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Abstract

This paper describes the numerical method to obtain a steady state oscillation wave
of oscillator by the Volterra series expansion method. An amplitude and a period of
a fundamental component are determined by solving algebraic equations, after which
the harmonic components can be calculated. The method is applied to the analysis
of the van der Pole oscillator and phase shift oscillator.

1. Introduction

In a linear circuit, it is impossible to generate a periodic oscillation which does
not depend on the initial state, when the external force does not exist. Therefore, a
self oscillator, which generates a nearly sinusoidal periodic oscillation wave with constant
amplitude, must necessarily contain nonlinear elements, In such a self oscillator, the
period and amplitude of a periodic oscillation wave are unknown, Furthermore, a
periodic wave contains many harmonic components which are generated by nonlinear
elements,

The periodic oscillation of the self excitation circuit has been investigated in detail
for a long time by many reserchers. Most of the methods of analysis have been carried
out by deriving the nonlinear differential equation which contains the small parameter,
and solving it by such methods as the averaging method, the perturbation method
and the asymptotic method?.

Other methods for the study on the analysis of the nonlinear circuits have been
reported. These methods are based on the theory of the Volterra series expansion? .,
As an applicatiori, a method to determine a period and an amplitude of fundamental
component of a self -oscillation wave has been presented®. By this method, it is
unnecessary to derive and solve the nonlinear equations of the circuit. A period and
an amplitude of fundamental component of a periodic oscillation wave are determined

by solving the algebraic equations derived from the block diagram of the circuit.
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The above method is limited to determine the fundamental component. In this
paper, we will extend the above method in order to get many harmonic components.
A numerical method to get a self oscillation wave composed by many harmonic
components will be shown. This method is applied to the analysis of the van der
Pole oscillator and phase shift oscillator.

2. Steady state analysis of Volterra series

2.1 Volterra series expansion of nonlinear system

Here, we shall consider a system whose relation between the input function
x(¢) and the output function y(f) is given by the following equation.

> =Slh1(71)x(t—‘rl) dfrl-S‘;Sth(n, ) x(t—1) x(t—72) dridra+-o-ee (D

This equation is called the Volterra series expansion of the system, ; is called the i-th
Volterra kernel, and i-th integral term which contains 4, is called the i-th term.

The Volterra series whose kernels, except /£, are 0, is the input-output represen-
tation of the linear system. There, the Laplace or Fourier transform is used as a
powerful tool to analyse the system,

In the same way, a multi-dimensional Laplace or Fourier transform can be applied
to the Volterra series expansion of Eq. (1).

Let us note the i-th term of Eq. (1) as y;(¢) and define the following i-dimensional
function as

9ty Ly vy £) :S:.,Slmglh‘(“’ Tay ey T2
x(t1—10) x(ta—712) - x(t;—7) dridry---dr; (2)
Then, we have the following relation:
Yil8) =ity tay 1) |yymipmennmtm (3
By the multi-dimensional Laplace transform we have
Yi(s1, 2, o0y 50 =H(51, Sz, ++ 5 X(s0) X(s2) - X(s) (4
where

Y‘.(_yl’ Say tory 81 :S S S Dilbry b2y ooy 1) et il dty oo dt;

00

Hi(-ﬁ, S2y "ty 1) =S_“S "'S_,,h"(t" fay o0y 1) e At dty - dE

—~ ©
X(s) ={_xtyemdt,

k=1, 2, i
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The same relation can be obtained by the multi-dimensional Fourier transform,
substituting iw; for s;, in the above formulas,

In the field of system analysis, it is convenient to treat the problem in the domain
of the Laplace or Fourier transform (We call it the s or @ domain.) rather than in the
original time domain, (We call it the ¢ domain,)

For the nonlinear system composed of the fundamental connections (summation,
product and cascade connections) of several subsystems, the relation between the
kernels of the total system and the kernels of the individual systems are given as the
formulas in the s or @ domain®., Let us show the following two formulas used in this
paper.

F. 1 When the input-output relation of system H is represented by the following
polynomial

() =ayx () +ax®(t) + -+ +ayx¥ () (6)
the i-th order kernel of H is

H(s1, 52, +++, 8 =a; }
i=1’ 2’ sy N

F.2 When the two subsystems F and G are

cascaded as shown in Fig. I, where system F has © il F l ;I 6 I >0

i-th kernel Fi(sy, 52, -+, 5) (i=1), and G is a linear ———

system which has only the Ist kernel Gi(s), i-th
kernel H; of the system H is

Fig. 1 Cascade connection

H,(s1, $2y =y 8) =Fi(81, Sz, ++y 8) G1(s1+ 52+ +5)) } @®

i1

2.2 Calculation of periodic response®
Here we shall consider the steady state response substituting iw; for s;. For the
Ist term

Y1(loy) =H,(ioy) X(iwy), €))

its inverse Fourier transform is given by
1) =" Hitio) X(io) e*doy. (10)
When the input functon is expressed by -
— A int —iwt
x(t)—Acosa)t=—2—(e +emiv) (1D

we can write
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X(ioy) = X* () + X~ (iwy) (12)
where
+(y — * A iet,—imt
X* (iwy) —-S_“—Q-e e—ietdt — 7 A5 (0, — ) (13)
SPTSNN cally S
X (zw;)—S_“——fe e~ dt =1 A3 (e, + o) (14)

and ¢ is the delta function,
Substitution of Egs. (13), (14) into Eq. (10) yields

N =§S:‘H1(iwl) {0(01— @) +5(w1+0) }e™'dw,

- g {H) (i0) € + Hy ( —iw) e~
= A Real[H, (iw) e] (15)

where the relation of the complex conjugate is used.
In the same way we have the following formulas:
2k—i —_— i

2k k=1 — T
u(?) =2(§) Real [33 Hy (o, -y iw, “iw, =, —ia)uC; exp{i(2k—20) ot}

——
+%sz‘sz(i(1J, Tty iw, —iw, "ty '—20))] (16)

2hH1—i o

A2 ] p h
J’zh+1=2(T) Real[i;) Hayn(io, -, io,
— f’__\ .
—10, -, —i0) uC; exp{(2k—2i+1) wt}] a7
where H, means the symmetrical form defined as follows:
Sym {H,(ios, -+, iw)} :L' py H,(iw, -+, iwy) (18)
PIIEII . 73

k permutation of @), ***, @

3. Analysis of oscillator by Volterra series

3.1 Volterra series of oscillator®
An oscillator which generates a nearly sinusoidal wave can be represented by the
following block diagram shown in Fig. 2. Here, f is the function which gives the

<

G(s)

Fig. 2 Block diagram of an oscillator Fig. 3 Open loop system of an oscillator
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property of the nonlinear element, and G(s) is the transfer function of the linear part,

Since this circuit is a closed loop system which has no input function, it is
impossible to analyse it by the Volterra series of Eq. (1) without some transformaton,
Hence, we shall consider the following open loop system where the closed loop is cut
at point ¢, as shown in Fig, 3.

Let us suppose that the nonlinear function f is given by the following polynomial.
SO =au(®) +ayu? () + - +ayu¥ () (19
The Volterra kernels of the open loop system in the s domain are

H\(s)) =ay
Hz({l, $2) =az (20)

HN(J'x, S24 0y SN) =ay

and this system can be represented by the finite Volterra series.

We first separate the open loop system of Fig. 3 into the linear part Fp and the
nonlinear part Fyg, as shown in Fig. 4. The problem is that when an input function
u(t) = Acos wt with an unknown amplitude 4 and
an angular velocity o is imposed at point ¢, how
we can determine them. In the following discus-
sion, capital letters are used for the quantities in

the s or w demain and small letters are used for

the corresponding quantities in the ¢ domain.
X, means the n-th term with respect to the  Fig. 4 Block diagram of separated
input U, and W, means the n-th output term system
generated by the nonlinear part Fy,. Furthermore, Ep means the filter which removes
the fundamental component with the angular velocity @ generated by n-th output W,.
Therefore, this system is the open loop system for the fundamental component, and
the closed loop system for the harmonic components. ,
To determine the unknown quantities 4 and o, we equate the sum of the
fundamental components generated from every odd term W, at point ¢’ to the input
u at point ¢ and solve the equation.

For the system of Fig. 4, we have the following relations:

Xi=U 2
XleP{W-+FL(Xn)} (22)

Because Fy is a linear part, Eq. (22) becomes as follows:
Xn———EP{W-+Hl(X-)} (23)

Next, we shall show the procedures to determine every term W, to the input



56 Satoshi ICHIKAWA and Yukio SHYAKUDA

X;=U. To avoid complexity on notation, we will omit the effect of E,.
The higher terms which generate the fundamental component are only odd
terms. Let us consider that the input function for Fy; is the the sum of the Ist, 2nd,

3rd,--- terms
X=X1+ X2+ x5+ - (24)

then, the output created by the nonlinear part Fy; is
SShz(n, o) x(t—1y) x(t —13) drid7,
+SSS/13(1'1, Ty, Ta) X (E—71) x({—72) x (¢ —713) dridrydrs + oo (25)
From the combinations which create the 3rd term, we have
(Shs(es, w0 1ilt—1) et~ 12, t—2) drrdry
+SS’12(71, ) %2 (E—11, t—71) %1 (¢ —713) dridry
+{{Shs(e1, 72, 0 Mt =) 1a(t—12) 31 (t— ) dridrades (26)
By the multi-dimensional Laplace transform, we have
SSSSS’!; (71, 72) X1(81—71) %2 (83— T2, t3—72) dvidrse 122" sdt d1,dty

=Sghz(‘rl, “Tg) c“‘l"“‘2+’3"2dr1dr25x1(tl) C_”"dtlgSJc}(tz‘, t3) e“z‘z"‘a‘sdtzdta
=H,(s1, 53 +53) X1 (s1) X3 (52, 53) . @n

In the same way, we have

SSSSS’Zz (1'1, 72) x2(£) —Ty, b2 —r) x(t3—12) d‘l.')d?.'ze_'1'1—'2'2—’3l3dt1dtzdt3

=H,;(s1+53, 58) X3 (51, 52) X1(53) (28)
SSSSSShs (71, T2, Ts) 1(t1—71) %1 (f2—7g) £1 (s —73) dridrodrse 22 3'sdt dtadts
=H;(s51, 52, 58) X1 (s0) X1 (52) X1(s9) . (29

and finally we have

Ws(s1, $2, $3) =H; (51, 52+53) X1(51) X3 (52, $3)
+Hy (51452, 53) X3 (51, 52) X1(83)
+Hy (81, 2, 53) X1(51) X1 (s2) X1 (s3) . - (30$)

Repeating the same procedures, we have

Walsty Szy vy $) =Hz(s1, s34+ +5) X1 (51) Xumi (52, ==y 50)
+ Hy(s1+52, s3-++++5) Xo (51, 52) XS5, =+, 80)
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Feee - Hp(S1F oo+ Spmny S5) X,_l(sl, vy Sue) Xi (s2)

+ MEMNH”(JI+...3‘” cery Spmbty F e S
Sh=n k=D (S<m<n)
XXy (51, o0y Sa) weeer Ko, (Sntprty 0y S0 oo
+H,(s1, S2, +o+y sw) X1 (1) X1 (s2) - X1 (sa) o 3H
Application of formula F. 1 to Eq. (23) yields
XuGsty 525 vy 50 =Wals1, 52, +5 8
+ X, (51, 2, 5 Sy Hi(syF 52+ 450 : (32)
so, we have the following relation:
Koo ) =R e
To the 2nd term we have
Xits, s = Helop KD Do @
Xy(ss, ) =2l 0 X0 Halow), (35)
Substituting Egs. (34), (35) into Eq. (30), we have
Ws(s1, 52, 53) = Ka(s1, 52, 59) X1(51) X1(52) X1(s3) (36)

where

H, (53, s3) Hy (51, $53+53) H; (51, $2) Hy(s1+53, S3)

Ks (s, Sgy $3) =

1—H;(s2+353) 1—Hi(s1+52)
+ Hs(s1, s34 58) (37
In the same way we have
Wals1, s2, o5 $2) = Ka(s1, 525+, 52 X1 (50) X (s52) -+ X (5) (38)

where K, is determined from H;, H,, ---, H,.

3.2 Calculation of fundamental component®

In this section, we consider the steady state response, so we use the Fourier
transform instead of the Laplace transform substituting iw; for s, For the input
function, we consider

u=x,= Acos wt=—24(c""'+e"'") (39

As shown in 2.2, the Fourier transform of Eq. (39) is the sum of two § functions.
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The inverse transform is reduced to the substitution.

The fundamental component generated by this input function is the sum of HiXi
and all the fundamental components generated from W, Wy, --:, Wy, The unknown
quatities 4 and o are determined to equate this fundamental component to Xi.

In order to inverse the n-th term W, it is sufficient to substitute ik for every
5;(i=1, 2, o« ) n) of K,(s1, $2, -, s») where k=1 or ki=—1,

To get the fundamental component, let us define
s(m) =33k, (40)
i=1

Then, by the relation of the complex conjugate, it is sufficient to take all the combi-
nations for s(n) =1. In this case, we must take account of the effect of Ep, namely,
for all X,(n=>2). The fundamental components are removed by Ep, and so, the
following relation must be held:

W, (h, ko, -, ko) . sm)>1 or s(n) =0

X, (iko, ko, -, ko) = 1—H,(is(n) o) '
0 :s(n)<<—1 or s(n) =1
(41
For the n-th kernel K,(si, sz, -, 5.}, we use the notation K,. when s(n) =m.

Then, for n=2N, m must be 0, 2, -+, 2N, and for k=2N+1, m must be 1, 3, -,
2N+1.

By the following definitions, we can get the same system as shown in Fig. ¢ to

determine K,,.

Km=Km=1 (m=:£1) ' (42)
(- Kvm j— 43
K.= T=a,C (i) (n=>2, m=0, 2, 3, ---, n) : (43)

K. is used for the term W,, and K, is used for the term X,. K,, is given by the

following formula:

Kﬂm :i a,-G(ifla)) E Kil"l."K"'i"i
§==2 all permutation (4‘4)

(g} n=n, n,=>1, lz;;m,zy(i) =m) (n=>2)

The fundamental component is generated from Ky, (n=1, 2, «--, N) and H,. The
coefficients for the factor e™ are

2841
‘an+l = ("21) Ka.+1 1 (ﬂZD (45)

and
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2L H o) (46)

The coeflicient of the fundamental component of the output is the sum of all
the above quantities, and is equal to the coefficient of the input 4/2. Hence, if we
define

N
dN(A, o) éng(iw) +§ -QMH—‘QA_ (47)

then
dy(4, o) =0. (48)

The unknown quantities A and @ are the solution of Eq. (48). Since dy is a complex

quantity, Eq. (48) is resolved to

Real dy(4, w) =0 }

(49
Imag dy(4, @) =0

and solved by the Newton method. The total fundamental component of the oscillation

wave is given by A coswt.

3.3 Calculation of harmonic components

After the fundamental component is determined as stated above, we can get the
direct component and harmonic components generated from the terms which concern
the determining of the fundamental component.

Since the fundamental component is determined from 2,, 2y, -+, 2+ by Eq.
(47) the harmonic components to be calculated are generated from every kernel K,.
which is used to determine up to Q..

From Eqs. (42), (43) and (44), the kernels to be used to determine up to Kuwi1:
are

n=2l K;o, K,’a, "ty K,’.[.
n=20+1 Koy Klisy -y Kise L. (50)
I*=min{n, 2N—n+2}

The coefficient of m~th harmonic e*** from n-th term W, is

. (-‘})'K,,. (51)

and by the following formulas, we can get a direct component up to (N+D)-th

harmonic component,

m=0 32(4) Reall Kl - 33 4) "ReallnCnG()] (52)

=1
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m= "'2”’2( ) "Real[ Ky w1 (1<m<N+1) o2
A

2(2)"" Real[ Kp ] (1<m<N+1) (54)

4. van der Pole oscillator

Let us consider the LC oscillator shown in Fig. 5 which has a voltage controlled

nonlinear registor N. L. with the relation

i= —%—zﬂ (55)

If we assume that R is a negative resistor of the value —1 and L=1/C=¢, then the

voltage across N. L. can be described by the following van der Pole equation.

d®

Tt e(l—vz)——+v—0 (56)

This circuit is represented by the block diagram shown in Fig. 6 where

Z(io) =———————— (57)

. 1
—e+z(w-—z)
The open loop system for this block diagram has only a 3rd kernel
Hi(iwy, iw;, iws) = —%Z{i(a);-{—a)z +w3)} (58)
Thus, from Eqgs. (43), (44) we have

Kén+1 2m+1 = Ku+! 2m+1
n=0: m=0 or —1 ' (59)
1<n<<N: 0<<m<n

Kont1 zmt1=— -—~Z {iCm+ Do} 3 Kt om1Kony 1 2mygt1 Kongt1 2mgr1
all permutation . (60)
mtng+ng=n my+mp+my=m n=>1

From the above equations, this system generates only the odd order harmonics.
By the method stated in 3., we obtained the amplitude 4, the angular velocity
of the fundamental component and the amplitude Amp. of the total oscillation wave

which consisted of the harmonic components for the various values of e,

i

R %C%L ? v I%IN.L l

T
Fig. 5 van der Pole oscillator Fig. 6 Block diagram of van der Pole oscillator
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Table. 1 Steady state solution of van der Pole oscillator

A

Amp.

R=15

Volterra

R=25 R.K.G.

Volterra
R=15 R=25

R.K.G. R=15

Volterra

R=25 S.E.M.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

10.0

2. 0005
2.0019
2.0042
2.0074
2.0112
2.0151
2.0172
2.0148
2.0048
1.6371
1. 3429

2. 0002
2. 0006
2.0014
2. 0025
2.0039
2. 0056
2.0075
2.0097
2.0112
2.0149
2.1325

2.0005
2.0019
20042
2.0075
2.0116
2.0166
2.0218
2. 0240
2.0138
1. 4561
1.2050

2.0004 2. 0004
2.0017 2.0017
2.0037 2.0037
2.0066 2.0067
2.0103 2.0104
2.0145 2.0151
2.0183 2.0209
 2.0187
2.0124
9. 1400
4.2945

2. 0204
14. 819
8. 4364

2. 0047
2.0265

2. 0001
2. 0004
2. 0009
2.0017
*2.0025
2.0035

0. 9993755
0. 9975078
0. 9944128
0. 9901082
0. 9845922
0. 9778241
0. 9697905
0. 9608365
0. 9522757
0. 3731043
0. 4356221

2. 0057
2.0073
2. 0086
2. 0142

0. 9993755
0. 9975078
0. 9944147
0. 9901253
0. 9846772
0. 9780866
0. 9702350
0. 9607766
0. 9509402
0. 3324072
0. 3349921

0. 9993756
0. 9975089
0. 9944198
0.9901417
0. 9847210
0. 9782169
0. 9707011
0. 9622563
0. 9529747
0. 9429559
0. 3297066

Table. 2 Harmonic components of steady state solution

Harmonics

- e=0.1

e=0.5

e=0.9

n

ay

b-

ay b-

a, b,

i =2 RS R TR

=

2. 00046858856
—0. 00093706735
—0. 00051955396

0. 00000124480

0. 00000029527
—0. 00000000129
—0. 00000000019

0.0
—0. 02498241430
0. 00003685820

0. 00001209078

—0. 00000003970
—0. 00000000741
—0. 00000000003

2.01166
—0. 02315
-0.01217

0. 00078

0. 00011

0.0
—0. 12282
0. 00448
0. 00138
—0. 00008

2.005
-0.010
—0.005

0.0
—0.217
0. 052

The values of A and Amp. are compared to the resulfs calculated by the Runge-

Kutta-Gill method (R.K.G.), and o is compared to the result given by the series
expansion method (S.E.M.)®. We regard the results of R.K.G. and S.E.M. as the

exact solution,

The results are listed in Table. | where R means the maximum order 2N+1 of

Eq. (47). The results of Table. 1 show that this method gives reasonable values for

¢ less than 0,9, but extremely different values for e>>1.

The steady state oscillation wave can be expressed by the following form,

L L
> a, cos nwt+ 33 b, sin nwt
A=l na]

(61)

The values of a, and b, for ¢=0,1,0,5, 0.9 are listed in Table. 2, and the total

oscillation wave form is shown in Fig. 7,
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For the values of ¢=0.1
and 0,5, the total oscillation
wave can be recognized as a
reasonable’ result. However,
for the value of ¢=0,9, the
result is not so good.

The van der Pole equation
has been investigated in detail
by many researchers and ac-
curate solutions are given for
The-

refore, it is not our purpose

the various values of e.

here to analyse the van der
Pole equation. The van der
Pole oscillator is used as an
example to investigate the va-
lidity of this method.

By the results given above,
it may be well to conclude
that this method gives reaso-

(a)Volterra

E=O.1

V(VOLT)
0410 0010 20

=2

0010 203040506070
T(sEC

E=0.50

V(VOLT)
-20-10 0010 20

v(voLT)
2515-0505 15

0 10 'z'o'ab'z;'.o?so'éo' 70
T(SEC
E=090

v(VOLT)

25450505 15

V(VOLT)
-15-05 Q5 I5

"-‘L.o 10 20 30 40 50 60 70
T(SEC)

Fig. 7 Steady state oscillation
oscillator

V(VOLT)
-2040 Q0 10 20

(b)RKG.

p E=0.10

00 1D 203040 50 60 70
T(SEC)
E=0.50

.|

] - T

0 10 20 20 40 80 60 70
T(SEC)
E=090

50 10 20 30 40 80 6070
T(SEC)

wave of van der Pole

nable results for nearly sinusoidal oscillations, but does not give good results for

oscillations distorted by heavy nonlinearlity,

5.

Phase shift oscillator

5.1 CR low pass phase shift oscillator

Here, we will apply the method stated in 3. to the analysis of the CR low pass

phase shift oscillator shown in Fig 8. The input-output relation of an amplifier has

a saturation property, as shown by the solid line in Fig. 9. We will approximate this

Fig. 8 CR low pass phase shift oscillator

Vi
X Vsa
o} v
-Vsg Nz

Fig. 9 Property of ampifier
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property by dotted line expressed by the following equation.

v1=—A(v—pod) (62)
For the open loop block diagram of this circuit, we have the following equations:

f(@) =—A(v—po*) (63)

Gliw) = ! (64)

1—5(CRnw) *+iCRnw{6— (CRnw) %}

Here, we calculated the steady state oscillation wave when R=10k2, C=0, 01yF,
C.=10pF, R\=R,=1kQ, R;=31k2 and V.=

15V, For the amplifier, we assume that the Table. 3 Harmonic components of

. . ] ] steady state solution
input impedance is sufficiently large and the

output impedance is sufficiently small, The | Harmonics }/:I;E;%Hz R.K.G
saturation voltage Vsa is 14V, 4 is 31 and 8 " % (V) % (V)
is 0, 4943, 1 0. 4178836 0. 4178833

In Table. 3 we show the values of the 3 0. 0006537 0. 0006537
harmonic components calculated by the Vol- 3 0. 0000007 0. 0000007
¢ . . hod (R=17 7 0. 0000000 0. 0000000
erra series expansion method (R=17), com- 9 0. 0000000 0. 0000000
pared to the results calculated by R.K.G.

method.

Since this circuit has a low pass characteristic, the harmonic components decrease
rapidly, and both results show good agreement,

5.2 Transistor RC phase shift oscillator

Here, we will consider a RC high pass phase shift oscillator using a transistor as
an amplifier, as shown in Fig. 10. The equivalent circuit of transistor is represented
by the following simplified Ebers-Moll model, as shown in Fig. 11.

An emitter current is given by the following equation

Ip=Iso(eBE—1) (65)

where Iy is the saturation current for the inverse direction, and A=¢/kT (q: charge

Fig. 10 Transistor CR phase shift oscillator Fig. 11 Equivalent model of transistor
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of electron, k: Boltzmann constant, T": absolute temperature).

Let us separate every current and voltage as the following form:

Iz =Izo (DC bias component) +i, (signal component)
Ic =Ico ( 4 ) +i. ( 4 ) (66)
Vee=Vgro( 4 ) +os.( 4 )

First, we determine DC components. From Fig. 11, we have
Ico:algo:also(elvBEo—l) (67)

and the DC load line is given as follows:

lcozm (VBEO“V::) (68)
__a - _R.
ﬁ_ l_a R.t—Rl//RZ Vz— R1 Vcc

Using the DC bias points determined by Egs. (67), (68), we have the following
relation for the signal components,

i.=algoe® BE(€*be—1) (69)
For the linear subsystem show in Fig. 12, we have

iy =C(inw) v, +D(inw) i,

o s 1
Clino) = 5 {3+ 5ok~ Gracm 1) (70)
.5 1 (e 1
Dine) =1 = o757 T neCR fo (anR)Z}
Substituting the following relation =) L =l2
i =—1 1, R =R IR L
o ) - :
iz =1+ /R, Fig. 12 Linear subsystem
i =(l—a)1, of oscillator
Eq. (70) becomes as follows:
—al (e*—1)
e D(inw) : .
={ctina) —l—T}vb,—l—D(znw)(l——a)I,,(e ve—1) o (72)

qulsoeh‘”?
For the open loop block diagram of this oscillator we have

S () =1, (e0—1) (73)
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. 1—a) D(inw) +a
G(inw) = ( ;
—C(ine) — % (74)

z

To analyse this system by the Volterra series expansion, f must be described by a

polynomial, so we will approximate Eq. (73) by the following best approximation
polymomial,

7
S o) =23 ai, (75)
Volterra kernels of the total system are given as follows.

Hi(iwl, ) iw;) zaiG{i(w1+"'+wi)} }

76
i:l, sy 7 ( )

Since this system has all the kernels from the Ist to the 7th, the steady state
oscillation wave contains the DC component and all the even and odd harmonics.

Here, we calculated the steady state oscillation wave when T=300°K, R,=35k2,
R;=10kQ, R,=4kQ2, I5o=10"7A, V=12V, C,=50uF, R=10k2, C=0, 01yxF. In Table
4, we show the values of the harmonic components calculated by the Volterra series
expansion method,

Since this circuit has a high pass pro- Table. 4 Harmonic components of 2,
perty, and the property of the transistor is a 0. 9755 ‘ 0.977
expressed by the exponential function, the 8 39,8 ‘ 4.5
effects of the harmonic components become ‘

. Vae(V) | 0. 224761 0. 224796
large as B increases.

In previous examples, we regarded the o(rad/9) ‘ 3898. 69 3861. 62
solutions calculated by the R.K.G. method | Harmonics
as exact solutions, and compared them to x°Emz) 0. 12040 3.1251

. . ) 3.91116 20. 1691
the sol lcul il
e so }mons calculated by the Volterra series x2(mV) 0. 15220 4.9373
expansion method. In this section we did x3(mV) 0. 00783 1. 2134
not do so, but from previous results it may x(mV) 0. 00046 0.3177
be well to conclude that the solutions of this R 7 i 7

example are sufficiently accurate.

6. Conclusion

In this paper, we showed a method to analyse an oscillator which generates a
nearly sinusoidal oscillation wave by the Volterra series expansion method. By this
method, we do not use the traditional method to derive and solve nonlinear differen-

tial equations, but solve algebraic equations derived from the block diagram of the
oscillator.
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An amplitude and a period of a fundamental component of the oscillation wave

and harmonic components which concern the determining of the above quantities can

be easily calculated.

We showed a numerical procedure to determine the above quantities. The

method has been applied to the analysis of a van der Pole oscillator and a phase

shift oscillator and we obtained useful results.

D
2)

3
9
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