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Abstract 

This paper describes the numerical method to obtain a steady state oscillation wave 
of oscillator by the Volterra series expansion method. An amplitude and a period of 
a fundamental component are determined by solving algebraic equations, after which 
the harmonic components can be calculated. The method is applied to the analvsis 
of the van der Pole oscillator and phase shift oscillator. 

1. Introduction 

51 

In a linear circuit, it is impossible to generate a periodic oscillation which does 

not depend on the initial state, when the external force does not exist. Therefore, a 

self oscillator, which generates a nearly sinusoidal periodic oscillation wave with constant 

amplitude, must necessarily contain nonlinear elements. In such a self oscillator, the 

period and amplitude of a periodic oscillation wave are unknown. Furthermore, a 

periodic wave contains many harmonic components which are generated by nonlinear 

elements. 

The periodic oscillation of the self excitation circuit has been investigated in detail 

for a long time by many reserchers. Most of the methods of analysis have been carried 

out by deriving the nonlinear differential equation which contains the small parameter, 

and solving it by such methods as the averaging method, the perturbation method 

and the asymptotic method 1>. 

Other methods for the study on the analysis of the nonlinear circuits have been 

reported. These methods are based on the theory of the Volterra series expansioni>, 3>, 

As an application, a method to determine a period and an amplitude of fundamental 

component of a self oscillation wave has been presented'>. By this method, it is 

unnecessary to derive and solve the nonlinear equations of the circuit. A period and 

an amplitude of fundamental component of a periodic oscillation wave are determined 

by solving the algebraic equations derived from the block diagram of the circuit. 
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The above method is limited to determine the fundamental component. In this 

paper, we will extend the above method in order to get many harmonic components. 

A numerical method to get a self oscillation wave composed by many harmonic 

components will be shown. This method is applied to the analysis of the van der 

Pole oscillator and phase shift oscillator. 

2. Steady state analysis of Volterra series 

2. 1 Volterra series expansion of nonlinear system 

Here, we shall consider a system whose relation between the input function 

x(t) and the output function y(t) is given by the following equation. 

This equation is called the Volterra series expansion of the system, h, is called the i-th 

Volterra kernel, and i-th integral term which contains h, is called the i-th term. 

The Volterra series whose kernels, except h1 are O, is the input-output represen

tation of the linear system. There, the Laplace or Fourier transform is used as a 

powerful tool to analyse the system. 

In the same way, a multi-dimensional Laplace or Fourier transform can be applied 

to the Volterra series expansion of Eq. (1). 

Let us note the i-th term of Eq. (1) as y,(t) and define the following i-dimensional 

function as 

y,Ct1, t2, ···, t,) =~=
00

~=
00

···~=
00

h,(r1, r2, ···, r,) 

x(t1 -r1) x(ta-r2) ···x(t,-r,) dridr2···dr, 

Then, we have the following relation: 

By the multi-dimensional Laplace transform we have 

where 

X(s,) = f
00

x (t.) e-••'•dt. 

k=l, 2, ···, i 

(2) 

(3) 

(4) 

(5) 
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The same relation can be obtained by the multi-dimensional Fourier transform, 

substituting iw, for s,, in the above formulas. 

In the field of system analysis, it is convenient to treat the problem in the domain 

of the Laplace or Fourier transform (We call it the s or w domain.) rather than in the 

original time domain. (We call it the t domain.) 

For the nonlinear system composed of the fundamental connections (summation, 

product and cascade connections) of several subsystems, the relation between the 

kernels of the total system and the kernels of the individual systems are given as the 

formulas in the s or w domain 3'. Let us show the following two formulas used in this 

paper. 

F. 1 When the input-output relation of system H is represented by the following 

polynomial 

the i-th order kernel of H is 

H,(s,, s2, ... , s,) =a, } 

i=l, 2, ···, N 

F 

H 

(6) 

(7) 

F. 2 When the two subsystems F and G are 

cascaded as shown in Fig. I, where system F has 

i-th kernel F1(s1, s2, ···, s,) (i> 1), and G is a linear 

system which has only the 1st kernel G1(s1), i-th 

kernel H, of the system H is 
Fig. Cascade connection 

H1(s1, s2, ···, s,) =F,(s,, s2, ···, s,)G,(s1+s2+··•+s1) } 
i>l 

2. 2 Calculation of periodic response5> 

(8) 

Here we shall consider the steady state response substituting iw, for s,. For the 

1st term 

(9) 

its inverse Fourier transform is given by 

(10) 

When the input functon is expressed by 

(11) 

we can write 
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where 

X+(iw,) =5
00 

_!!e;.,e-1• 11dt=irAo(w1-w) 
-2 

x-(iw,) =5
00 

_!!e-;••e-i•11dt=irAo(Cll1 +w) 
-2 

and o is the delta function. 

Substitution of Eqs. (13), (14) into Eq. (10) yields 

y,(t) = ~ S: .. H,(iw,) {o(w,-w) +o(w1 +w)}ei•11dw 1 

=_!!{H,(iw) e;•'+H1(-iw) e-i•'} 
2 

=A Real[H1(iw) ei•'J 

where the relation of the complex conjugate is used. 

In the same way we have the following formulas: 

l --•- --•--.. +-nC,H.2.(iw ··· iw -iw ··· -iw)] 2 .,,, '' 

( 
A 2Hl ,. ,--ZHl-i:---

Y2Hl =2 2 ) Real[~ HaH1(tw, ···, iw, 

-----i------1w, ···, -iw)zH1C; exp{ (2k-2i+ l) wt}] 

where H,. means the symmetrical form defined as follows: 

3. Analysis of oscillator by Volterra series 

3. 1 Volterra series of oscillator" 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

An oscillator which generates a nearly sinusoidal wave can be represented by the 

following block diagram shown in Fig. 2. Here, f is the function which gives the 

C 

0 
Fig. 2 Block diagram of an oscillator Fig. 3 Open loop system of an oscillator 
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property of the nonlinear element, and G(s) is the transfer function of the linear part. 

Since this circuit is a closed loop system which has no input function, it is 

impossible to analyse it by the Volterra series of Eq. (1) without some transformaton. 

Hence, we shall consider the following open loop system where the closed loop is cut 

at point c, as shown in Fig. 3. 

Let us suppose that the nonlinear function f is given by the following polynomial. 

The Volterra kernels of the open loop system in the s domain are 

H,(s1) =a1 l 
Ha(s,, Sz) =aa 

HN(~1, s2, ···, sN) =aN 

and this system can be represented by the finite Volterra series. 

(19) 

(20) 

We first separate the open loop system of Fig. 3 into the linear part FL and the 

nonlinear part FNL, as shown in Fig. 4. The problem is that when an input function 

u (t) = Acos wt with an unknown amplitude A and 

an angular velocity w is imposed at point c, how 

we can determine them. In the following discus

sion, capital letters are used for the quantities in 

the s or w demain and small letters are used for 

the corresponding quantities in the t domain. 

X. means the n-th term with respect to the 

input U, and W. means the n-th output term 

Fig. 4 Block diagram of separated 
system 

generated by the nonlinear part FNL• Furthermore, Ep means the filter which removes 

the fundamental component with the angular velocity w generated by n-th output W •• 

Therefore, this system is the open loop system for the fundamental component, and 

the closed loop system for the harmonic components. 

To determine the unknown quantities A and w, we equate the sum of the 

fundamental components generated from every odd term W. at point c' to the input 

u at point c and solve the equation. 

For the system of Fig. 4, we have the following relations: 

X1=U 

X.=Ep{W.+FL(X.)} 

Because FL is a linear part, Eq. (22) becomes as follows: 

(21) 

(22) 

(23) 

Next, we shall show the procedures to determine every term W. to the input 
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X1 = U. To avoid complexity on notation, we will omit the effect of Ep. 

The higher terms which generate the fundamental component are only odd 

terms. Let us consider that the input function for FNL is the the sum of the 1st, 2nd, 

3rd,·· terms 

then, the output created by the nonlinear part FNL is 

))h2(r1, r2) x(t-r,) x(t-,2) d,,dr2 

+)))h3(,1, r2, rs)x(t-r1)x(l-r2)x(t-,3)dr1dr2dr3+""" 

From the combinations which create the 3rd term, we have 

))h2(r1, r2)x,(t-r,)x2(t-r2, t-r2)dr1dr2 

+))h2(r1, r2)x2(t-r1, t-r1)x,(t-r2)d,,dr2 

+ )))h3(,1, r2, rs) X1 (t-,1) X1 (t-r2) x1 (t-,,) dr1dr2drs 

By the multi-dimensional Laplace transform, we have 

)))))h2 ( r1, r2) x, U1 -,,) X2 (t2 -r2, ls -r2) dr1dr2e-•1•1-•2•r•3' 3dt1dt2dt3 

= ))hz ( r1, r2) e-•i•i-C•z+•:i>•2dr1dr2 )Xi (t1) e-•111dt1 ))X2 (!2, t3) e-•z•z-•3' 3dt2dt3 

=H2(s1, s2+s3).X,(s1)X2(s2, S3) • 

In the same way, we have 

)))))h2 ( ,,, r2) Xz (t1 -,1, !2 -,,) x(t3 -r2) dr,dr2e-•1•1-•2•2-•s'sdt1dt2dts 

=H2(s,+s2, sa)X2(s1, s2)X1(S3) 

=H3(s1, s2, sa)X1(s1)X1(s2)X,(sa). 

and finally we have 

W3(s1, s2, sa) =H2(s1, s2+ss)X1(s,)X2(s2, S3) 

+H2(s1+s2, ss)X2(s1, s2)X1(s3) 

+H3(s1, s2, ss)X1(s,)X1(s2)X1(sa). 

Repeating the same procedures, we have 

W.(s,, s2, ... , s.) =H2(s1, s2+ .. ·+s.)X1(s1)X.-1(s2, ···, s.) 

+H2(s1+s2, s3+ .. •+s.)X2(s1, s2)X.-2(ss, ... , s.) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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+···+H2(s1+··•+s._,, s.)X._,(s1, ···, s._,)X1(s.) 

+ :E H .. (s1+·••s," ···, s.-, .. +,+··•+s.) 
all permutation 

(I~k;=n k;>l) (3<m<n) 
i=l 

xX,1(s1, ···, s,1) •·····X,,.(s._,,.+1, ···, s.) +··· 
+H.(s,, s2, ···, s.)X1(s1)X,(s2) ···X1(s.). 

Application of formula F. 1 to Eq. (23) yields 

X.(s1, s2, ···, s.) = W.(s1, s2, ···, s.) 

+X.(s,, s2, ···, s.)H1(s1+s2+··•+s.) 

so, we have the following relation: 

To the 2nd term we have 

Xa(si, s2) = H2(s1, s2) X1 (s,) X1 (s2) 
l-H,(s1+s2) 

X (s s )- H2(s2, sa)X1(s2)X1(sa) 2 2
' 

3 
- l-H1(s2+sa) • 

Substituting Eqs. (34), (35) into Eq. (30), we have 

Wa(s,, s2, sa) =Ka(s,, s2, sa)X1(s1)X1(s2)X1(sa) 

where 

K (s s s) = H2(s2, sa)H2(s1, s2+ss) + H2(s1, s2)H2(s1+s2, sa) 
a 1' 2' a l-H1(s2+sa) l-H1(s1+s2) 

+ Ha (s1, s2, sa) 

In the same way we have 

where K. is determined from H 1, H 2 , • • ·, H •. 

3. 2 Calculation of fundamental component'> 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

57 

In this section, we consider the steady state response, so we use the Fourier 

transform instead of the Laplace transform substituting i<J); for s;. For the input 

function, we consider 

(39) 

As shown in 2. 2, the Fourier transform of Eq. (39) is the sum of two {j functions, 
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The inverse transform is reduced to the substitution. 

The fundamental component generated by this input function is the sum of H1X1 

and all the fundamental components generated from W 1, W 3, •··, W:i.+i• The unknown 

quatities A and m are determined to equate this fundamental component to X1. 

In order to inverse the n-th term W., it is sufficient to substitute ik,m for every 

s,(i= 1, 2, •··, n) of K.(s1, s2, ···, s.) where k,= l or k,= -1. 

To get the fundamental component, let us define 

s(n) = i:, k, ( 40) 
i=l 

Then, by the relation of the complex conjugate, it is sufficient to take all the combi

nations for s(n) = 1. In this case, we must take account of the effect of EP, namely, 

for all X.(n>2). The fundamental components are removed by EP, and so, the 

following relation must be held: 

l W.(ik1m, ik2m, ···, ik.m) : s(n)>l or s(n) =0 
X.(ik1m, ik2m, •··, ik.m) = 

0 
1-Hi (is(n) m) 

s(n) <-1 or s(n) = 1 
(41) 

For the n-th kernel K.(s1, s2, •··, s.), we use the notation K ... when s(n) =m. 

Then, for n=2N, m must be 0, 2, •··, 2N, and for k=2N+ I, m must be 1, 3, ···, 

2N+l. 

By the following definitions, we can get the same system as shown in Fig. 4 to 

determine K .... 

K1 .. =Kf,.= 1 (m= ± 1) 

K~. 1 1§(. ) (n>2, m=0, 2, 3, ... , n) 
-a1 imm 

(42) 

(43) 

K.,. is used for the term W., and K~ .. is used for the term X.. K ... is given by the 

following formula: 

<•>2) l (44) 

The fundamental component is generated from K:i.+1 , (n= 1, 2, •··, N) and H,. The 

coefficients for the factor e;•• are 

(45) 

and 
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(46) 

The coefficient of the fundamental component of the output is the sum of all 

the above quantities, and is equal to the coefficient of the input A/2. Hence, if we 

define 

( 47) 

then 

(48) 

The unknown quantities A and a, are the solution of Eq. (48). Since dN is a complex 

quantity, Eq. ( 48) is resolved to 

Real dN(A, w) =0 } 

Imag dN(A, w) =0 
(49) 

and solved by the Newton method. The total fundamental component of the oscillation 

wave is given by A cos wt. 

3. 3 Calculation of harmonic components 

After the fundamental component is determined as stated above, we can get the 

direct component and harmonic components generated from the terms which concern 

the determining of the fundamental component. 

Since the fundamental component is determined from Q1, ils, ···, il2N+1 by Eq. 

( 47) the harmonic components to be calculated are generated from every kernel K •• 

which is used to determine up to il2N+t• 

From Eqs. ( 42), ( 43) and ( 44), the kernels to be used to determine up to K2N+11 

are 

n=2l K:.0, K:a, •··, K~,. l 
n = 21 + l K:.S, K:.S, · ··, K;,. • 

l*=min{n, 2N-n+2} 

(50) 

The coefficient of m-th harmonic e1
••• from n-th term W. is 

(51) 

and by the following formulas, we can get a direct component up to ( N + l) -th 

harmonic component. 

N ( A )2" N ( A )2■ m=O ~2 2 Real[K290]-~ 2 Real[:i.C.~G(0)] (52) 
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(l<m<N+l) 

4. van der Pole oscillator 

(53) 

(54) 

Let us consider the LC oscillator shown in Fig. 5 which has a voltage controlled 

nonlinear registor N. L. with the relation 

(55) 

If we assume that R is a negative resistor of the value -1 and L= 1/C=e, then the 

voltage across N. L. can be described by the following van der Pole equation. 

This circuit is represented by the block diagram shown in Fig. 6 where 

The open loop system for this block diagram has only a 3rd kerne I 

Thus, from Eqs. ( 43), ( 44) we have 

K;..H 2m+l = Kz,,+1 2m+I l 
n=O: m=O or - I 

l<n<N: O<m<n 

K2n+12m+1=- ! Z{i(2m+l)w} ~ . K;,,1+12m1+1K~+12m2+1K;,,3H2m3H f 
all permutation • 

n, +n2 +na =n m, +m2 +ma =m n> l 

(56) 

(57) 

(58) 

(59) 

(60) 

From the above equations, this system generates only the odd order harmonics, 

By the method stated in 3., we obtained the amplitude A, the angular velocity w 

of the fundamental component and the amplitude Amp. of the total oscillation wave 

which consisted of the harmonic components for the various values of e. 

..1. RmN.L. 
C 

I 

Fig. 5 van der Pole oscillator Fig. 6 Block diagram of van der Pole oscillator 



Steady State Analysis of Oscillator by Volterra Series 61 

Table. I Steady state solution of van der Pole oscillator 

A Amp. (J) 

e Volterra 1R.K.G. Volterra IR K G Volterra 

I R=l5 R=25 R=l5 R=25 •.. R=l5 R=25 
S.E.M. 

o. 1 2.0005 2.0005 2.0002 2.0004 2.0004 2.0001 0.9993755 0.9993755 0.9993756 
0.2 2.0019 2.0019 2.0006 2.0017 2.0017 2.0004 0.9975078 0.9975078 0.9975089 
0.3 2.0042 2.0042 2. 0014 2.0037 2.0037 2.0009 0.9944128 0.9944147 0.9944198 
0.4 2.0074 2.0075 2.0025 2.0066 2.0067 2.0017 0.9901082 0.9901253 0.9901417 
0.5 2. 0112 2. 0116 2.0039 2. 0103 2. 0104 2.0025 0.9845922 0.9846772 0. 9847210 
0.6 2. 0151 2.0166 2.0056 2.0145 2. 0151 2.0035 0.9778241 0.9780866 0.9782169 
0. 7 2.0172 2.0218 2.0075 2.0183 2.0209 2.0047 0.9697905 0.9702350 0. 9707011 
0.8 2.0148 2.0240 2.0097 2.0187 2.0265 2.0057 0.9608365 0.9607766 0.9622563 
0.9 2.0048 2. 0138 2. 0112 2.0124 2.0204 2.0073 0.9522757 0.9509402 0.9529747 
1.0 1. 6371 1. 4561 2.0149 9. 1400 14.819 2.0086 0.3731043 0.3324072 0.9429559 

10.0 1. 3429 1. 2050 2. 1325 4.2945 8.4364 2. 0142 0.4356221 0.3349921 0.3297066 

Table. 2 Harmonic components of steady state solution 

Harmonics ~ e=0. l e=0.5 

I 
e=0.9 

n a. b. a. b. a. b. 

1 2.00046858856 0.0 2. 01166 0.0 2.005 0.0 
3 - o. 00093706735 -0. 02498241430 -0. 02315 -0. 12282 -0. 010 -0.217 
5 -0. 00051955396 0.00003685820 -0.01217 0.00448 -0.005 0.052 
7 0.00000124480 0.00001209078 0.00078 0.00138 
9 0.00000029527 - 0. 00000003970 0. 00011 -0.00008 

11 -0. 00000000129 -0. 00000000741 
13 -0. 00000000019 -0. 00000000003 

The values of A and Amp. are compared to the results calculated by the Runge

Kutta-Gill method (R. K. G.), and w is compared to the result given by the series 

expansion method (S. E. M.) 6>. We regard the results of R. K. G. and S. E. M. as the 

exact solution. 

The results are listed in Table. l where R means the maximum order 2N+ l of 

Eq. ( 47). The results of Table. l show that this method gives reasonable values for 

e less than 0. 9, but extremely different values for t> l. 
The steady state oscillation wave can be expressed by the following form. 

L L 

~a.cos nwt+ ~ b. sin nwt (61) 
,--1 •-1 

The values of a. and b. for e=O. 1, 0. 5, 0. 9 are listed in Table. 2, and the total 

oscillation wave form i& shown in Fig. 7. 
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For the values of e=O. 1 

and 0. S, the total oscillation 

wave can be recognized as a 

reasonable result. However, 

for the value of e=O. 9, the 

result is not so good. 

The "an der Pole equation 

has been investigated in detail 

by many researchers and ac

curate solutions are given for 

the various values of e. The

refore, it is not our purpose 

here to analyse the van der 

Pole equation. The van der 

Pole oscillator is used as an 

example to investigate the va

lidity of this method. 

By the results given above, 

it may be well to conclude 

that this method gives reaso

(o)Volterro 
E•0.10 

2 
r:9 
~8 
>$ 

<b>R.K.G. 
E•0.10 

Q .j....,~~.,,,..""1-,~~.---r--,--

c;-i 0.0 ID 2D 3.0 4.0 5.0 6.0 7.0 
T(SEC) 

E=0.50 

Fig. 7 Steady state oscillation wave of van der Pole 
oscillator 

nable results for nearly sinusoidal oscillations, but does not give good results for 

oscillations distorted by heavy nonlinearlity. 

5. Phase shift oscillator 

5.1 CR low pass phase shift oscillator 
Here, we will apply the method stated in 3. to the analysis of the CR low pass 

phase shift oscillator shown in Fig 8. The input-output relation of an amplifier has 

a saturation property, as shown by the solid line in Fig. 9. We will approximate this 

Fig. 8 CR low pass phase shift oscillator Fig. 9 Property of ampifier 
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property by dotted line expressed by the following equation. 

v, = -A(v-f3v3) 

63 

(62) 

For the open loop block diagram of this circuit, we have the following equations: 

j(v) =-A(v-f3v3) 

G(iw) = . l 
l-5(CRnw) 2+iCRnw{6- (CRnw) 2} 

(63) 

(64) 

Here, we calculated the steady state oscillation wave when R= lOkQ, C=O. OlµF, 

Cc= lOµF, R,=R.= lkQ, R1 =3lkQ and V«= 

15V. For the amplifier, we assume that the 

input impedance is sufficiently large and the 

output impedance is sufficiently small. The 

saturation voltage Vsa is 14 V, A is 31 and f3 

is 0. 4943. 

In Table. 3 we show the values of the 

harmonic components calculated by the Vol

terra series expansion method (R= 17), com

pared to the results calculated by R. K. G. 

method. 

Table. 3 Harmonic components of 
steady state solution 

Har:onics I Volterra I R.K.G 
!=3898.0Hz 

x.(V) x.(V) 

I 0.4178836 0.4178833 

3 0.0006537 0.0006537 
5 0.0000007 0.0000007 

7 0.0000000 0.0000000 

9 0.0000000 0.0000000 

Since this circuit has a low pass characteristic, the harmonic components decrease 

rapidly, and both results show good agreement. 

5. 2 Transistor RC phase shift oscillator 
Here, we will consider a RC high pass phase shift oscillator using a transistor as 

an amplifier, as shown in Fig. 10. The equivalent circuit of transistor is represented 

by the following simplified Ebers-Moll model, as shown in Fig. l l. 

An emitter current is given by the following equation 

(65) 

where /80 is the saturation current for the inverse direction, and ).=q/kT (q: charge 

E E 

Fig. 10 Transistor CR phase shift oscillator Fig. 11 Equivalent model of transistor 
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of electron, k: Boltzmann constant, T: absolute temperature). 

Let us separate every current and voltage as the following form: 

Jg =Igo (DC bias component) +i_, (signal component) l 
f C =f CO ( !/ ) + le ( 11 ) 

VBE=VBEo( !/ ) +vb,( !/ ) 

(66) 

First, we determine DC components. From Fig. 11, we have 

and the DC load line is given as follows: 

(68) 

Using the DC bias points determined by Eqs. (67), (68), we have the following 

relation for the signal components. 

For the linear subsystem show m Fig. 12, we have 

Substituting the following relation 

i1 = -ic I 
Vz=Vb, 

~2 =ib + ~b,/ ~" 
lb = ( J-a) 11 

Eq. (70) becomes as follows: 

(71) 

-al,(e
1
"b,- I) I 

= {c(inw) + nc;,,w) }vb,+D(inw) (l-a)l.(e 1
"b,- I) 

I. =l80e1
"BE 

(69) 

(70) 

Fig. 12 Linear subsystem 
of oscillator 

(72) 

For the open loop block diagram of this oscillator we have 

j(vb,) =l.(e'"b,- l) (73) 
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(l-a)D(inw) +a 

-C(inw) - D(inw) 
R,. 

65 

(74) 

To analyse this system by the Volterra series expansion, f must be described by a 

polynomial, so we will approximate Eq. (73) by the following best approximation 

polymomial. 

Volterra kernels of the total system are given as follows. 

H;(iw1, ···, iw;) =a;G{i(w1+···+w;)} } 

i=l,••·,7 

(75) 

(76) 

Since this system has all the kernels from the 1st to the 7th, the steady state 

oscillation wave contains the DC component and all the even and odd harmonics. 

Here, we calculated the steady state oscillation wave when T=300°K, R1 =35kQ, 

R2= IOkQ, R,=4kQ, / 50 = J0-7A, V«= 12V, C,=50µF, R= IOkQ, C=O. OlµF. In Table 

4, we show the values of the harmonic components calculated by the Volterra series 

expansion method. 

Since this circuit has a high pass pro

perty, and the property of the transistor is 

expressed by the exponential function, the 

effects of the harmonic components become 

Table. 4 Harmonic components of v,, 

large as /3 increases. 

In previous examples, we regarded the 

solutions calculated by the R. K. G. method 

as exact solutions, and compared them to 

the solutions calculated by the Volterra series 

expansion method. In this section we did 

not do so, but from previous results it may 

be well to conclude that the solutions of this 

example are sufficiently accurate. 

a 

/3 

VutV) 

w(rad/s) 

Harmonics 

xo(mV) 

x1(mV) 

x2(mV) 

xa(mV) 

x1(mV) 

R 

6. Conclusion 

I 

I 
I 
I 

I 

I 

0.9755 I 0.977 

39.8 I 42.5 

0.224761 I 0.224796 

3898.69 I 3861. 62 

0. 12040 3. 1251 
3. 91116 20. 1691 
0. 15220 4.2373 
0.00783 1. 2134 
0.00046 0.3177 

7 I 7 I 

In this paper, we showed a method to analyse an oscillator which generates a 

nearly sinusoidal oscillation wave by the Volterra series expansion method. By this 

method, we do not use the traditional method to derive and solve nonlinear differen

tial equations, but solve algebraic equations derived from the block diagram of the 

oscillator. 
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An amplitude and a period of a fundamental component of the oscillation wave 

and harmonic components which concern the determining of the above quantities can 

be easily calculated, 

We showed a numerical procedure to determine the above quantities. The 

method has been applied to the analysis of a van der Pole oscillator and a phase 

shift oscillator and we obtained useful results. 
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