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Summary

This paper describes a theoretical investigation into the perturbation problem
of gas-particle two-phase flows over a wavy wall. It is assumed that the gas is inviscid
except for its interaction with the particles, and no phase change takes place. The
flow region is split into two sub-regions, an inner region near the wavy wall, where
particle-free regions appear, and an outer region above the inner region. The inner
and the outer expansions are matched with each other in some overlapping domain.
The inner problem is solved numerically, and the outer problem is solved analytically.
Main attention is paid to the flow structure near the wavy wall, and also the drag of
the wavy wall.

Introduction

There are many engineering applications for flows of a medium that consists
of a suspension of powdered material or liquid droplets in a gas. The system
of governing equations for a dusty gas is very similar to that for vibrationally or
chemically relaxing dust-free gases. The effects of vibrational and chemical
relaxations on the gas flow are well understood, particularly in the linear regime
(Vincenti 1959, Clarke 1959). There are, however, a few important differences
between the relaxation phenomena in a dust-free gas with relaxing internal modes
and those in a dusty gas. One of the most important differcnces is that the velo-
cities of the particles can be, in general, different from the gas velocity, leading
to distinct momentum equations for the gas and the particles that are coupled
with each other. This is not the case for the relaxing dust-free gases. Especially
for multi-dimensional two-phase flows, the particle streamlines can deviate from
the gas streamlines, which usually introduces a great mathematical difficulty
into their analysis (Ishii & Kawasaki 1982, Miura 1974). It is, therefore, im-
possible for us to apply previous solutions for relaxing dust-free gascs directly

to flows of gas-particle mixtures even in linearized problems.
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In this paper, a perturbation flow. of gas-particle mixtures over a sinusoidal
wall is considered. The problem is treated as a perturbation from a uniform
reference flow. The flow region is divided into two sub-regions, the thin inner
layer near the wall where the particle-free regions appear, and the outer region
above the inner layer.

"Essentially, as will be seen later, the system of equations for the perturbation
quantities is not linear for the inner flow. This system will, however, be proved
to be treated substantially as a linear one. The inner problem js analyzed nu-
merically by the method of characteristics for a supersonic reference flow. The
particle trajectories are investigated in detail to obtain the location of particle-
free-regions.

The system of perturbation equations for the outer region is a Jinear one,
and then the outer problem is solved analytically by means of the Laplace trans-
form for a supersonic reference flow. Only for the limiting case of the infinitely

wavy wall, the cuter problem is solved directly by the prev1ous method applied
by Vincenti (1959).

The matching technique to be employed here relies on the hypothesis that
the outer expansion fits the inner expansion in some overlapping domain.

Sample calculations are carried out for a mixture composed of air and small

solid particles of Al O;.

Assumptions

The gas-particle mixture is supposed to be in equilibrium in the reference
state. The analysis will be based on the following assumptions:

(1) Nc phase change takes place.

(2) The viscous force acting on each particle obeys Stokes’ law.

(3)  The heat transfer rate to each particle is proportional tc the temperature
difference between the gas and the particle.

(4) The gas is inviscid except for its interaction with the particles.

(5) The gas is a perfect gas with constant composition and constant specific
heats.

(6)  The volume occupied by the particles is neglected.

(7)  The thermal and Brownian motions of the particles are neghglble

(8)  The particles do not interact with each other.

(9) The particles are solid spheres with a uniform diameter and a constant

material density.
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(10) The particles have a constant specific heat, and the internal temperature
of the particles is uniform.

(11) The particles which impinge on the wall make a perfectly inelastic colli-
sion with the wall, and they adhere to or are absorbed by the wall after
the impingement.

(12) The impinged particles on the wall do not change the shape of the wall.
Obviously, the assumption (12) is consistent with (6). These assumptions have
been used in many previous papers treating gas-particle flows (Marble 1963,
Rudinger 1975, Carrier 1958, Takano & Adachi 1975).

Basic Equations

We begin by setting down the equations of gas dynamics for a steady two-
dimensional flow of the gas-particle mixture. Within the assumptions given
in the previous chapter, the governing equations are given in the xy coordinate
system as follows (Zucrow & Hoffman 1977):

P(pV) =0, (1)

P—;% V+FPP = “‘ppAp(V_Vp)’ (2)

D r P 1 - - -

p.})_t(r___l;+_:z.w)_ Pp{B(T~T,) +4,V,(V=V,)} , (3)

P = RoT, (4)

P(0,V,) =0, | (3)

D

IV, = 4,(V=V,), (6)

Dyp B (77 7

Dt ! C,,( R 7
where

) )

_;0 .9 ) o 8

14 lax+"6y’ (8)

D X

= 4 (9)

D

Dy_vyp. 10

= A4 | | (10)

In these equations, o, V¥, P, and T are the density, the velocity, the pressure and
the temperature of the gas. The subscript p denotes the quantities associated
with the particles. The vectors Z and j are the unit ones in the x and y directions,
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respectively. The constants R and 7 are the individual gas constant and the
ratio of the specific heats for the gas phase, and C,, is the specific heat of the par-
ticle material. The quantities 4, and B, are the inverse relaxation times for
the particle velocity and temperature, respectively, and are given under the as-
sumptions (2) and (3) as

184
A, == R (11)
g pmpD?’
124C,, (12)

»= pmpDPPr ’

where 4, C,,, P,, p,, and D, are the coefficient of viscosity, the specific heat at
the constant pressure, the Prandtl number of the gas, the material density and
the diameter of the particles. In the present case, the quantities 4, and B, are
related with each other by

2¢C
B, = ——sp’:'A,, . (13)
Wall geometry

Consider a semi-infinitely sinusoidal wall described by

0 for x<<0,

Jo = (l‘ﬂ

P, sin (27:%) for x>0,

as shown in Fig. I, where [ is the wave length, y; is the amplitude and the sub-
script w denotes the wall boundary. Now, for later convenience, the non-dimen-
sionalized coordinates of x and y are introduced by

&= x/(;;—z) s =}/(§l7—t> . . (15)

With these, Equation (14) is rewritten as

Uo
[
flow direction

ywto ;—yw-yosin(zft-;‘)

—
I~
Fig. 1. Sinuscidally wavy wall.
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/

Jo =

0 for x’' <0,
(16)

esinx’ for x>0,

where

: :}/(é‘_”) . | (17)

Since our ultimate concern is with the small-disturbance flow over the wavy wall,

we shall assume that
e<l. | (18)

In the present analysis, under the condition (18), we assume that the flowfield
can be described by a perturbation on a uniform parallel flow with velocity U,
in the x direction. Although it is assumed that the reference flow is supersonic,
it will be proved that some part of the present result remains valid for the sub-

sonic reference flow.

Perturbation Equations

The perturbation quantities are now introduced by

V = Uyi+eq+0(e?) ,
P = Py(l14ep+0(€%),
p = py(1+e0+0(e%) , -
T = Ty(1+er+0(e%), (19)
V,= Uo(i+EQp+0(€2)) s
Py = Oyl +e0,+0(€%)) ,
T, = To(1+4¢1,4+0(c%))
where
qg=u-tcj, (20)

and subscript zero denotes the unperturbed reference state.

Before deriving the perturbation equations from Equations (1) to (7) with (15),
(19), and (20), attention must be paid to the flow field near the wavy wall. In Figure
2, the gas and the particle streamlines near the wall are shown schematically under
the conditions (11) and (12), where the shaded regions are the dust-free regions
and the solid and dotted lines are the gas and particle streamlines. Appearance
of such dust-free regions usually introduces a great mathematical difficulty. Since
it will be reasonable to consider that the extent of such dust-free regions in the

%'y’ plane may be ccntrolled mainly by the geometric parameter ¢, the flow region
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gas streamline

———— nparticle streamline

outer region

inner region

Fig. 2. Flowfield near the wavy wall.

is divided into two sub-regions, the inner and the outer regions, as shown in Figure
2. The perturbaticn equations are then derived sepatiately for each region.

A. The inner expansion

In order to solve the inner problem, it is convenient to introduce a new co-
ordinate system (x’, ¥), whete ¥ is given by

J=Jyle. (21)

Subrtituting Equation (19) into Equations (1) to (7) in conjunction with (8),
(20}, and (21), we have for the fitsr-order perturbation quantities:

oo, (22)
(Z g et o = —avE ), (23)
_% =0, (24)
(Ei—'+v%>{r+(r—l)M2u} = —ﬂVOE(rf-r,)——(T—l)“VEMz(“—”p) )

25
o p
_g_;_; _o, (27)

a a8
(20 Joo = o) (29)
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v N
20— a(o—,}, (29)
) 7]
(-a?'{‘vp—a—j)fp = /9(7-7;) ’ (30}
where
@ == Apl (31)
anl,
— Bnl (32)
2zU,C,, ’
M = Uo//\/rli (33)
Py
b = Cpp/Cyy (34)
Y = Py 0p . (35)

The quantity M is the Mach number cf the reference flow associated with the
speed of sound for the gas phase, and v is the loading ratio.

This system is nct linear because Equations (23), (25), (28), and (30) involve
terms with :0/6y and ¢,0/0y. Fortunately, however, it will be shown later that
this system can be treated substantially as a linear one. As is demonstrated in
Figure 2, there are particle free regicns in the inner layer. This situation ic taken
into account by introducing the quantity E in Equations (23) and (25). This is
defined as

E =

{ 1 for a dusty region, (36)

0 for a dust-free region,

which means that the quantity E can be taken as a function of the particle stream-
line.

Here, it must be pointed cut that there is no equation involving the pertur-
bation quantity o,. This suggests that the particle density g, cannot be determined
in the first-order perturbation problem in the present analysis. (See Appendix
A.) Equations (22) to (30) then constitute a system of nine equations for eight
unknowns u, v, p, 7, 0, u,, v,, and 7,. Mathematically, this system is considered
to be an over-determined system.

The boundary conditions imposed on this system are

{ 0 for ' <0,
V=
cos x’ for x' >0,

(37)

at y=7y,=sinx’, and that the inner solution must fit the outer solution in the
vicinity of y=1oco.
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B. The outer expansion

In the outer region, Equations (1) to (7) are linearized in the x’y’ coordinate
system just as in the previous analyses for relaxing dust-free gases. Substituting
Equation (19) into Equations (1) to (7) in conjunction with Equations (8) and
(20), we have

29 1pig=o, (38)
ox

oq 1 '

ax'+ T M? V'p = —av(g—q,) (39)

—é%-{p—o—k(r— WM} = —pvb(r—rz,)—(r—1)avM*“(u—u,), (40)

p=0+41, (4'1)
‘éa‘z‘,e'*‘p'qp =0 ) (42)
22— alg—q,), (43)
2% _ pie—r,) - (44)
ax’ po
where
7] 8
= —, : 45
4 ox' +J ay’' (45

This system constitutes a set of nine equations for nine variables, and is solved
for the boundary conditions

{0, q, b T, 04 Qy, tp} = finite as y'—>o0, ’ (46)

and also that the outer solution must fit the inner one in the vicinity of »'—0.

Solutions of the Perturbation Equations

As has been discssued previously, the inner and the outer problems are coupled
with each other by the boundary conditions. These problems, therefore, must
be solved simultaneously. In the present analysis, first the inner problem is
partly solved. Then, the outer solution is obtained by making use of the matching
principle. Finally, the remaining part of the inner problem is solved numerically.

The inner solution

In the inner problem, it is impossible to shift the boundary surface (16) to
the basic position of the wavy wall, §=0, as in the usual linearized problems of
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dust-free gases. The reason is that in the x’y plane, the amplitude of the wavy
wall is order unity.
From Equations (22), (24), and (27), we can get

v = d(x"), 47)
vy = By(x"), ’ (48)
p=1), (49)

respectively, showing that these variables are the functions of x’ only, and do not

depend on y. By considering the boundary condition (37), it is given that

B = j 0 for ' <0, (50)

{ cosx’ for x'>0,
with which Equation (29) is solved to yield

0 for x’' <0,

$,(x") = 51
) 2il{alcosx'+sinx’—aexp(—otx')} for x'>0. Gh

These results indicate an important fact that the perturbation velocities v and
v, in the inner layer do not depend on the loading ratio v. In particular, the
gas velocity ¢(x) is completely independent of the existing particles. As will
be seen later, the pressure distribution ¥(x') can be determined by the matching
procedure with the outer expansion.

With Equations (47) to (49), the system of equations is rearranged in the
following form:

9 N9\, 1 dv(x) _ _ _
(ax’ +o(x") Y )u +rM2 T avE(u—u,) , (52)

(5‘1—, +o(x") —%){rﬂr—l)M’u}

= —BVE(t—1,) —(r—1)evEM*(u—u,), (33)

o417 =(x'), . (54)
P ad Y\ s

(—6-;7 +6,(x )"@)U = B(z—1,). (56)

These now constitute a system of five equations for five unknowns: u, 7, o, u,
and 7,, and they obviously are linear for these unknowns. This system can be

solved once the pressure ¥+(x") is known.
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Before discussing the method for solving the problem, the gas and the particle
trajectories in the inner layer are obtained. These are not only necessary in
order to solve the system but also véry interesting theoretically. In the present
first-order perturbation, the gas and the particle trajectories are given, respec-
tively, by . '

- dy '
7 = const along —%- =y, 57
g2 (57)
7,=const along % =1,, (58)
x

where 7=7/e and 7,=7,/¢. These quantities are the functions of x’ and y, which
are obtained by solving

aﬁ’/_“a” = —u, (59)
ox'l 8y
aﬁ,/am
, — . 60
ox'l 8y U (60)

It will be easy to realize that Equations (59) and (60) were derived from Equa-
tions (57) and (58), respectively. For the explicit determination of 7(x’, ¥) and
7,(%’,9), a so-called labeling of these variables is necessary, because the relations
between (7, 7,) and (x’, ¥) have been given by the first-order differential Equa-
tions (59) and (60). Mathematically, the labeling of these streamline variables
is equivalent to the specification of the arbitrary integral functions in the general
solutions for Equations (59) and (60). Here, the gas (particle) streamline which
traverses the ¥ axis (x'=0) at y=3, (§J=3,) is labeled as 7=7, (7,=J¥,). For
such labelings, Equations (59) and (60) are solved in conjunction with (47),
(48), (50), and (51) to yield, respectively,

_ y for ' <0,
7 = { ., (61)
J—sin x for x>0,
J for x' <0,
7, = 62
7 y——‘—x—z%_—l{a sin x' —cos x’ +exp (—ax’)} for ' >0. (62

It will be easy to see that the gas streamline along the wall is denoted by
7=0. As for the particle streamline, the situation is very complicated, since the
impingement of the particles on the wavy wall may occur for x'>0. In Figure 2,
the wall portions OA and CD are the regions where the particles impinge. The
particle streamlines ABC and DE, which divide the dusty and dust-free regions,
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are the so-called limiting particle streamlines. It must be noticed that the limit-
ing particle streamlines 7,45c and 7,,, are different. - Such a situation is, of course,
based on the assumptions (11) and (12).

Previous discussion suggested that the occurrence of absorption cf the im-

pinged particles by the wall must be taken into account in the description of the

particle streamline near the wavy wall by Equation (62). Considering the fact
that the wavy wall is described by 7=sin x’ (7=0), we can represent the particle
streamlines on the wavy wall by

0 for x' <0,
Tpo(%') =
) sin - fasin v —cos ' fexp(—ax)} o >0,
a1
, (63)
T pio(%2) = Ty (1) for x5>x],

(64)
where the second equation represents the effect of absorption of imﬁinged particles
by the wall. Figure 3 shows 7,, for @=1.0, where there exist some ranges of x’,

for which %,, satisfying the Equations (63) and (64) cannot be found. In such
regions, there appear particle-free regions surrounded by limiting particle stream-
lines and the wall boundary. For a few values of @, the limiting particle stream-
lines are shown in Figures 3, 4, and 5.

Figure 6 demonstrates the limiting par-
ticle streamlines in the physical plane for @=:1.0.

;‘pw
4 - a=1.0
1= —— 'npl )
e e
2 \ / \ 7/ N
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Fig. 3. Particle stréamline on the wavy wall,
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Fig. 5. Particle streamline on the wavy wall.

Since the flow structure becomes completely periodic as #'—> oo, the impinge-
ment of particles on the wavy wall will cease in the limit ' —oco. This means
that the limiting particle streamline 7, converges to some value 7, as 1'—>00,
where the subscript / denotes the limiting particle streamline. Furthermore, it
can be concluded that this value 7,,.. gives the total amount of impinged particles
on the wavy wall in the range 0<x’< o0, since %,,(0)=0. With Equations (63)
and (64), 7, can be obtained as
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Fig. 6. Limting particle stieamline in the x’y plane.

Tpe = 1/ Va2 1. (65)

By making use cof this result, the location of the limiting particle streamline can
be given from Equation (62) as

j:

P (asin ¥’ —cos ) + ———r, (66)

for x' > 1.

As has been discussed previously, the particle-free regions are surrounded

by the limiting particle streamlines and the wall boundary. Then, these regicns
are mathematically defined by

Tp(%s J) <Ap(") (67)
7(x’, 7)>0. - (68)

For an infinitely large x’, Equation (67) can be rewritten as
ip(x', ¥) <7 p1ee == CONSL. - (69)

Since 7,(x’, ¥) (in Equation (62)) and then 7,,(x’) involve only one parameter @,
the location or the extent of the particle-free regions in the x’¥ plane depends on
this parameter @ only. In other words, the particle-free regions in the x’»' plane
are controlled by ohly two parameters, the wall parameter ¢ and the particle

parameter a,

Now, we return to the problem of solving the system of Equations (52) to
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(56). With Equations (61) and (62), these equations are easily rewritten in
the form,

du 1 Ay R
dx'  rM?dx' i

(7,) (u—1u,) , (70)

~(gc—l{r+(r—l)M2u} — — BUOE(7,) (r—7,) — (r — ) avE(7,) M*u—u,), (71)

along 7 = const,

where
E@) { 0 for 7,<7,, (dust-free region) , (72)
V) = 1 for 7,27, (dusty region) ,
0 = 1,0'—1' ) (73)
and
Wy = afu—u,), (74)
dx’
9% _ ey, (75)
% : . _

along 7, = const.

Obviously, these are given in the characteristic form, and then easily solved
numerically, once y+(x") is given.

The boundary conditions imposed on the system are

u=—1/vVM—1, (76)
T = (r—1)M?*}VM?*—1, (77)
u, =0, (78)
7,=0. (79)

at x'=0 (See Appendix B.)

The outer solution
Although the inner problem has been solved only partly, the outer problem
can now be solved by using the partial inner solution. Making use of the match-

ing principle, we can get the boundary conditions for the outer prcblem from
the results in the previous section as follows,

0> @(x')  asy —0, (80)
v, > ,(x") asy —0 _ (81)

in addition to Equation (46). The condition (81) substantially means that there

is no need to consider the phenomenon of particle impingement on the wall and
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therefore there is no need to introduce the function E as in Equation (72) in the
outer problem.
Combining Equations (39) and (43), we have

o o 9y du
gl DY{—-—<——])=0,
ot (G2y)

Since the reference flow is uniform and irrotational, this is integrated to yield

Gv _ou o (82)

which means that the flow in the outer region is also irrotational. In a similar
manner, the " component of Equation (39) and Equation (40) are integrated to
vield
p+rMi(u+vu,) =0, (83)
t4vlt,+(r—1)M*(u+vu,) = 0, (84)

respectively. Eliminating u, p, 7, 0, u,, ¢, and 7, from Equations (38), (41), (43),
(44}, and (82) to (84), we have the following equation for z:

2 2. 2, 2 2 2 2
a_(po_‘?l_a%%) +(a+b)%(rl ia__‘f___a_l)+ab(r 9% .a.ﬂ) =0,

Ox" Ox"? ax? 9y 25,\—'5_3)"2
(85)
where
Fy= M1,
e +0 127
— M2 —- 86
h=M @5 b (86)
I-'2 — Mz‘l—}—l/)(l-*—ryo}—.l ,
(1 +76)
a ==,
(87)

Parameters @ and b arc introduced on purpose to emphasize the symmetric de-
pendence of Equation (85) on these parameters.

For the supersonic reference flow, al! the disturbances are identically zero
upstream from the wavy wall. We, therefore, define the Laplace transform of
quantity f by

£, = {5 exp (—ssan ()
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where f is any disturbance variable. It follows that v satisfies the equation

4% _ #{T’+(atb)Is+ably}
d)"z (s+a)(s+b)

(89)

By considering the boundary condition (80) in conjunction with (50), it is given
that

v(.», 0)

7 +1 (90)

with which, and with Equation (46), Equation (89) yields a solution for  in the
form

A s To(s+4)(s+4,) , :
b=y e A PR b

Here, (—2,, —4,) is a set of solutions for
Iy (a+-b)Iys+-ably = 0. _ (92)

As is shown in APPENDIX C, these two quantities 4, and A, are real. With
Equation (91), Equations (82) and (43) are solved to yield

Slita)oth) To(stA) (1)
T_“/Po(sst)(st) xp] - N/ R ol B

_ as 1) (s +b) Tt 014 |
b = —(5’1“.‘1) (-‘2+1)}\/ro(-"+11) (S’f‘xz) { ~/ }

(s+a)(s+b) -
(94)
To(s+A)(s+4,) ,
= e oo - e e | 39)
Also, from Equation (83), we have
b= —rM*atva,). (96)

Although the transforms of other perturbations 7, ¢, 7,, and o, can easily be ob-
tained, these are not recorded here.

Generally, the inverse of the transforms on the right hand side of Equations
(91) and (93) to (95) is very difficult (Clarke 1969). However, since we are
sometimes most concerned about the distributions of flow variables near the wall,
these transforms are inverted only for y'—0, l

In the limit of »'—»0, the exponential factors in Equations (91) and (93) to
(95) are replaced by unity. Following the results by Erdelyi et al. (1954), we
have:
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u= \/I, $ AR —2)dzHf(") (97)
Uy = \/r S Jn(2)fpelx'—2)dz , (98)
(See APPENDIX D.)

where

Ay = B exp{ = Ly (22 ) 4122 2)]

i) = Io( ‘

ax’)cxp{——;— (A +a)x’} (99)

+So {a cos (x'—C) —sin (x’-()}J,,(**;"c) exp {—‘;- (h+a) }dc

1 r 24— 2
)
g TR " 2

a"bx')exp{—-% (a+b)x'} (100)

Falw) = exp{~

Fuls) = 1
b

, .
+§o {6 cos (x' —C) —sin (x'—c)}Io("‘Q‘ C)exp{———% (a+b)c}dc ,
and z and { are dummy variables. In these equations, I, and I, are the zero-
and the first-order modified Bessel functions of the first kind. It is obvious that
the inverse transforms of » and v, are equal to ¢(x') and ¢,(x") in Equations
(76) and (77), respectively. With the results (99) and (100), Equation (96)
yields the pressure,

p= :/A]{O S Si@)fo(x' —2)dz4fo(x') +-va S ,ﬁl(z)fpz(x’~z)dz} , (101

which is equal to ¥(x') in Equation (49).

So far, we have been exclusively concerned with the outer solution in the
limit of 3'—0. For an arbitrary value of ', it is very difficult to obtain the in-
verse transforms on the right hand side of Equations (91) and (93) to (95). For-
tunately, however, for a sufficiently large value of x’, the structure of the flow-
field becomes periodic, and then the Equation (85) can easily be solved directly.
Here, an analytical solution for the outer problem for an arbitrary value of 3’
will be obtained only for a sufficiently large value of x’ without making use of
the method of the Laplace transform.

Assuming the solution of Equation (85) for x'>1 in the form

v = F(»")exp(ix'), (102)
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where F(y') is the function of 3’ only to be determined, and i is the imaginary
unit, we have from Equation (85)
d&°F .

where

Qr = — o Ty T @ T @b Qn — T =T+ T},

Q= w%‘;;-(:z%l){(rl—ro)‘l‘ab(rz-rx)} .

From the relation

(104)

r,>r,>r,,
it can be proved that
0,>0. . (105)

This condition suggests that the general solution for Equation (85) has the form
(Vincenti 1959),

F = C. exp{(d+id)y'} +Cy exp{—(d+id)y'}, (106)

where 4 and A are positive constants defined by

@ ) =(y L@+ vETah, f Lo +varan), o

and C, and C. are complex constants. With Equation (106), Equation (102)
is rewritten as '

v = C_exp{dy +i(x' 44y} +Cs exp {—dy' +i(x'— Ay} . (108)

If the complex conjugate of v is denoted by o*, this conjugate v* is also the solu-
tion of Equation (85), which leads to the result that the solution for Equation
(85) can be constructed by a linear combination of » and v*. Considering the
boundary conditions (46) and (80) in conjunction with (50), we can get the final
solution for v in the form, -

v = cos (' — Ay') exp (—dy') . ' - (109)

Substituting this into Equation (82) .yields

“= g S Ay =) exp (45, (110)
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where

tan d =

YN

(111)

Similarly, substituting Equations (109) and (110) into Equation (43) yields

a l ’ ] ’
u, = -\/a’+l TETE cos(x'—Ay'—3+8,)exp (—4y"), (112)
a M 1 ! [
v’=\/a2+l sin(x’'— A4y’ +8,)exp(—4y), (113)
where
tand, = a. (114)

Now, the pressure p can be determined from (83) with Equations (110) and (112).
The result is

2
p= —.\-/—A—r%_.*‘f__?. {sin(x’—Ay’—G)-\/:f+l cos (x’——A)-'-—8+6,)}

sexp (—4y") . (115)

One important general result is stated. In the derivation of the results (109)
to (115) and also the results (50) and (51), the condition that the reference flow
should be supersonic has been essentially unnecessary. This means that the
solutions (109) to (115) and also the results for the gas and the particle stream-

lines in the inner layer remain valid even for the subsonic reference flow. The
detailed structure of the solutions (109) to (115) is nearly the same as that in the
previous analyses of the linearized dust-free gas flows with the vibrational or the
chemical relaxation over the wavy wall (Vincenti 1969).

Sample Calculations

By using the results obtained previously, sample calculations were carried
out on the electronic digital computer FACOM 230 in the Computer Center of
Kyoto University. A dusty gas composed of air and small solid particles of ALO;
was considered. The physical constants and the reference conditions are listed
in Table 1. The calculations were carried out only for the flow regions near
the wavy wall. Unfortunately, however, the numerical results, except for s,
vy, and p, could not be obtained for x’»1 in the inner problem, since some
purely numerical difficulty appears for the downstream region of x'>1. The
details of this difficulty will be discussed later.

In spite of such a situation, it must be emphasized that the analytical inner
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Table 1.
Physical constants
Air ALO;
r=14 ‘ ' p,=4.0%x10% kg/m?®
Cp¢=1005.0 J/kgK Cy»=1686.0J/kg K

#=1.79 % 10~% kg/m sec
(for Ty=288.0 K)
P,=0.75

Reference conditions

T,=2880K
Po=1.23 kg/m?
ayo=340.0 m/sec

solutions for v(é(x")) and v,(¢,/(x")) and the inner limits of the outer solutions
for u, u,, and p(y(x’)) are valid for all x’, and their numerical results have been
obtained for all x". These results are sometimes sufficient for practical purposes,
since the gas and the particle streamlines near the wavy wall and the pressure
distribution on the wall are completely determined from these results.

In Figure 7, the distributions of the gas and the particle velocities, ¥ and u,,
and the pressure p calculated from Equations (97), (98), and (101), respectively,
are shown for ¥=0.3 and @=1.0. These u, u,, and p are the inner limits of the
outer solutions, and especially this ¢ is equal to y(x"). This figure indicates
that these solutions become almost completely periodic after only a few times of

Up . V=03
1.0

-1.0

u, equation (97)  up, equation (98)  p, equation (I0I)

Fig. 7. Distributions of mner limits of outer solutions u, u;, and p along x".



46 Ryuji Isun

the wavelength from the origin. It is easy to explain this situation with Equations
(51), (97), and (98) in conjunction with Equations (99) and (100). As is proved
in APPENDIX C, 2, and 2, are both positive, and the parameters a and b defined
in Equation (87) are considered to be of the same order. Then, all the expo-
nential terms in Equations (51), (97), and (98) are O(exp (—ax’)), which leads
to the result that it takes only a short distance, x’:O(l/a); for these solutions to
become almost periodic.

After determining the function E(7,) with Equations (63) and (64), the sys-
tem of Equations (70) to (75) was solved numerically by the method of charac-
teristics, where Equation (101) was used as v(x'). " Since the characteristics,
which are the gas and the particle streamlines in the present case, are already
known by Equations (61) and (62), the numerical procedure is very simple and
easy. The accuracy of all the numerical results has been checked by comparing
the results for a few different mesh sizes. The result for » along the gas streamline
on the wavy wall (7=0) is shown in Figure 8, being compared with the inner
limit of the outer u (Equation (97)). The mesh sizes used in the present calcula-
tion are 4x'=z/60 and 47==/30. The limiting particle streamlines corre-
sponding to the results in Figures 7 and 8 are shown in Figure 9. It is interesting
to note that Figure 8 suggests the existence of a velocity gradient in the 7 direction,
which may be very large in magnitude because 8u/87% is rewritten as &~'(8u/d7)
with the unstretched variable 7. In order to investigate this situation in detail,
the distributions of # along the 7 direction at several points x* are shown in Figures
10 to 16. These points x” are

-0+

Fig. 8. Distribution of u along x’.
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Fig. 9. Limiting particle streamline for a=1.0.

Xiw = 20, x5, = (2r.+ —é—)n s Xin=(2n+Dm, xj,= 2(n +%)7t R

where n=0 to 6, which are indicated in Figure 9. As shown in Figures 10 to 16,
the flow structure at each point x’ is not simple. In all cases, the velocity dis-
tribution has a minimum at some point of 7. The absolute value of du/0% in-
creases with x'(n), especially in the region very close to the wavy wall. Theo-
retically, it is expected that du/87 at 7=0 will tend to a negative infinity as
x'— o0, since the particle impingement on the wavy wall substantially ceases as
x’—>cco. Then, the limiting particle streamline becomes tangential with the wall
boundary only at one point in the unit interval (unit wavelength) as x’—oco. This
situation is shown in Figure 9. The effect of the existence of particle-free regions
on the distribution of # can easily be seen from Figures 10 to 16.

It may be said that the velocity change with 7 is relatively more distinguished
in the dust-free region than in the dusty region.

In Figure 17, the distributions of u at x'=2nz (n=0 to 6) are shown, which
correspond to the results in Figures 10 to 16. This demonstrates the detailed
change of the velocity distribution # along % with x’ (or n). It is important to
realize that the velocity distributions appreciably change with x' or n. Such
a situation is very different from that for the outer solution. Mathematically,
it will be sure that the flow structure in the inner region as well as the outer region
becomes completely periodic as x'—oc. Then, the velocity distribution u at
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gaos streomline
————limiting particle streamline
A

Fig. 18. Gas streamline near the wavy wall.

x4s (also at x4, x/, and xJ,) will converge to some fixed distribution. Figure 17,
however, does not show such a trend clcarly, which suggests the fact that it
takes a very large distance aleng x’ from the origin for the inner flow to become
sufficiently periodic.

In order to explain this situation, Figure 18 will be quite helpful, where the
gas and the limiting particle streamlines for a large x’ are schematically shown.
Referring to Figure 18, let us denote a gas streamline near the wavy wall by
7=7 (solid line) and a limiting particle streamline by 7, =7, (dotted line).
The gas element along 7=7%, flows through the dusty region only between points
A and B (or A’ and B’) per unit wavelength. Since the adjustment of the flow
quantities of the gas along the streamline 7=7%, with those of the particles is possi-
ble only while the gas remains in the dusty regions AB and A’B’ -+, the length
along x', necessary for the flow quantities of the gas along 7=7%; to be adjusted
completely with those of the particles, will naturally be very large. This is greatly
enhanced for the gas along a streamline very close to the wavy wall. However,
the difference between the flow quantities of the gas at the points x’ and x’ 427
along the streamline very close to the wavy wall becomes very small in magnitude,
especially for a large x’. This is because the total amount of particles, with which
the gas can interact per unit interval, is very small. The results for 7«1
and »>>3 in Figure 17 well demonstrate this situation.

Although it will be very important and interesting to obtain the converged
velocity distribution « along 7 as n—>oco or the limiting periodic structure of the
inner solution as x’'—> oo, unfortunately it could not be done here because of a
numerical difficulty. As has been discussed previously, a very large distance

along x’ from the origin is necessary to obtain the final periodic inner solution,
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which inevitably leads to the necessity of a great number of mesh numbers for
reliable numerical calculations. In the present paper, only the results, for which
the numerical accuracy could be checked, are shown. '

Finally, the velocity u and the pressure p of the gas in the outer region for
#">1 have been calculated from Equations (110) and (115) in conjunction
with (111) and (114). As will be seen from their derivatﬁon, the flow quantities
are completely periodic with respect to x’. Mathematically, these results are
valid with order ¢ for 0(x’)>—-1-|log6|. Since Equation (115) yields v¥(x') in

a
Equation (49) as y'—0, the gas pressure on the wavy wall is obtained as

:
p=y() = —Vfgﬁ{sin(x’—B)-V%T cos(x'—6+8,)} . (116)

Similarly, from Equations (110) and (112), we can get

v e S —9), (117)

u, = _72:::{—:1 \/7_2-1:—&-7 cos (x'—84-8,) . ‘ _ (118)
The numerical results for Equations (116) to (118) have shown an almost com-
plete agreement with thosc for Equations (97), (98), and (101) obtained by means
of the Lapiéce transform for > 1. These ére, therefore, not shown here.

It will be possible to prove mathematically that the solutions (97), (98),
and (101) agree, respectively, with (112}, (113) and (111) in the limit of x'—>oo.
Here, however, we do not discuss this proof, because an excellent agreement be-
tween the corresponding numerical results has been obtained. Also, the mathe-
matical procedures applied to obtain these two sets of solutions automatically

warrant the agreement of the corresponding results in the limit x'— oo,

Drag Coefficient

Consider the drag coefficient of the wavy wall. To the accuracy required in
the two-dimensional small disturbance case, the pressure coeflicient C,=(P—P;)/

%poU 5 can be found to be

2¢
C, = -2 _p. 119
’ 7'sz (119)

If we denote the drag coefficient per unit wavelength in the range (n—1){ <
=0l 2n—lr=x"<2n7) (n=1, 2, 3, -++) by C,,, it can be calculated from
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) 1 (*én ),
c,,-_—_S ) Le x| 120
"= x‘M( R (120)
where (C,), is the value of C, evaluated at the wall. Substituting Equation (119)
into (120) yields

2 xtul
Ciy = n—:‘/—vI—ES , ¥(x') cosx'dx’ . (121)

Xan-y

Especially for x"3>1, Equation (116) can be used as ¥/(x') in Equation (121), and
the explicit result is obtained as

Can =L{A+_’i€.(a+Aa)}. (122)
LRy a’4]

Since the flow structure is completely periodic in the limit of »’ (or n)— oo, this
result does not depend on the number n. For the small number n, however,
C;. given by (121) depends on n. With Equation (101), Equation (121) was
calculated, and the result is shown in Table 2. For n22, C,, is almost constant

and is equal to the result of Equation (122).
It must be emphasized that the drag coefficient (121) represents only the
contribution of the gas pressure. If the effect of the particle impingement on
the wall on the drag coefficient is taken into account, it is necessary to evaluate

the contribution of the particle impingement to this coefficient. Denoting it
bY Cdpm

1 (% (05, VW dy.
Capn = _~S (—.-_Pw P*'”)_fw : (123
dp 27!,' 1 dxl dx B \ 2 )

& 2
bni ‘2_ poUO

where V,,=Uy(1+¢u) and x;,; and x,,; are the initial and the final points of
the particle impingement region on the wall in the range 2(n—1)n<x'<2nx.

Table 2. Drag coeflicient of the wavy wall for g=1.0, v=0.3, and M=1.5.

n Can/e? Capn/¢
1 0.8727 0.04847
2 0.8694 0.01902
3 0.8694 0.00004
4 0.8694 0.00000
25 0.8694 0.00000
calculated with Eq. (101) Eq. (124)
oo 0.8694 0
Eq. (122)
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When there exist two distinct particle impingement regions in a unit interval,
which is possible for a large @, the contributions from these two regions must be
summed up. Also, when the pcint x'=2nz is located in a particle impingement
region, x,a; or xp,s in Equation (123) must be replaced by x'=2nx,

In terms of the perturbation quantities, C,,, can be rewritten in the form

Capn = e% (SN X}y —Sin 2hi) +O(e?) , (124)

which indicates that the contribution to the drag coefficient of the particle im-
pingement on the wall is order ¢, and is larger than the gas phase contribution
by one order. The numerical results are shown in Table 2. This shows that
the contribution C,,, is important only for a small number 7 or only for the front
part of the wavy wall.

Conclusions

The first-order perturbation problem of a gas-particle two-phase flow over
a wavy wall has been analyzed. It was proved that the location of particle-free
regions is determined only by two parameters, the particle parameter @ and the
wall parameter €. It does not depend on the loading ratio ». It is interesting
to note that there exist regions of a high velocity gradient adjacent to the wall
surface. Of course, all the present results have been obtained under the con-
dition that the gas is inviscid, except for its interaction with the particles. If
the gas phase is not assumed to be inviscid, the boundary layer in the region ad-
jacent tc the wall and its interaction with the present inner flow must be taken
into account in the analysis of the inner problem. In such a case, however, the
problem will become desperately complicated and difficult.

The drag coefficient of the wavy wall was obtained. In the case of two-
phase flows, the particle ccntribution to the drag coefficient due to the particie
impingement on the wall will be very important, because its contribution is larger

than the gas phase contribution by one order.

APPENDIX A
If we consider the second-order inner expansion as
V, = Us(i+equ+ea,+0(e%) ,

pp = ppo(l +Eapl+€20p2+0(53)) H]
etc.,
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Equation (5) yields
Ovp _
ay.
a"m
ax’

a
up1+ Upt "‘—(opl‘*‘vpz) =V.

This suggests that the second-order expansion is necessary to determine g, in
the present analysis.

APPENDIX B

The wave from the origin propagates along the line

%sl/vwff:f or ' =xNM—1 (M>1),
X

which can be represented in the x’¥ coordinate system as

’

1 x
TEVM =T ¢
This means that the wave propégatés along ‘
=0 o B
in the 'preieht first-crder inner problem. Since the usual classical relations hold
for the dust-free gas just behind the wave (B-1), we have Equations (76) and

(77). The particle quantmes are continuous across the wave (B-1), leading to
the results (78) and (79).

APPENDIX C

The solutions for Equation (92) are given by

e

where
D = (a+b)* I} —4abI' T, .
With Equation (86), this can be rewritten as’
D:{Mz[a( b_‘HZQ] )} +4M?% b(L‘__l)_”zf;
(1+28) (146)

Since 7>1, this shows D>>0, which indicates 4, and A, are real. Moreover, it is
easy to see that both 2, and 4, are positive for I'y>0 (M>1).
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APPENDIX D

The formula for the inverse Laplace transform used in deriving Equations
(97) and (98) are as follows:

LT fis+H)] = exp (ks )fi(x)
L6001 = || f@fit — 2z,

= [(fiz v ] = kAL (ks") +L (ks ")} +8(x") ,

$—

L [{,(;ﬂf’kﬁif”] — exp (—ka V(%) + (k —7) So exp (—kz)L,(rz)dz ,

L (2 ks +7)712] = exp(—%kx')lo(V%kZ-rx' ) ,

where L! denotes the inverse Laplace transform, & (x") is the Dirac delta function,

z is a dummy variable, and k and r are constants.
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