=O. The 
0-type grid is used. 

Fig. 6-2. Velocity vectors for a case with R=O. 
The 0-type grid is used. 

~ 

Fig. 6-3. Equi-vorticity lines for a case with R=O. 
The 0-type grid is used. 

02f5 )" ~-0.25 5 -c===:=, c_ 
0.75 ~ 

Fig. 6-4. A contour representation of the steadiness 
parameter r for a case with R=O, where 

r= lw,1/[(lawH I+ l2Pwe, I 
+ lrw .. 1)/P+ I Qw, I+ IPwe IJ. 

The numbering of each contour gives the 
value of r. The 0-type grid is used. 

Figs. 6-1 to 6-3 clarify that the 

flow pattern for the case of R=O 

is symmetric with respect to x. 

Figs. 5-1 to 5-3 clarify, on the 

contrary, that the flow pattern for 

the case of R=40 is asymmetric 

with respect to x. Especially, Fig. 

5-3 clarifies the appearance of a 

region of strong vorticity near the 

nose. The figure also shows the 

existence of a region of weak vor

ticity near the tail. This can be 

taken as a sign of the flow separa

tion for cases of higher Reynolds 

numbers. 

Figs. 9 to 11 give the pressure 

distributions on the zero stream line 

for the 0-type grid. Similar to the 

viscous flow of infinite extent past 

a sphere (cf. Landau and Lifshitz, 

1959), there exist regions near the 

nose and tail of the valve, for which 

the pressure gradient ( opj ox) is 

positive. This fact is also seen in 

Fig. 12-1 for the H-type grid. 

Comparison of Fig. 9 with Fig. 12-1 

shows the superiority of the H-type 

grid over the 0-type grid as far as 

the pressure distribution outside the 

valve is concerned. The compari

son also shows that the pressure 

distributions on the valve surface 

agree well with each other. The 

pressure distribution on a channel 

wall is given in Fig. 12-2. The 

pressure distribution on a channel 

wall agrees well with that on the 

zero stream line except near the 
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valve. There exists a region of 

positive pressure gradient also on 

the channel wall, 

The largest discrepancy be

tween the drag coefficient using 

the 0-type grid and the H-type 

grid is 2. 54% for the flow with 

Reynolds number 40. The drag 

coefficient versus Reynolds number 

is given in Fig. 13, For the sake 

of compactness of the figure, we use 

RCv rather than Cv as the ordinate. 

Based on results for Reynolds num

ber 20 and 40, we can determine 

coefficients of lmai's formula ( 1958) 

of the drag coefficient: 

Cv112 =0. 212+6. 90R-112 

(3-1) 

We can also get a simple linear 

relation between Cv and R- 1 : 

Cv=0. 308+55. 5/R. 
(3-2) 

The estimate of RCv by (3-1) ts 

given by a dashed line and that 

by (3-2) is given by a dash-dotted 

line in Fig. 13. Present results 

agree better with (3-2) than with 

(3-1). This result poses an interest

ing problem of the channel wall 

correction of Imai's formula. 

3. 2 Concluding remarks 

In the present study, we 

restricted our attention to cases of 

zero angle of attack. The method 

of generalised coordinate system, 

however, can be applied to cases 

Fig. 7-1. Stream lines for a case with R=40 and 
x0= 15. The O-type grid is used. 

Fig. 7-2. Velocity vectors for a case with R=40 
and x0= IS., The O-type grid is used. 

======= ::;:; 
Fig. 7-3. Equi-vorticity lines for a case with R=40 

and xo= 15. The O-type grid is used. 

0.75 
0.05 , ~-5 
~ .: . 0.25 r---~ cs 

.05 

Fig. 7-4. A contour representation of the steadiness 
parameter r for a case with R=40 and 
xo= 15, where 

r= [m,l/[1¢,me/Jl + lc/Jem,/Jl 
+ ([amH I+ 12/Jme, I+ lrmn l)/J2R 
+ (I Q.m, I+ [Pme 1)/R]. 

The numbering of each contour gives the 
value of r. The O-type grid is used. 
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Fig. 8-1. Stream lines for a case wth R=40. The 
H-type grid is used. -801-----+------ic+---+---, 

. - - - - ------------------------- - -- - - - _____ ,._____ ----- - - -
~ ---:.--::..itl~t~~~--~=. 

Fig. 8-2. Velocity vectors for a case with R=40. 
The H-type grid is used. 

0 +10 +20 X 

=--------===--- -- Fig. 9. The pressure distribution 
along the stagnation 
stream line for a case 
with R=40 and xo=20. 
The 0-type grid is used. 

Fig. 8-3. Equi-vorticity lines for a case wth R=40. 
The H-type grid is used. 

0 +10 +20 X 

Fig. 10. The pressure distribution along the 
stagnation stream line for a case with 
R=0. The 0-type grid is used. 

-160 '----'-----'---~-'«" 

-20 -10 0 +10 +20 X 
Fig. 12-1. The pressure distribution along 

the stagnation stream line for a 
case with R=40. The H-type grid 
is used. 

Fig. 11. 

p 

p 

;so -10 0 +10 X 

The pressure distribution along the 
stagnation stream line for a case with 
R=40 and x0= 15. The 0-type grid 
is used. 

-160 '-----'-----'---~-...-
-20 -10 0 +10 +2ox 

Fig. 12-2. The pressure distribution on a 
channel wall for a case with R=40. 
The H-type grid is used. 
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RCo 
70.------~------.-------.--------. 

45o',-----,~o----2~0----3~0,----~40 
Fig. 13. Dependence of RC0 on R. The 0-type 

grid i s used. 
R 
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with finite angle of attack. The solution can be obtained similarly to the case of zero 

angle of attack. An additional complication comes from the fact that the stagnation 

stream line is not given ab initio and is to be determined during the process of solution. 

As Thompson et al. ( 1976), Uchida ( 1980) and Alam et al. ( 1983) showed, the 

single-valuedness of the pressure on the valve surface can be included iteratively in 

the solution. This would be the easiest extension of our present study. 

We thank Professor Takuya Matsuda and Doctor Izumi Hachisu for their discus

sions. We also thank Doctor Anthony J. Allen for kindly inspecting the manuscript. 

The computations were performed on a Fujitsu M-382 at the Date Processing 

Center of Kyoto University. 
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