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Summary 

This paper describes a theoretical inves1igation mto the perturbation problem 
of gas-particle two-phase flows over a wavy wall. It is assumed that the gas is inviscid 
except for its interaction with the particles, and no phase change takes place. The 
flow region is split into two sub-regions, an inner region near the wavy wall, where 
particle-free regions appear, and an outer region above the inner region. The inner 
and the outer expansions are matched with each other in some overlapping domain. 
The inner problem is solved numerically, and the outer problem is solved analytically. 
Main attention is paid to the flow structure near the wavy wall, and also the drag of 
the wavy wall. 

Introduction 

There are many engineering applications for flows of a medium that consists 

of a suspension of powdered material or liquid droplets in a gas. The system 

of governing equations for a dusty gas is very similar to that for vibrationally or 

chemically relaxing dust-free gases. The effects of vibrational and chemical 

relaxations on the gas flow are v.ell understood, particularly in the linear regime 

(Vincenti 1959, Clarke 1959). There are, however, a few important differences 

between the relaxation phenomena in a dust-free gas with relaxing internal modes 

and those in a dusty gas. One of the most important differences is that the velo

cities of the particles can be, in general, different from the gas velocity, leading 

to distinct momentum equations for the gas and the particles that are coupled 

with each other. This is not the case for the relaxing dust-free gase~. Especially 

for multi-dimensional two-pha~e flows, the particle streamlines can deviate from 

the gas streamlines, which usually introduces a great mathematical difficulty 

into their analysis (fahii & Kawasaki 1982, Miura 1974). It is, therefore, im

possible for us to apply previous solutions for relaxing dust-free gases directly 

to flows of gas-particle mixtures even in linearized problems. 

Department of Aeronautics, Kyow University, Kyoto 606, Japan 



Gas-particle Flows over a Wary Wall 27 

In this paper, a perturbation flow- of gas-particle mixtures over a sinusoidal 

wall is considered. The problem is treated as a perturbation from a uniform 

reference flow. The flow region is divided into two sub-regions, the thin inner 

layer near the wall where the particle-free regions appear, and the outer region 

above the inner layer. 

· Essentially, as will be seen later, the system of equations for the perturbation 

quantities is not linear for the inner flow. This system will, however, be proved 

to be treated substantially as a linear one. The inner problem is analyzed nu

merically by the method of characteristics for a supersonic reference flow. The 

particle trajectories are investigated in detail to obtain the location of particle

free-regions. 

The system of perturbation equations for the outer region 1s a linear one, 

and then the outer problem is solved analytically by means of the Laplace trans

form for a supersonic reference flow. Only for the limiting case of the infinitely 

wavy wall, the cuter problem is solved directly by the previous method applied 

by Vincenti (1959). 

The matching technique to be employed here. relies on the hypothesis that 

the oute1 expansion fits the inner expansion in some overlapping domain. 

Sample calculations are carried out for a mixture composed of air and small 

solid particles of Al20 3• 

Assumptions 

The gas-particle mixture 1s supposed to be in equilibrium in tl,e reference 

state. The analysis will be based on the following assumptions: 

(l) Ne phase change takes place. 

(2) The viscous force acting on each particle obeys Stokes' law. 

(3) The heat transfer rate to each particle is proportional to the temperature 

difference between the gas and the particle. 

( 4) The gas is inviscid except for its interaction with the particles. 

(5) The ga~ is a perfect gas with constant composition and constant specific 

heats. 

(6) The volume occupied by the particles is neglected. 

(7) The thermal and Brownian motions of the particles are negligible. 

(8) The particles do not interact with each other. 

(9) The particles are solid spheres with a uniform diameter and a constant 

material demity. 
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(10) The particles have a constant specific heat, and the internal temperature 

of the particles is uniform. 

( 11) The particles which impinge on the wall make a perfectly inelastic colli

sion with the wall, and they adhere to or are absorbed by the wall after 

the impingement. 

(12) The impinged particles on the wall do not change the sh!lpe of the wall. 

Obviously, the assumption (12) is consistent with (6). These assumptions have 

been used in many previous papers treating gas-particle flows (Marble 1963, 

Rudinger 1975, Carrier 1958, Takano & Adachi 1975). 

Basic Equations 

We begin by setting down the equations of gas dynamics for a steady two

dimensional flow of the gas-particle mixture. Within the assumptions given 

in the previous chapter, the governing equations are given in the ·9' coordinate 

system as follows (Zucrow & 1-{offman 1977): 

11 (P V) = 0 , ( 1 ) 

Pi V+PP = -PpAp(V-Vp), ( 2) 

p.!2_(_r_ p +J...Y2) = -Pp{Bp(T-Tp)+ApVp(V-Vp)}, (3) 
Dt r-1 p 2 

P = RpT, ( 4) 

11 (Pp Vp) = 0 , ( 5 ) 

i:vP = Ap(V-V,), ( 6) 

D; Tp = !!_p__ ( T- Tp) , ( 7) 
Dt Cp; 

where 

" . a . a 
y = l·-+J-' ax 8_y 

( 8) 

D . 
-·· =VP 
Dt ' 

( 9) 

(10) 

In these equations, P, V, P, and T are the density, the velocity, the pressure and 

the temperature of the gas. The subscript p denotes the quantities associated 

with the particles. The vectors i and j are the unit ones in the x and _y directions, 
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respectively. The constants R and r are the individual gas constant and the 

ratio of the specific heats for the gas phase, and C;, is the specific heat of the par

ticle material. The quantities Ap and Bp are the inverse relaxation times for 

the particle velocity and temperature, respectively, and are given under the as

sumptions (2) and (3) as 

(11) 

(12) 

where µ, Cp8 , P,, P,,,p, and Dp are the coefficient of viscosity, the specific heat at 

the constant pressure, the Prandtl number of the gas, the material density and 

the diameter of the particles. In the present case, the quantities Ap and Bp are 

related with each other by 

Wall geometry 

Consider a semi-infinitely sinusoidal wall described by 

forx<O, 

for x>O, 
(14) 

as shown in Fig. l, where l is the wave length, y 0 is the amplitude and the sub

script w denotes the wall boundary. Now, for later convenience, the non-dimen

sionalized coordinates of x andy are introduced by 

With these, Equation (14) is rewritten as 

Uo 
=> 

flow direction 
Yw•O 

y 

Yo 

Fig. I. Sinusoidally waV} wall. 

(15) 

X 
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y~ = { 0 
e sinx' 

where 

Ryuji lsHII 

for x'<0, 

for x'>0, 
(16) 

(17) 

Since our ultimate concern is with the small-disturbance flow over the wavy wall, 

w·e shall assume that 

(18) 

In the present analysis, under the condition (18), we assume that the flowfield 

can be described by a perturbation on a uniform parallel flow with velocity U0 

in the x direction. Although it is assumed that the reference flow is supersonic, 

it will be proved that some part of the present result remains valid for the sub

sonic reference flow. 

Perturbation Equations 

The perturbation quantities are now introduced by 

V = U0(i+eq+O(e2
)) , 

P = P0 (1 +ep+O(e2
)), 

P = p0(1 +ea+O(e2
)), 

T = T0 (1 +ei-+O(e2
)), (19) 

V.,, = U0(i+eq.,,+O(e2
)), 

Pp= Ppo(l+ea.,,+O(e2
)), 

T.,, = T0(1 +ei-.,,+O(e2
)) 

where 

q = ui+t}, (20) 

and subscript zero denotes the unperturbed reference state. 

Before deriving the perturbation equations from Equations (1) to (7) with (15), 

(19), and (20), attention must be paid to the flew field near the wavy wall. In Figure 

2, the gas and the particle streamlines near the wall are shown schematically under 

the conditions ( 11) and ( 12), where the shaded regions are the dust-free regions 

and the solid and dotted lines are the gas and particle streamlines. Appearance 

of such dust-free regions usually introduces a great mathematical difficulty. Since 

it will be reasonable to consider that the extent of such dust-free regions in the 

x;' plane may be ccntrolled mainly by the geometri( parameter e, the flow region 
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gas streamline 

particle streamline 

Fig. 2. Flowfield near the wavy v.all. 

Sl 

E 

is divided into two sub-regiom, the inner and the outer regions, as shown in Figure 

2. The perturbati0n equations are then derived sepa1ate!y for each region. 

A. The inner expansion 

In order to solve the inner problem, it is convenient to introduce a new co

ordinate system (x', y), whe1e y is given by 

y =y'Je. (21) 

Subrtituting Equation (19) into Equations (I) to (7) in conjunction with (8), 

(20), and (21), we have for the fitsr-order perturbation quantities: 

av =0 
ay ' 

(22) 

(~+v~)u +-1- ~ = -a11E(u-u1), 
ax' ay rM2 ax' 

(23) 

!_p_ = 0 
ay , (24) 

( ~+v~){t'+(r-l)M 2u} = -/3110E(t'-t'1 )-(r-l)a11EM2(u-u1), 
ax' ay 

(25) 

p = o+r, (26) 

(27) 

(28) 
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where 

a= A,,ol 
'21r:Uo 

p = B,,ol 
21r:U0c,,,, 

M= u0/~r:: 
0 = c,,,,,c,,,, 
JI = Pt,0/Po • 
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(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

The quantity M is the Mach number cf the reference flow associated with the 

speed of sound for the gaf phase, and JI ii,. the loading ratio. 

This system is net linear because Equations (23), (25), (28), and (30) involve 

terms with t8/8y and i,,a;ay. Fortunately, however, it will be shown later that 

this system can be treated substantially as a linear one. As is dcmomtrated in 

Figure 2, there are particle free regicns in the inner layer. This situation fr taken 

into account by introducing the quantity E in Equatiom (23) and (25). This i~ 

defined as 

for a dusty region, 

for a dust-free region, 
(36) 

which means that the quantity E can be taken as a function of the particle stream

line. 

Here, it must he pointed out that there is no equation involving the pertur

bation quantity up• This suggests that the particle density u P cannot be determined 

in the first-order perturbation problem in the present analysis. (See Appendix 

A.) Equations (22) to (30) then constitute a system of nine equations for eight 

unknowns u, v, p, r, u, u,,, v,,, and r,,. Mathematically, this system is considered 

to be an over-determined system. 

The boundary conditions imposed on thif system are 

{ 
0 

V= 
cos x' 

for x' <0, 

forx'>O, 
(37) 

at Y=Yw=sinx', and that the inner solution must fit the outer solution in the 

vicinity of Y= 00 • 
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B. The outer expansion 

In the outer region, Equations ( 1) to (7) are linearized in the xy' coordinate 

system just as in the previous analyses for relaxing dust-free gases. Substituting 

Equation ( 19) into Equations ( 1) to (7) in conjunction with Equations (8) and 

(20), we have 

where 

~+Y' =0 
8x' q ' 

8q +-1-Y'p = -av(q-q,,) 
8x' rM2 

~{p-a+(r-l)M2u} = -,8118(i--i-,,)-(r-l)a11M•(u-u,,), 
8x' 

p = a+i-' 

aat+Y' = o 
8x' q,, ' 

,, = i~ +J~. 
8x' 8y' 

(38) 

(39) 

(40) 

(41) 

{42) 

(43) 

(44) 

(45) 

This system constitutes a set of nine equations for nine variables, and is solved 

for the boundary conditions 

{a, q, p, i-, a,,, q,,, i-,,} = finite asy'-oo, (46) 

and also that the outer solution must fit the inner one in the vicinity of y'-O. 

Solutions of the Perturbation Equations 

As has been discssued previously, the inner and the outer problems are coupled 

with each other by the boundary conditions. These problems, therefore, must 

be solved simultaneously. In the present analysis, first the inner problem is 

partly solved. Then, the outer solution is obtained by making use of the matching 

principle. Finally, the remaining part of the inner problem is solved numerically. 

The inner solution 

In the inner problem, it is impossible to shift the boundary surface (16) to 

the basic position of the wavy wall, Jf =0, as in the usual linearized problems of 
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dust-free gases. The reason is that in the x'y plane, the amplitude of the wavy 

wall is order unity. 

From Equations (22), (24), and (27), we can get 

V = r/J(x') , 

ip = r/Jp(x') ' 

p = ,fr(x')' 

(47) 

(48) 

(49) 

respectively, showing that these variables are the functions of x' only, and do not 

depend on y. By considering the boundary condition (37), it is given that 

r/J(x') = J 0 
l cos x' 

for x' <0, 
for x'>O, 

with which Equation (29) is solved to yield 

l 
0 

r/Jp(x') = a ' . ' ' 
--{acosx +smx -aexp(-ax )} 
a 2+1 

(50) 

for x' <0, 

for x'>O. 
(51) 

These results indicate an important fact that the perturbation velocities v and 

Vp in the inner layer do not depend on the loading ratio v. In particular, the 

gas velocity r/J(x') is completely independent of the existing particles. As will 

be seen later, the pressure distribution ,jr(x') can be determined by the matching 

procedure with the outer expansion. 

With Equations (47) to (49), the system of equations is rearranged in the 

following form : 

( _!____ +r/J(x') _!____)u +-1- d,jr(x') = -avE(u-up) , 
8x' ay rM2 dx' 

( _!____ +r/J(x') _!____){t' + (r-1) M 2u} 
Bx' ay 

= -fiv0E(-r--r p)-(r- I)avEM2(u-up), 

a +t' = ,jr(x') , 

( _!____ +r/Jp(x') _!_-)up = a (u-up) , 
Bx' By 

( _!____+r/Jp(x')_!____)t'p = /j(t'-t'p). 
Bx' By 

(52) 

(53) 

(54) 

(55) 

(56) 

These now constitute a system of five equations for five unknowns: u, -r, a, up, 

and t' p, and they obviously are linear for these unknowns. This system can be 

solved once the pressure ,jr(x') is known. 
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Before discussing the method for solving the problem, the gas and the particle 

trajectories in the inner layer are obtained. These are not only necessary in 

order to solve the system but also very interesting theoretically. In the present 

first-order perturbation, the gas and the particle trajectories are given, respec

tively, by 

'ij = const along dy = v 
dx' ' 

(57) 

'if p = const 
dy (58) along_= ip, 
dx' 

where 'ij=r;fe and 'ijp=TJp/e. These quantities are the functions of x' and y, which 

are obtained by solving 

8'ij 18,j 
8x' ay=-v, (59) 

_8'if,18'ijp = -v . 
8x' ay P 

(60) 

It will be easy to realize that Equations (59) and (60) were derived from Equa

tions (57) and (58), respectively. For the explicit determination of rj(x', y) and 

'i'i,(x',y), a so-called labeling of these variables is necessary, because the relations 

between (rj, 'ifp) and (x', y) have been given by the first-order differential Equa

tions (59) and (60). Mathematically, the labeling of these streamline variables 

is equivalent to the specification of the arbitrary integral functions in the general 

solutions for Equations (59) and (60). Here, the gas (particle) streamline which 

traverses the y axis (x' =0) at Y= y 1 (Y= y 2) is labeled as rj= y 1 (rip= y 2). For 

such labelings, Equations (59) and (60) are solved in conjunction with (47), 

(48), (50), and (51) to yield, respectively, 

- {y r; = 
y-sin x' 

for x'<O, 

for x'>O, 

l 
y 

rip= a • I I I 
y---{asmx -cosx +cxp(-ax )} 

a 2 +1 

(61) 

for x'<O, 

for x'>O. 
(62) 

It will be easy to see that the gas streamline along the wall is denoted by 

'ij =0. As for the particle streamline, the situation is very complicated, since the 

impingement of the particles on the wavy wall may occur for x'>O. In Figure 2, 

the wall portions OA and CD are the regions where the particles impinge. The 

particle streamlines ABC and DE, which divide the dusty and dust-free regions, 
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are the so-called limiting particle streamlines. It must be noticed that the limit

ing particle streamlines ripABc and "iipDE are different. Such a situation is, of course, 

based on the assumptions (11) and (12). 

Previous discussion suggested that the occurrence of absorption cf the im

pinged particles by the wall must be taken into account in the description of the 

particle streamline near the wavy wall by Equation (62). Considering the fact 

that the wavy wall is described by Y=sin x' ("ii=O), we can represent the particle 

streamlines on the wavy wall by 

7Jp,,(x') = l O a 
sin x'---{a sin x'-cos x' +exp (-ax')} 

a2 +l 

for x~>x{, 

for x'<O, 

for x'>O, 

(63) 

(64) 

where the second equation represents the effect of absorption of impinged particles 

by the wall. Figure 3 shows 7Jp., for a=l.0, where there exist some ranges of x', 

for which "iipw satisfying the Equations (63) and (64) cannot be found. In such 

regions, there appear particle-free regions surrounded by limiting particle stream

lines and the wall boundary. For a few values of a, the limiting particle stream

lines are shown in Figures 3, 4, and 5. Figure 6 demonstrates the limiting par

ticle streamlines in the physical plane for a=d.O. 

--- =iipw 

--- 1ipt 
a.-1.0 

fi ·------ /' \ --------T'\~---
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I 
I 
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I 
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I 
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I 
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I 
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I 
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" 
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I I 
I I 

I I 

I I 
I I 

I I I I 
I I 

' I 
I I I 
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I I 
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\ I 
I / 
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Fig. 3. Particle !treamline on the wavy walL 
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Fig. 4. Particle streamline on the wavy wall. 
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Fig. 5. Particle streamline on the wavy wall. 

Since the flow structure becomes completely periodic as x' - oo, the impinge

ment of particles on the wavy wall will cease in the limit x' -oo. This means 

that the limiting particle streamline 'ij pl converges to some value 7j ,, .. as x' - oo, 

where the subscript l denotes the limiting particle streamline. Furtherm<>re, it 

can be concluded Jhat .this value 7j ,, .. gives. the total amount of impinged particles 

on the wavy wall in the range O<x' < oo, since ,j,.,(O) =0. With Equations (63) 

and (64), 'f'j,, .. can be obtained as 
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\ 

Fig. 6. Lim•ting particle meamline in the x'y plane. 

\ 
\ 

\ 

' ' 

(65) 

By making use cf this result, the location of the limiting particle streamline can 

be given from Equation (62) as 

a ( . , ') 1 y = -
2
-- a sm x - cos x + y' 

2 
, 

a +l a +l 
(66) 

for x'~ I. 

As has been discussed previously, the particle-free regions are surrounded 

by the limiting particle streamlines and the wall boundary. Then, these regicns 

are mathematically defined by 

'iJp(x', y) <7Jp1(x'), 

rf(x', y) >O. 

For an infinitely large:-.', Equation (67) can be rewritten as 

'iJp(x', y) <rJp/oo = const. 

(67) 

(68) 

(69) 

Since 'iJp(x', y) (in Equation (62)) and then rip1(x') involve only one parameter a, 
the location or the extent of the particle-free regions in the x'y plane depends on 

this parameter a only. In other words, the particle-free regions in the xy' plane 

are controlled by only two parameters, the wall parameter e and the particle 

parameter a. 

Now, we return to the problem of solving the system of Equations (52) to 
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(56). With Equations (61) and (62), these equations are easily rewritten in 

the form, 

where 

and 

du l d,fr --+-- -- = -a11E(TJp) (u-up), 
dx' rM 2 dx' 

~{i-+(r-1 )M2u} = -fi110E(rip) (i--i-p)-(r-1 )a11E(f/p)M2(u-up), 
dx' 

along rj = const, 

E(rip) = { ~ for ri;<rip1 (dust-free region), 

for ri;~ripr (dusty region), 

(1 = ,fr-i-, 

dup - = a(u-up) , 
dx' 

di-; = fi(i--i-) 
dx' P ' 

along rj P = comt. 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Obviously, these are given in the characteristic form, and then easily solved 

numerically, once ,fr(x') is given. 

The boundary conditions imposed on the system are 

u = -l/VM2-l, 

i- = (r-l)M 2/VM2-l, 

Up= 0, 

'l"p = 0. 

at x'=O (See Appendix B.) 

The outer solution 

(76) 

(77) 

(78) 

(79) 

Although the inner problem has been solved only partly, the outer problem 

can now be solved by using the partial inner solution. Making use of the match

ing principle, we can get the boundary conditions for the outer prcblem from 

the results in the previous section as follows, 

V---+ </J(x') 

Vp---+ </Jp(x') 

as y'---+ 0, 

asy'---+ O 

(80) 

(81) 

in addition to Equation (46). The condition (81) subrtantially means that there 

is no need to consider the phenomenon of particle impingement on the wall and 
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therefore there is no need to introduce the function E as in Equation (72) in the 

outer problem. 

Combining Equations (39) and (43), we have 

a { a }( av au) - -+a(11+l) --- = 0. 
Bx' 8x' Bx' By' 

Since the reference flow is uniform and irrotational, this is integrated to yield 

av-~= O 
8x' 8y' 

(82) 

which means that the flow in the outer region is also irrotational. In a similar 

manner, the x' component of Equation (39) and Equation (40) are integrated to 

yield 

P+rM2(u+vu,) = 0, 

i-+118r,+(r-l)M2(u+11u,) = 0, 

(83) 

(84) 

rt!fpectively. Eliminating u, p, i-, a, u,, v, and i-, from Equations (38), (41), (43), 

(44), and (82) to (84), we have the following equation for v: 

where 

I'o = M2-l' 

2 
{a(l + 11) +b(m:-)} 

I'1 = M (a+b) 1 , 
(86) 

r =M2(l+11)(l+r118) 1, 
7 

(I +118) 

b = ,8(1 +110). 
(87) 

Parameters a and b arc introduced on purpose to emphasize the symmetric de

pendence of Equation (85) on the~e parameters. 

For the supersonic reference flow, all the disturbances are identically zero 

upstream from the wavy wall. We, therefore, define the Laplace transform of 

quantity J by 

/(s, _y') = [ J(x',y') exp (-sx')d;,:', (88) 
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wheref is any disturbance variable. It follows that v satisfies the equation 

(89) 

By considering the boundary condition (80) in conjunction with (50), it is given 

that 

v(s, 0) =~. 
s +1 

(90) 

with which, and with Equation (46), Equation (89) yields a solution for v in the 

form 

(91) 

Here, ( -Ai, --l2) is a set of solutions for 

(92) 

As is shown in APPENDIX C, these two quantities ,l1 and ,l2 are real. With 

Equation (91), Equations (82) and (43) are solved to yield 

(95) 

Also, from Equation (83), we have 

(96) 

Although the transforms of other perturbations -r, o, -r1, and a, can easily be ob

tained, these are not recorded here. 

Generally, the inverse of the transforms on the right hand side of Equations 

(91) and (93) to (95) is very difficult (Clarke 1969). However, since we are 

sometimes most concerned about the distributions of flew variables near the wall, 

these transforms are inverted only for y' -o. 
In the limit of y'-0, the exponential factors in Equations (91) and (93) to 

(95) are replaced by unity. Following the results by Erdelyi et al. (1954), we 

have: 
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(See APPENDIX D.) 

where 
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fi(x') = (b~lz) exp{-~ (b+l2)x'}{10 (b;A2x')+1i(b 
2 

A2x')}, 

fz(x') = I0C1;ax')exp{- ~ (l1 +a)x'} 

(97) 

(98) 

(99) 

+i:' {acos(x'-()-sin(x'-()}/0C1;ac)exp{- ~ (l1+a)( }d(, 

fp1(x') =exp{-~ (a+b) ~/' }10C2
; Ai x'), 

ft,2(x') = 10( a;b x')exp {- ! (a+b)x'} (100) 

+ [' {b cos (x' -()-sin (x' -()}/0( a 
2 

b ( )exp {- ! (a+b)(}dc, 

and z and ( are dummy variables. In these equations, / 0 and / 1 are the zero

and the first-order modified Bessel functions of the first kind. It is obvious that 

the inverse transforms of v and Vp are equal to </>(x') and </>p(x') in Equations 

(76) and (77), respectively. With the results (99) and (100), Equation (96) 

yields the pressure, 

p = ~~2 
<'xfi(z)fz(x'-z)dz+fz(x') +Ya rx'fp1(z).fp2(:x' -z)dz}, v I'0 Jo Jo ( 101) 

which is equal to yr(x') in Equation (49). 

So far, we have been exclusively concerned with the outer solution in the 

limit ofy'-+O. For an arbitrary value ofy', it is very difficult to obtain the in

verse transforms on the right hand side of Equations (91) and (93) to (95). For

tunately, however, for a sufficiently large value of x', the structure of the flow

field becomes periodic, and then the Equation (85) can easily be solved directly. 

Here, an analytical solution for the outer problem for an arbitrary value of y' 

will be obtained only for a sufficiently large value of x' without making use of 

the method of the Laplace transform. 

Assuming the solution of Equation (85) for x' }> I in the form 

v = F(y') exp (ix') , (102) 
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where F(y') is the function of J' only to be determined, and i is the imaginary 

unit, we have from Equation (85) 

d2F . 
dy'2 = (Q,+iQ;)F' 

where 

From the relation 

I'2>I'1>I'o, 

it can be proved that 

(103) 

(104) 

(105) 

This condition suggests that the general solution for Equation (85) has the form 

(Vincenti 1959), 

F = C_ exp {(.d+iA)y'} +C+ exp {-(J+iA)y'}, 

where .d and A are positive constants defined by 

(106) 

and C+ and C_ are complex constants. With Equation (106), Equation (102) 

is rewritten as 

v = C_ exp {.dy' +i(x' +Ay')} +C+ exp {-.dy' +i(x' -Ay')} . (108) 

If the complex conjugate of v is denoted by v*, this conjugate v* is also the solu

tion of Equation (85), which leads to the result that the solution for Equation 

( 85) can be constructed by a linear combination of v and v*. Considering the 

boundary conditions (46) and (80) in conjunction with (50), we can get the final 

solution for v in the form, 

v = cos (x' -Ay') exp (-.dy'). (109) 

Substituting this into Equation (82) yields 

u = V / 
2 

sin (x' -Ay' -o) exp (-.dy') , 
.d +A . 

(I 10) 



where 

A 
tanb=-. 

.d 

Ryuji !SHU 

(111) 

Similarly, substituting Equations (109) and (110) into Equation (43) yields 

where 

V : V / 2 CO$ (x' -Ay' -a +a,) exp ( -.dy') , 
~ +l .d +A 

v, = V a sin (x' -Ay' +a,) exp (-.dy'), 
a2+l 

tan a,= a. 

(112) 

(113) 

( 114) 

Now, the pressure p can be determined from (83) with Equations (110) and (112). 

The result is 

P= Vva cos(x'-Ay'-a+a,)} 
a 2 +1 

•exp (-.dy') . (115) 

One important general result is stated. In the derivation of the results ( l 09) 

to (ll5) and also the results (50) and (51), the condition that the reference flow 

should be supersonic has been essentially unnecessary. This means t_hat the 

solutions (109) to (115) and also the results for the gas and the particle stream

lines in the inner layer remain valid even for the subsonic reference flow. The 

detailed structure of the solutions (109) to (115) is nearly the same as that in the 

previous analyses of the linearized dust-free gas flows with the vibrational or the 

chemical relaxation over the wavy wall (Vincenti 1969). 

Sample Calculadons 

By using the results obtained previously, sample calculations were carried 

out on the electronic digital computer F ACOM 230 in the Computer Center of 

Kyoto University. A dusty gas composed of air and small solid particles of Al20 3 

was considered. The physical constants and the reference conditions are listed 

in Table 1. The calculations were carried out only for the flow regions near 

the wavy wall. Unfortunately, however, the numerical results, except for v, 

v,, and p, could not be obtained for x' :> l in the inner problem, since some 

purely numerical difficulty appears for the downstream region of x' » 1. The 

details of this difficulty will be discussed later. 

In spite of such a situation, it must be emphasized that the _analytical inner 
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Physical constants 

Air 

r=l.4 

C,1 =1005.0J/kgK 
µ=l.79x I0-5 kg/m sec 

(for T0 =288.0 K) 

P,=0.75 

Reference conditions 

To=288.0 K 
Po= 1.23 kg/m3 

a/0=340.0 m/1ec 

Table I. 

P_p=4.0 X !QI kg/m3 

C,_.=1686.0J/kg K 

solutions for v(<P(x')) and v,.(!f>,./(x')) and the inner limits of the outer solutions 

for u, u,., and p(,f,(x')) are valid for all x', and their numerical results have been 

obtained for all x'. These results are sometimes sufficient for practical purposes, 

since the gas and the particle streamlines near the wavy wall and the pressure 

distribution on the wall are completely determined from these results. 

In Figure 7, the distributions of the gas and the particle velocities, u and u,., 
arid the pressure p calculated from Equations (97), (98), and (101), respectively, 

are shown for 11=0.3 and a= 1.0. These u, u,., and p are the inner limits of the 

outer solutions, and especially this p is equal to ,f,-(x'). This figure indicates 

that these solutions become almost completely periodic after only a few times of 

u 
Up 

1.0 

a• 1.0 v• 0.3 M• 1.5 

(\ 
I • 

p 

i i 2.0 

0r-rrr--1::-'.---fr-!--:-'::-+----lr+---'i-~---:c*--1----¥-~ 

-1.0 \ . 
\./ 

u, equation (97) up, equation (98) p, equation (IOI) 

Fig. 7. Distributions of inner limits of outer solutions u, u1, and p along x·. 

-2.0 
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the wavelength from the origin. It is easy to explain this situation with Equations 

(51), (97), and (98) in conjunction with Equations (99) and (100). As is proved 

in APPENDIX C, J1 and J2 are both positive, and the parameters a and b defined 

in Equation (87) are considered to be of the same order. Then, all the expo

nential terms in Equations (51), (97), and (98) are O(exp(-ax')), which leads 

to the result that it takes only a short distance, x'=O(l/a), for these solutions to 

become almost periodic. 

After determining the function E(rj1) with Equations (63) and (64), the sys

tem of Equations (70) to (75) was solved numerically by the method of charac

teristics, where Equation (IOI) was used as ,fr(x'). Since the characteristics, 

which are the gas and the particle streamlines in the present case, are already 

known by Equations (61) and (62), the numerical procedure is very simple and 

easy. The accuracy of all the numerical results has been checked by comparing 

the results for a few different mesh sizes. The result for u along the gas streamline 

on the wavy wall (rj=0) is shown in Figure 8, being compared with the inner 

limit of the outer u (Equation (97)). The mesh sizes used in the present calcula

tion are .dx' =11:/60 and .d'ij=tr/30. The limiting particle streamlines corre

sponding to the results in Figures 7 and 8 are shown in Figure 9. It is interesting 

to note that Figure 8 suggests the existence of a velocity gradient in the 'ij direction, 

which may be very large in magnitude because 8u/8rj is rewritten as e-1(8u/871) 

with the unstretched variable 71. In order to investigate this situation in detail, 

the distributions of u along the 'ij direction at several points x' are shown in Figures 

10 to 16. These points x' are 

u 
Cl= 1.0 v = 0.3 M=l.5 

Fig. 8. Distribution of u along x'. 
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Ct= 1.0 

Fig. 9. Limiting particle streamline for a= 1.0. 

where n=O to 6, which are indicated in Figure 9. As shown in Figures 10 to 16, 

the flow structure at each point x' is not simple. In all cases, the velocity dis

tribution has a minimum at some point of Tj. The absolute value of 8u/87j in

creases with x'(n), especially in the region very close to the wavy wall. Theo

retically, it is expected that 8u/87j at 7j=0 will tend to a negative infinity as 

x'- 00 , since the particle impingement on the wavy wall substantially ceases as 

x'-oo. Then, the limiting particle streamline becomes tangential with the wall 

boundary only at one point in the unit interval (unit wavelength) as x'-oo. This 

situation is shown in Figure 9. The effect of the existence of particle-free regions 

on the distribution of u can easily be seen from Figures IO to 16. 

It may be said that the velocity change with 7j is relatively more distinguished 

in the dust-free region than in the dusty region. 

In Figure 17, the distributions of u at x' =2mr (n=O to 6) arc shown, which 

correspond to the results in Figures 10 to 16. This demonstrates the detailed 

change of the velocity distribution u along 7j with x' (or n). It is important to 

realize that the velocity distributions appreciably change ,vith x' or n. Such 

a situation is very different from that for the outer solution. Mathematically, 

it will be sure that the flow structure in the inner region as well as the outer region 

becomes completely periodic as x'-oo. Then, the velocity distribution u at 
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Fig. 18. Gas streamline near the wavy wall. 

x~. (also at xt., x~. and x~.) will converge to some fixed distribution. Figure 17, 

however, does not show such a trend clearly, which suggests the fact that it 

takes a very large distance along x' from the origin for the inner flow to become 

sufficiently periodic. 

In order to explain this situation, Figure 18 will be quite helpful, where the 

gas and the limiting particle streamlines for a large x' are schematically shown. 

Referring to Figure 18, let us denote a gas streamline near the wavy wall by 

'if ='ij1 (solid line) and a limiting particle streamline by 'ifp1='ifp11 (dotted line). 

The gas element along 'if= 'if I flows through the dusty region only between points 

A and B (or A' and B') per unit wavelength. Since the adjustment of the flow 

quantities of the gas along the streamline 'if= 7j1 with those of the particles is possi

ble only while the gas remains in the dusty regions AB and A'B' ... , the length 

along x', necessary for the flow quantities of the gas along 7f ='if1 to be adjusted 

completely with those of the particles, will naturally be very large. This is greatly 

enhanced for the gas along a streamline very close to the wavy wall. However, 

the difference between the flow quantities of the gas at the points x' and x' +2ir 

along the streamline very close to the wavy wall becomes very small in magnitude, 

especially for a large x'. This is because the total amount of particles, with which 

the gas can interact per unit interval, is very small. The results for 'if <t: l 
and n> 3 in Figure 17 well demonstrate this situation. 

Although it will be very important and interesting to obtain the converged 

velocity distribution u along 'if as n-= or the limiting periodic structure of the 

inner solution as x'-=, unfortunately it could not be done here because of a 

numerical difficulty. As has been discussed previously, a very large distance 

along x' from the origin is necessary to obtain the final periodic inner solution, 
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which inevitably leads to the necessity of a great number of mesh numbers for 

reliable numerical calculations. In the present paper, only the results, for which 

the numerical accuracy could be checked, are shown. 

Finally, the velocity u and the pressure p of the gas in the outer region for 

x'~l have been calculated from Equations (110) and (115) in conjunction 

with ( l l l) and ( 114). As will be seen from their derivation, the flow quantities 

are completely periodic with respect to x'. ~fathematically, these results are 

valid with order e for O(x')>_!_JlogeJ. Since Equation (115) yields ,fr(x') in 
a 

Equation ( 49) as .l'' -+O, the gas pressure on the wavy wall is obtained as 

Similarly, from Equations (l 10) and (l 12), we can get 

u = V / 2 sin(x'-a), 
il+A 

Up=---' - ✓~~+I~/ .12~ Af cos (x' -a +ap) . 

( l 17) 

(118) 

The numerical results for Equations (l 16) to (118) have shown an almost com

plete agreement with those for Equations (97), (98), and (101) obtained by means 

of the Laplace transform for x' ~ 1. These are, therefore, not shown here. 

It will be possible to prove mathematically that the solutions (97), (98), 

and (101) agree, respectively, with (112), (113) and (lll) in the limit of x'-=. 
Here, however, we do not discuss this proof, because an excellent agreement be

tween the corresponding numerical results has been obtained. Also, the mathe

matical procedures applied to obtain these two sets of solutions automatically 

warrant the agreement of the corresponding results in the limit x'-+ =. 

Drag Coefficient 

Consider the drag coefficient of the wavy wall. To the accuracy required in 

the two-dimensional small disturbance case, the pressure coefficient Cp=(P-P0)/ 

_!_ p0U~ can be found to be 
2 

2e c,= --p. 
rM2 

( l l 9) 

If we denote the drag coefficient per unit wavelength in the range (n-1 )l;;;; 

x;;;;ril (2(n-l)rr;;;;x';;;;2mr) (n=l, 2, 3, ···) by C4 ., it can be calculated from 
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(120) 

where (Cp)w is the value of GP evaluated at the wall. Substituting Equation (119) 

into ( 120) yields 

( 121) 

Especially for x'~l, Equation (116) can be used as ,fr(x') in Equation (121), and 

the explicit result is obtained as 

(122) 

Since the flow structure is completely periodic in the limit of ~' ( or n )-+ oo, this 

result does not depend on the number n. For the small number n, however, 

Cd• given by (121) depends on n. With Equation (101), Equation (121) was 

calculated, and the result is shown in Table 2. For n~2, Ca. is almost constant 

and is equal to the result of Equation (122). 

It must be emphasized that the drag coefficient ( 121) represents only the 

contribution of the gas pressure. If the effect of the particle impingement on 

the wall on the drag coefficient is taken into account, it is necessary to evaluate 

the contribution of the particle impingement to this coefficient. Denoting it 

by Cdpn, 

C _ 1 i .. ~"'(Pp,,, vf .. w) dy~ d , 
dpn - - ' 1 -d, X ' 

2ir _.pni -p ij2 X 
2 0 0 

(123) 

where V1,.= U0(1 +eu) and Xpni and Xpnf are the initial and the final points of 

the particle impingement region on the wall in the range 2(n-l)ir;;;;;x':;;;;;2nir. 

Table 2. Drag coefficient of the wavy wall fo1 a= LO, 11 =0.3, and M = 1.5. 

n Cdn/E2 I Cdpn/E 

I 0.8727 0.04847 
2 0.8694 0.01902 
3 0.8694 0.00004 
4 0.8694 0.00000 

65 0.8694 0.00000 
calculated with Eq. (101) Eq. (124) 

00 0.8694 0 
Eq. (122) 
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When there exist two distinct particle impingement regions in a unit interval, 

which is possible for a large a, the contributions from thei1e two regions must be 

summed up. Also, when the pcint x' =2mr is located in a particle impingement 

region, x~.; or x~.1 in Equation (123) must be replaced by x' =2nn. 

In terms of the perturbation quantities, C4P• can be rewritten in the form 

(124) 

which indicates that the contribution to the drag coefficient of the particle im

pingement on the wall is order E, and is larger than the gas phase contribution 

by one order. The numerical results are shown in Table 2. This shows that 

the contribution Cdpn is important only for a small number n or only for the front 

part of the wavy wall. 

Conclusions 

The first-order perturbation problem of a gas-particle two-phase flow over 

a wavy wall has been analyzed. It was proved that the location of particle-free 

regions is determined only by two parameters, the particle parameter a and the 

wall parameter e. It does not depend on the loading ratio 11. It is interesting 

to note that there exist regions of a high velocity gradient adjacent to the wall 

surface. Of course, all the present results have been obtained under the con

dition that the gas is inviscid, except for its interaction with the particles. If 
the gas phase is not assumed to be inviscid, the boundary layer in the region ad

jacent to the wall and its interaction with the present inner flow mmt be taken 

into account in the analysis of the inner problem. In such a case, however, the 

problem will become desperately complicated and difficult. 

The drag coefficient of the wavy wall was obtained. In the case of two

phase flows, the particle ccntribution to the drag coefficient due to the particle 

impingement on the wall will be very important, because its contribution is larger 

than the gas phase contribution by one order. 

APPENDIX A 

If we consider the second-order inner expansion as 

V, = U0(i+eq,1 +e2qp2+0(e3
)) , 

Pp = Ppo(I +eap1 +e2ap2+O(e3
)) , 

etc., 
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Equation (5) yields 

av,,1 = 0 
ay , 

Ryuj1 Imu 

8ap1 8Up1 0 ( ) Q -+--+v,,1 - a,,1+v,,2 = . 
8x' 8x' ay 

This suggests that the second-order expansion 1s necessary to determine a,,1 m 

the present analysis. 

APPENDIX B 

The wave from the origin propagates along the line 

(M> 1), 

which can be represented in the x'y coordinate system as 

1 x' Y= . -
VM 2

- 1 ~ 

This means that the wave propagates along 

x' = 0 (B-1) 

in the present first-order inner problem. Since the usual classical relations hold 

for the dust-free gas just behind the wave (~l), we have Equations (76) and 

(77). The particle quantities are continuous across the wave (B-1), leading to 

the results (78) and (79). 

APPENDIX C 

The solutions for Equation (92) are given by 

where 

With Equation (86), this can be rewritten as 

Since r > 1, this shows D>O, which indicates ,t1 and -t2 are rea~. Moreover, it is 

easy to see that both -l1 and -l2 are positive for I'0>0 (M>l). 
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APPENDIX D 

The formula for the inverse Laplace transform used in deriving Equations 

(97) and (98) are as follo\\ s: . 

L- 1[/;(s+k)] = exp (-kx')f;(x') , 

L-1[/;(s)/j(s)] = J:'f;(z)JAx' -z)dz, 

L-1[ (;~:Y/2] = k{l0 (kx') +11(b')} +b(x'), 

where. L-1 denotes the inve~e Laplace transform, b(x') is the Dirac dl"lta function, 

z is a dummy variable, and k and r are constants. 

Carrier G.F. 1958 J. Fluid Mech. 4, 376. 
Clarke J.F. 1959 J. Fluid Mech. 7, 37. 
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