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ABSTRACT 

Optimal road network design models have been investigated in order to 
generate alternatives of road network planning. Most of the previous works 
assume that the decision variables of the planners are the attributes of the 
links. The actual road network, however, consists of links and nodes, and it is 
useful to distinguish links and nodes explicitly. Planning models should in
volve the attributes of nodes in decision variables as well as the link attributes. 
We formulate a road network design model considering the nodal capacity. The 
frame of the proposed model is interpreted as a two level optimal problem, 
which is a system optimizing problem including an optimal problem as its 
constraint. Before the formulation of a two level problem, the structure of a 
node is simplified, and a nodal passing time function is introduced, which 
represents the performance of a node. As a user equilibrium is the most 
relevant assumption for the description of road network flow, the lower prob
lem is formulated as a fixed demand user equilibrium problem, using nodal 
passing time functions as well as link travel time functions. Given the total 
investment cost constraint, the higher problem decides the link and nodal 
capacities in order to optimize a measure of the whole network performance. 
The lower problem describes the traffic flow on a network for given capacities. 
The structure of the model is explained by using the frame of the Stackelberg 
differential game, whose players are planner (leader) and aggregate term of 
network user (follower). In order to solve the formulated problem, a heuristic 
algorithm is proposed. This is the input/outputiterativemethod, and it is 

expected to be effective for a normal size problem. The convergence of the 
algorithm is numerically confirmed through an example for simple and hypot
hetical datum. A sensitivity analysis for the value of the cost constraint is 
executed to determine the effective value of an investment. Remaining prob
lems are extensively discussed for further research. 
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1 . Introduction 

Optimal road network design models have been investigated in order to 

support the decision making process of road network planning. They can be 

used as effective tools for the generation of network alternatives. Almost all of 

the previous researches on optimal network design assume that the decision 

variable of the planner is the link attribute of the concerned network, for 

example, the capacity of a link or the number of lanes. 

The actual road network, however, consists of links and nodes, and the lack 

of capacity of the nodes usually causes traffic congestion on a network. When 

the planner tries to find the set of alternatives which will improve the network 

performance, it is useful to classify links and nodes explicitly. Optimal network 

design models should include the nodal attributes in the decision variables as 

well as the link attributes. 

Here, we use the term of node for the road section or the place where one 

directed traffic flow meets the others. For example, a junction or an intersection 

can be considered as a node if we treat the street network in a city. For a 

regional network, a node may denote a town or a city. 

An optimal network design model considering the nodal attributes is ex

pected to give the optimal combinations of both link and nodal capacity im

provements. Therefore, the optimal amounts and timings of lane widening and 

signal setting are useful information for the construction and management plann

ing of a street network. 

Two important assumptions should be examined before the mathematical 

formulation of an optimization problem. They are employed as the basic 

assumption throughout this paper. One assumption is that the continuous 

variables are used as the decision variables of the netwok planner or the 

transportation service supplier. 

The traffic capacity is the decision variable for a link ; the road section of an 

uninterrupted flow is simply called a link. The traffic capacity is regarded to be 

a continuous variable, while the number of lanes is a discrete variable. Similarly, 

the decision variable for a node is the traffic capacity. In a few words, we 

classify these two kinds of capacities as the planner's decision variables. They 

are simply referred to as the link capacity and the nodal capacity respectively. 

The other key issue lies in the description of the road network flow for a 

given value of the decision variables of the network planner. It can be assumed 

that the actual network flow is brought by the route choice behavior of the 

individual network user. The transportation service supplier can decide the link 
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and nodal capacities. However, he cannot directly intervene in the individual 

route choice behavior. 

The most appropriate assumption on the description for the road network 

flow is the user equilibrium (UE) concept, in other words, Wardrop's first 

principle. It is reasonable to assume that every motorist will try to minimize his 

or her own travel time from the origin to the destination. A stable condition is 

reached only when no traveler can improve his or her travel time by unilaterally 

changing routes. This stable condition is defined as the user equilibrium. At the 

user equilibrium, the travel time on all used paths is equal, and less than or 

equal to the travel time that would be experienced by a single vehicle on any 

unused path. 

Then, the optimal network design problem discussed in this paper concerns 

the planner's decision making process considering the network user's aggregated 

behavior. Later, this situation will be explained in detail. 

Here, we review several previous works which discussed optimal network 

design problems (NDP) and optimal traffic signal setting problems (TSSP). The 

former problems relate to the link design and the latter to the nodal design for 

our problem. We consider only the works which try to concern both the 

planner's decision variables and the UE traffic flow in the same framework. We 

assume the continuous decision variable for the transportation service supplier. 

One of the buds which tries to include the UE traffic flow in NDP can be 

found in the work by Abdulaal and LeBlanc (1979) 0 • They define the traffic 

flow as the function of link capacities and formulate NDP. This problem, 

however, is difficult to handle for numerical calculations, because the objective 

function is non-convex and non-differentiable. 

Using the idea of a variational inequality, Marcotte (1983) 8
) formulates the 

NDP constrained by the variational inequalities in the flow variables. He 

proposes an exact (relaxation and accumulation) algorithm and a heuristic input

output algorithm. 

Harker and Freisz Cl984)n apply the idea of the two level optimizing problem 

in order to explain the structure of the NDP with a UE flow. The formulated 

NDP can be interpreted as the Stackelberg Game problem with two players, the 

network planner and the user. They show that the solution of the NDP with a 

system optimal flow gives the lower bound, and the heuristic input-output 

solution gives the upper bound of the exact solution respectively. 

Independently of this work, Asakura (1985) 2
) formulates an NDP with a UE 

flow, and introduces the Stackelberg Game framework for the explanation of the 

problem. He also applies the problem to the actual case of a road widening in 
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the suburbs of Kyoto City. 

These works show that the NDP considering the network user's behavior can 

be formulated mathematically in some forms, and the exact solution procedure 

might be less attractive than the heuristics in the actual size of the network 

design problem. 

On the other hand, Charlesworth (1977) 3> proposes a method which can 

simultaneously determine both the timing of traffic signals and the network 

assignment flows, based on Wardrop's 1st principle. Although his calculation 

remains at a heuristic stage, it should be noted that he analyzed the simultane

ous determination problem which had been previously pointed. 

Marcotte (1983) 8> also formulates the TSSP using the same idea of the NDP 

constrained by variational inequalities. The exact algorithm for the NDP, howev

er, might be modified for the TSSP, or the problem should be reformulated. 

Fisk (1984) 5> considers the relation between the Game theory and the trans

portation system models. The TSSP with a UE flow is shown as an example of 

the Stackelberg Game whose players are the control organization and the net

work user. She also formulates the TSSP, using variational inequalities and 

proposes an exact solution algorithm by a penalty function method. This 

procedure can be applied if the size of the problem is not too large. 

Besides these works, problems assuming the system optimal network flow 

have been investigated. For example, Gartner (1977) 6
> formulates the TSSP and 

shows the solution procedure by decomposition. The idea is methodologically 

equivalent to the works on the NDP by Dantzig et al. (1979) 4> • The NDP and 

the TSSP with a system optimal flow are comparatively easier than the problem 

with a user equilibrium flow. They are useful for both understanding the 

problem and considering solution methods. 

Taking care of the founding of the previous works, this research takes the 

following procedures. At first, it is necessary to make a model of a road 

network. Especially, the most important point is the description of the road 

section which corresponds to a node. We bring the idea suggested by Sasaki 

and Inouye (1974) 9> and present a simple model of a node. Then the UE traffic 

assignment problem can be formulated. This problem describes the network 

flow which comes from the user's route choice behavior for the given value of 

the decision variable, and network capacities, of the planner. The description of 

a node and the formulation of the UE problem are discussed in Section 2 of this 

paper. 

In the next part of this paper, the decision making process for a road 

network design is formulated as an optimizing problem, using the framework of 



A Road Network Design Model Considering Node Capacity 5 

the Stackelberg Game problem. The decision variables of the network planner 

are the node capacities as well as the link capacities. The UE network flow is 

explicitly concerned in the problem. This optimal problem can be interpreted as 

a two level optimizing problem which involves the other optimal problem, the 

UE problem, as its constraint. A heuristic solution algorithm is proposed for the 

formulated NDP, and a numerical example is executed for the hypothetical data. 

2. UE Traffic Assignment Problem with Nodal Passing Time 

2. 1. Nodal Passing Time Function 
There are a few theoretical works on a traffic assignment which explicitly 

take into consideration the nodal passing time. The nodal passing time cor

responds to the delay time spent at a node. Almost all of the previous works 

assume that the nodal passing time is involved in the link travel time. It is 

necessary to define the nodal passing time function, separated from the link 

travel time function, when we formulate a traffic assignment problem with the 

nodal passing time. 

We can derive several types of the nodal passing time function, based on the 

model of a node. Fig. 1 shows a case in which the node and the nodal passing 

time are not explicitly considered, and this case has been used for the usual 

traffic assignment. If the nodal passing time is assumed to be separated by the 

directions of the traffic flow, both inflow and outflow directions, the node can be 

described as shown in Fig. 4. In this case, left turn, right turn and straight 

directions are distinguished from each other if the node corresponds to the 

intersection of a street network. The cases shown in Fig. 2 and Fig. 3 stand 

____ I .,.JI __ _ 

Fig 1. Usual Case without Node Passing Time 

Fig 2. Simplest Model with Node Passing Time 
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Fig 3. Outflow Directions Distinguished 

Fig 4 . All Directions Distinguished 

between the above tow cases. If the outflow direction is considered, while the 

inflow direction is not, Fig. 4 yields to Fig. 3. Further, if the outflow direction 

is not distinguished, Fig. 3 yields to Fig. 2. Consequently, Fig. 2 presents the 

simplest model of a node which includes the nodal passing time. 

In this paper, we consider the case shown in Fig. 2 for two reasons. One 

reason is that this simplest case will give the most basic founding for the 

network design including a nodal capacity. The other reason is that the nodal 

capacity may not be easily divided into several directions. It means that the 

capacity for each direction is not independent of each other, and it is difficult to 

put the capacities to separate handling. It is noticed, however, that the case of 

Fig. 2 is not enough for the detailed analysis of a node, and the most appropri

ate case should be studied according to the problem of the network. 

Here, we refer to the work by Sasaki and Inouye 0974) 9) , which makes a 

simple model of a node and introduces the nodal passing time function. They 

formulate the UE traffic assignment by the analogy of an electric circuit. The 

assumptions for the model of a node and the nodal passing time function are 

stated as follows. 

1. The nodal passing time T. of node n is not distinguished by its inflow 

direction and outflow direction. 

2. T. is defined as the function of the total outflow of traffic Q. (or total 

inflow Q. '). 

3. The relation between T. and Q. (Q.') is assumed to be linear. 

4. If T. is a function of Q., T. is loaded at the link where the outflow will 
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meet. 

Assumptions 1 and 4 are equivalent in assuming a node as the one shown 

in Fig. 2 . Assumption 3 is necessary because Sasaki and Inouye formulate the 

UE traffic assignment by the analogy of an electric circuit. However, this should 

be relaxed: the value of T. increases monotonously, not necessarily linearly, with 

Q •. 

If we formulate a traffic assignment as an optimizing problem, it is conven

ient to assume that a link travel time is the function of its link flow, and never 

affected by the value of the other links. This assumption is similarly applied for 

the nodal passing time and corresponds to assumption 2. 
Moreover, the considering assignment problem makes no sense if the nodal 

capacity is not involved in the problem. In other words, the nodal passing time 

function must include the nodal capacity. The following types of functions will 

satisfy the requested conditions. 

T.=t.,/ ( 1 - (Q✓C.)"' ) 

tno ; nodal passing time for Q" = 0 
Cn; nodal capacity 

r, k, m ; parameters 

( 1. a) 

( 1. b) 

The capacity Cn for ( 1 . a) is not the limit prohibiting an excess, but the 

maximum value of the flow which is in a rather smooth condition. The function 

( 1 . a) may be practical because the nodal passing time rarely increases to an 

infinite value if the flow increases closely to the capacity. Further, it is found 

that the function ( 1. a) approximates Webster's delay function at the signalized 

intersection. Then, we employ the same type of function -C 1 . a) as the nodal 

passing time function. 

2 . 2 . Formulation of Assignment Problem 
Based on the above mentioned assumptions on the description of a node and 

the nodal passing time function, we can formulate the traffic assignment prob

lem ruled by the user equilibrium for the given capacities of links and nodes. In 

addition to the assumption on the travel time function of the network, the travel 

demand is assumed to be given and fixed at the level of the origin and 

destination flow. The formulation of the UE traffic assignment problem includ

ing the nodal capacity is similar to the usual fixed demand UE problem, and 
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written as the following optimization problem (P 1 ) : 

(Pl) 

s. t. 

Va Q,. 

min :E f s. (x)· dx+:E f T. (y) dy 
a O • 0 

:E h,.,1=X,1 for all i, j 
m 

V.=:E:E:Ed-1 hm1; for all a 
,n, i, j 

Q.=:E :E :E enm1; h,.,1 for all n 
m, i, j 

h .. li~ 0 for all m, i, j 

Here the notations are : 

V. ; traffic flow on link a 

Q. ; traffic flow on node n 

S. (x) ; travel time function of link a 

T. (y) ; nodal passing time function of node n 

X,1 ; travel demand between origin i and destination j 

h,.,1 ; traffic flow of path m between i and j 

( 2. a) 

( 2. b) 

( 2. c) 

( 2. d) 

( 2. e) 

d.mli (e.,.,1) ; = 1 if path m between i, j includes link a (node n) 

= 0 otherwise 

The decision variables of this problem are the path flows h,.,1• The constraint 

( 2. b) means the condition of the origin and destination flow conservation. Eq. 

( 2 . c) and ( 2 . d) denote the relation between the path flow and link flow or 

nodal flow. If we put these equations into the objective function, the link flow 

and the nodal flow can be eliminated from the formulation. 

It is easily proved that the solution of the problem (P 1) gives the UE 

condition including nodes. That is derived in the same way as for the usual UE 

problem. If we show that the optimal condition of (P 1 ) corresponds to the 

equal travel time condition, (P 1 ) is equivalent to the UE problem. 
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The constraints of (P 1 ) are linear equality equations and non-negative 

conditions for the flow variables. The Kuhn-Tucker conditions of (P 1) are 

written as follows. 

( 3. a) 

( 3. b) 

( 3. c) 

( 3. d) 

Here 

h,,.,/; optimal path flow 

W/'; optimal Lagrange multiplier 

The Kuhn-Tucker conditions show Wardrop's first principle which is the UE 

condition. 

3. Network Design Model 

3 . 1 . Assumption 
The policy decision making process considering the user equilibrium of the 

road netwok flow can be formulated as the Stackelberg Game model with two 

players: the network planner and the aggregated means of the network user. 

Several assumptions for both planner and user are necessary in advance of the 

formulation of a road netwok design problem. The assumptions for the behavior 

of the network planner are stated as follows. 

At first, the objective of the netwok planner is mainly focused on the 

minimization of the total travel time of the whole network. The total travel 

time is one of the available and important measures which can evaluate the 

direct cost of the network performance. (The total investment/operational cost 

is discussed later.) The planner does not explicitly consider the other social costs 
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which are brought on by the network improvement. These factors could be 

included in the constraints of the problem if they must be discussed. 

Secondarily, the traffic capacity, a continuous variable, is chosen as the 

decision variable of the planner. It is needless to say that the capacity of a node 

and that of a link are separately handled. Actually, it is a rare case that the new 

network is constructed for a place without existing roads. Therefore, the planner 

considers the extension and improvement of the existing network. Further, the 

set of nodes and links for the improvement is given by the plan of the higher 

level. 

Thirdly, every improvement cost of the link and the node is additive and the 

upper limit of the total improvement cost is given. The planner must find the 

value of the capacity which minimizes the total travel time within the limit of 

the total investment cost. 

The fourth assumption is the type of the improvement cost function of each 

link and node. The simplest form, the linear function, is used for the cost 

function. The improvement cost linearly increases according to the amount of 

the capacity 

G. (Z.) =g. z. ( 4. a) 

G. (Z.) =g. z. ( 4. b) 

Here, 

G. (Z.), G. (Z.) ; the improvement cost function of link a (node n) 

z., z.; the capacity of link a (node n) which increases by the improvement 

g., g.; the unit cost of the improvement on link a (node n) 

The length of link, land price and geographical features should be considered in 

the value of g., and the circumstances of nodal and signal control cost might be 

reflected in the value of g •. 

The fifth assmuption is the type of the performance functions : the link 

travel time function and the nodal passing time function. These functions are 

necessary to describe the user's behavior as well as to compose the planner's 

objective function. We employ the form of Eq. ( 1. a) for both the link travel 

time function and the nodal passing time function. The performance functions 

are: 

( 5. a) 
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The notations are ; 

C., C.; the existing value of the capacity of link a (node n) 

r1, k 1 ; parameters for link, common for all links 

r2, k2 ; parameters for node, common for all nodes 

11 

( 5. b) 

The other notations have the same meaning as in the previous section. For the 

case of a new construction of node and link, the existing capacities are set to be 

zero. 

Besides these assumptions for the planner, the following three assumptions 

are introduced to the user's behavior for given network capacities. At first, the 

travel demand is given and fixed at the level of the trip distribution between the 

origin and the destination. It means that the trip table is externally estimated, 

and the origin----destination flows are not varied if the network capacities are 

improved. 

Secondarily, the available travel mode for the user is limited to the automo

bile. Other travel modes, such as buses and bikes are not used. 

Thirdly, the road traffic flow is assumed to be the user equilibrium flow that 

is explained and formulated in the previous section. It means that the every 

user can choose his or her own route (travel path) from the origin to the 

destination. 

3 • 2 • Formulation 
Based on the above-mentioned assumptions, a network design model is 

formulated as follows. 

(P2) 

min :ES. (V., Z.) V.+:E T. (Q., Z.) Q. ( 6. a) 
a • 

s. t. 

:E G. (Z.) + :E G. (Z.) ~G ( 6. b) 
a • 

L. ~ Z. ~ H. for all a ( 6. c) 

L. ~ Z. ~ H. for all n ( 6. d) 
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Ya Qn 

min I: J s. (x, Z.) dx + I: J T. (y, Z.) dy 
a O • 0 

( 6. e) 

s.t. 

( 6. f) 

V.=I:~~d ... ljh,,,.; for all a ( 6. g) 
'"· •• J 

Q.=I: I: I: e..,,1 h,.,1 for all n ( 6. h) 
m, i, j 

h ... 1~ 0 for all m, i, j ( 6. i) 

The objective function of the planner, the total travel time, is written as Eq. ( 6 . 
a). The first and the second terms of the equation denote the total travel time 

of links and that of nodes respectively. Eq. ( 6. b) means the total improvement 

cost constraint, and G denotes the upper limit of the investment. The upper and 

lower bounds for both link and nodal capacities are introduced and written as 

Eq. ( 6. c) and ( 6. d). The most relaxed case of the bounds are; 

L.=L.= 0 ( 7. a) 

H.=H.=+oo ( 7. b) 

The UE traffic flow is obtained as the solution of the optimizing problem shown 

in Eq. ( 6. e), ( 6. f), ( 6. g), ( 6. h) and ( 6. i). This optimizing problem con

straints the whole optimizing problem. We refer to this problem as the lower or 

sub puoblem, while the problem shown in Eq. ( 6. a), ( 6. b), ( 6. c) and ( 6. e) 

is referred to as the upper or master problem. Therefore, the structure of the 

whole problem is interpreted as a two level optimization problem, which has the 

one optimization problem, lower problem, as its constraints. 

The framework of the Stackelberg Game with two players is employed in 

order to explain the formulated network design problem. In the Stackelberg 

Game, one of the players is called the leader who has complete information on 

the behavior of the other player, who is called the follower, The leader has the 

advantage to decide his strategy, considering the behavior of the follower. In 

contrast with the leader, the follower knows the strategy given from the leader, 

and he has no information on the decision process of the leader. 

The typical Stackelberg Game is formulated as the two level optimization 
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problem as follows. Player 1 and the player 2 correspond to the leader and the 

follower respectively. 

(P 3) 

min F1 (X, Y' (X)) 
X 

s. t. 

G1 (X, Y' (X)) ;;;; 0 

F2 (X, Y' (X)) = min F2 (X, Y) 
y 

s. t. 

The notations are; 

X, Y; vector of the decision variables of players 1 and 2 
Y' (X) ; parametric optimum solutions of the sub problem for given X 

F1 (X, Y), F2 (X, Y) ; objective function of players 1 and 2 
G1 (X, Y), G2 (X, Y) ; constraints vector of players 1 and 2 

( 8. a) 

( 8. b) 

( 8. c) 

( 8. d) 

The relations between the formulated NDP (P 2 ) and the typical Stackelberg 

Game (P 3 ) are summarized in Table 1. 

Table 1 . The Relations NDP with Stacklberg Game 

player 

decision variable 

behavioral 
principle 

objective function 

constraints 

leader 

network planner 

capacity of link and node 

total travel time 
minimization 

F1 = ( 6. a) 

(6. b), (6.c), (6.d) 

follower 

network user 

path flow 

individual travel time 
minimization (UE) 

F2 = ( 6. b) 

(6.f), (6.g), (6.h), (6.i) 
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3. 3. Solution Algorithm 
Shimizu (1982) 10> proposed a general solution algorithm for the Stackelberg 

problems. His algorithm is expected to give the exact solution for the NDP. If 

the sub problem is replaced by its necessary and sufficient conditions, the 

problem could be reduced to the usual non-linear problem, and solved by some 

appropriate programming algorithms. This procedure, however, may not be so 

effective for a case with a large number of variables and constraints as the 

formulated NDP. 

Therfore, we employ a heuristic iterative optimization algorithm which is 

composed of the input/output phases, the UE assignment phase for the given 

capacity and the optimization phase of the network capacity up-dating for the 

given traffic flow. The solution procedure can be summarized as follows. 

step O Set m= 1 (m; iteration number) 

Start with the initial feasible capacities Z.1, z.1
, and feasible network 

flow V.1, Q.1 satisfying the constraints. 

Step 1 Solve the upper problem for the given flow variables. 
min LS. (V.m, Z.) V.m+L T. (Q.m, Z.) Q.m 

a • 

s.t.(6.b), (6.c) and (6.d) 

Set the new capacities z.m+l, z.m+l. 

Step 2 Check the convergence of the value of capacities. 

If the following criteria are satisfied, stop the calculation. Otherwise, set 

m=m+ 1 and go to step 3. 

e; appropriate small positive 

Step 3 Solve the UE assignment problem for given capacities z.m, z.mand obtain 

link flow v.m and nodal flow Q.m. 

Still more explanations should be added to step 1 and step 3 . For step 3 , 
in order to solve the UE assignment including the nodal passing time, the 

Frank-Wolfe algorithm for a usual assignment problem can be used. 

For step 1 , the following decomposition can be applied. If we choose the 

appropriate value of the multiplier /3, it is possible to include the cost constraint 

in the objective function. 
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r s. (V."', z.) V."'+L s. (Q."', z.) Q."'+{3 er G. (Z.) +r c. (Z.)) C 9) 
a ,a a n 

The reformulated master problem could be decomposed to the optimization 

problem for each node and link. They are: 

min S. (V."', z.) V."'+{3G. (Z.) (10.a) 

s. t. L. ~ z. ~ H. (10. b) 

and 

min s. (Q."', Z.) Q."'+{3G. (Z.) (11.a) 

s. t. L.~Z.~H. (11. b) 

When the improvement cost functions, G. (Z.) and G. (Z.), are given by Eq. ( 4. 
a) and the performance functions, s. (V., Z.) and s. (Q., Z.), are given by Eq. 

( 5. a) and ( 5. b) , the unique solution of z. and z. can be obtained as follows. 

and 

1 
La if 

Z': = f.-, V."'-C. if 

H. if 

V."'~ (L.+C.) f. 

(L.+C.) J.< V."'~ (H.+C.) f. 

(H.+C.) f.< V."' 

l 
L. if Q.'"~ (L.+C.) f. 

Z': = f.- 1Q."'-C. if (L.+C.) J.<Q."'~ (H.+C.'") f. 

H. if (H.C.) f. < Q."' 

(12.a) 
(12. b) 

(12.c) 

(13.a) 
(13. b) 

(13.c) 

Here, the values of f. and f. are composed by the constant variables as follows. 

(14.a) 

(14. b) 

The values of Z."' and Z.'" may not satisfy the total investment constraint. Then, 

the value of f3 must be arranged so that the capacity satisfies the following 

eqution. 

L G. (Z.'") + ~ G. (Z.'") =G (15) 
a n 



16 Tsuna Sasaki, Yasuo Asakura and Masashi Kawasaki 

Instead of the inequality cost constraint shown in Eq. ( 6. b), the equality 

constraint Eq. (15) is employed, because the optimal solutions are expected to be 

obtained at the maximum level of the investment to the network. 

The exact algorithm should be developed instead of this heuristic solution 

procedure, for example, applying the idea proposed by Fisk (1984) 5' for TSSP. 

She presented the solution algorithm for TSSP with a UE traffic flow, which is 

also applicable for NDP with slight modifications. A discussion on this point 

will appear in forthcoming studies. 

3. 4. Numerical Example 
A numerical example is executed for hypothetical data set in order to find 

the numerical features of the formulated problem. The figure of the existing 

network is shown in Fig. 5 , and the values of the input variables are listed in 

Tables 2 , 3 and 4. The value of the parameters of the performance functions 

are set to: 

OD 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

r1=r2= 2.62 
k1=k2= 5 

1 2 

0 3000 
0 

Fig 5. Existing Network For Improvement 

Table 2. OD Matrix 

3 4 5 6 7 8 

5394 3709 1418 776 139 624 
1413 201 11 104 45 144 

0 931 39 2716 47 85 
0 235 60 12 28 

0 27 13 39 
0 255 124 

0 6664 
0 

9 10 sum 

300 348 15708 
54 42 5114 

115 4 10744 
240 3 5419 
841 3 2716 
192 1 4255 
295 1 7471 

2682 2 10392 
0 0 4719 

0 404 
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Table 3. Input Variables for Link 

a 1 2 3 4 5 6 7 8 

t. 21 22 36 66 65 19 40 35 
c. 4800 4800 1200 1200 4800 1200 1200 1200 
g. 2280 2312 3840 2648 2584 2024 1584 4256 

a 9 10 11 12 13 14 15 16 

t. 50 11 12 23 48 38 49 72 
c. 1200 1200 1200 4800 4800 1200 1200 1200 
g. 3980 4396 4772 2456 5128 15036 1968 2860 

H. = 12000 and L, = 0 for all links 
t.; min. C,, H., L.; veh./ day 
g,; x 103 yen/ veh. / day 

Table 4. Input Variables for Node 

n 1 2 3 4 5 6 7 8 9 10 
c. 22800 14400 12000 8400 4800 7200 6000 9600 8400 2400 
g. 3200 1600 1600 1600 800 1600 1600 3200 1600 800 

t. = 5 , H. = 50000 and L. = 0 for all nodes 
t.; min. C., H., L.; veh./ day 
g,; yen I veh. / day 

Table 5. Convergency for f3 = 3 x 10-5 

iteration F1 Time Cost F2 

1 6.70 4.18 84.0 2.67 
2 6.45 4.14 76.7 2.89 
3 6.36 4.15 73.5 2.92 
4 6.31 4.17 71.6 2.93 
5 6.30 4.16 70.9 2.94 
6 6.29 4.18 70.6 2.95 
7 6.29 4.18 70.3 2.95 

F; = Time + Cost ( X 106 min.) 
Time; total travel time ( x 106 min.) 
Cost; total inverstment cost ( x 109 yen) 
F2; value of objective function of UE problem 

In order to avoid the complexities of resetting the value of /3, the original NDP 

is slightly modified: the total investment cost is included in the objective func

tion using the externally given value of /3. The first calculation is executed for 

the fixed value of /3 and the second one for the parametric changing /3. This 

case is equivalent to solving the original problem. 

For a case where the value of /3 is set to 3.0 x 10-5, the convergence of the 
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value of the total travel time, the total investment cost and the value of the 

objective function of the sub problem are shown in Table. 5. Although some of 

these values are not converged, the value of the temporal objective function, the 

sum of the total travel time and the total investment cost, tend to converge. 

Therefore, the number of iterations seems to be enough for this example. 

The values of the link capacity and the nodal capacity are shown in Fig. 6. 
It is found that the optimum capacity, which is the sum of existing and 

extended values, and the traffic flow, is balanced at every node, while the 

optimum capacity is 1. 5 times the traffic flow at every link. This result means 

that the planner should keep the better_ performance for the part of the nodal 

section. In particular, he should invest more money for the improvement of the 

nodes numbered l, 2 and 3 and the links numbered 1 , 2 and 5. 

10,000~ 
veh. 

50,00017"'\ 
vet,JU 

Fig 6. Current and Extended Capacity 

If we sequently solve the NDP, including the total improvement cost in the 

objective function for the parametric varied /3, it is equivalent to solving the 

original NDP for the parametrically changing total cost constraint. The results 

of the sensitivity analysis, the calculation for the value of /3 changing from 3.0 X 

10-s to 3.0 X 10-1, are shown in Tab. 6. 
For the increasing value of /3, the total travel time increases, while the total 

investment cost decreases. We can assume the case for /3= 3 x 10-1 as the 

current situation in which the network is not improved at all. If the planner 

decides to invest at the level for the case of /3= 3 X 10-s, the total travel time 

could be reduced to 1 / 6 the level of the current network. Between the cases of 

/3= 3.0 X 10-s and /3= 3.0 x 10-1
, the difference of the total investment cost ac

counts to twice the amount, while the total travel time could be saved slightly. 

It means that any further effect by the investment may not be expected. These 

findings are useful for finding the appropriate level of the investment on the 

road network, as well as the effective combination of the improvement of the 
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links and the nodes. 

Table 6. Sensitivity for the value of /3 

/3 F, Time Cost Lcost Ncost 

3 X 10-s 2.73 2.72 531.0 530.0 1.0 
3X 10-7 2.85 2.74 359.0 358.0 1.0 
3 X 10-6 3.53 2.92 203.0 202.5 0.55 
3x10-s 6.29 4.18 70.3 69.9 0.34 
3x10-• 13.30 9.60 12.5 12.3 0.18 
3 X 10-a 18.00 17.70 0.07 0 0.07 
3 X 10-2 18.50 18.20 0.01 0 0.01 
3X 10-1 19.00 19.00 0 0 0 

Lcost; total investment cost for link ( x 109 yen) 
Ncost; total investment cost for node ( x 109 yen) 
Cost= Lcost + Ncost 

4. DISCUSSIONS 

The optimal road network design problem considering the nodal capacity as 

well as the link capacity is shown in this paper, and the following points should 

be discussed in any future research. 

Instead of the simple representation of a node used in this study, the 

alternative model of a node should be accepted when the proposed network 

design problem is applied for the microscopic case, for example, the traffic signal 

settings. If the nodal capacity is divided into several directions, and the nodal 

passing time function is defined independently for each direction, a formulation 

and solution procedure similar to this study may be used with a slight modifica

tion. It may be suitable to relax the assumption on the independence for some 

actual cases. However, the mutual dependence of the passing time functions in 

the same node may cause the problem to have a complicated form. In relation 

to the modeling of a node, a suitable form and a parameter value of the node 

passing time function should be considered. 

The solution procedure remains at the heuristic stage, and it is noted that 

the Stackelberg problem can not be solved exactly in this procedure. The 

heuristic procedure is accepted because it may be applicable for the actual size of 

the road network design. An exact algorithm, however, should be developed to 

know the detailed numerical features of the problem. 
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