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Abstract 

Behaviour of various potentials in Biot's linear theory of consolidation and linear 
coupled thermoelasticity is investigated for the case of general anisotropy. Initial 
behaviour of the solutions of these problems is discussed in detail. 

1. Introduction 

Biot's linear theory of consolidation1>, and the theory of quasistatic linear 

coupled thermoelasticity2> are formulated into one and the same mathematical 

statement of the following form: To find a solution of the equations 

.J*u-P'p = -f, 
div il+mp-K•P'P' p = g, in D x (t>O) , 

subject to an initial condition 

(div u+mp) 1,-o = 8 in D 

and boundary conditions for t>O 

u = Uo on 8D., , 

s = s0 on 8D,, (8D., U 8D, = 8D, 8D., n 8D, = </J) 

(la, b) 

(2) 

(3) 

(4) 

p =Po on 8Dp, ~-~ (5) 

T=-n•KP"p = To on 8D,, (8DpU8D, = 8D, 8Dpnan, = </J) (6) 

where D indicates a domain in RN (N=2, 3), 8D its boundary with an outward 

unit normal vector n, 8D,., 8D., 8Dp, 8D, portions of 8D, (u, p) the unknown 

• Department of Civil Engineering. 



On the Behaviour of Potentials in Consolidation and Coupled Thermoelasticity 309 

(vector, scalar) functions, • the differentiation with respect to t (time), J* an 

operator defined by 

(J*u); = c,,,, ui.P,, 

C;1,,, a constant tensor having the usual symmetry (C,,,,,=C,m=Cm;) and positivity, 
K 11 a positive symmetric tensor, m a positive constant, s the boundary traction 

defined by 

and f, g, (), Uo, s0, Po and r0 given functions, respectively. In these formulae we 

have used the standard tensor notation including summation convention. 
The solution to this problem is written as3l,4l 

and 

where 

ii(x, s) = f U0(x-y) s (y, s) dS-f S0(x, y) u(y, s)dS hD Jl}D 

+ r Uo(X-y) f(y, s)dV+ r r· V(x-y, s-t) s(y, t)dtdS JD JeD Jo 

- r r· S(x, Y, s-t) u(y, t)dtdS- r r· P(x-y, s-t) r(y, t)dtdS JIIDJo JIIDJo 

+ r r· R(x, Y, s-t) p(y, t)dtdS+ r r· V(x-y, s-t) f(y, t)dtdV JeD Jo JD Jo 

+ L ): P(x-y, s-t) g(y, t)dtdV+ t P(x-y, s) 8(y)dV, (7) 

p(x,s) = f V0 (x-y)•s(y,s)dS-f T0(x,y)•u(y,s)dS JeD JeD 

+ r Vo(X-y) •f(y, s)dV+ r r· CV(x-y, s-t) •s(y, t)dtdS JD Jl}DJo 

_ f f' 9"(x, y, s-t) •u(y, t)dtdS-f f' Q(x-y, s-t) r(y, t)dtdS JIIDJo JIIDJo 

+ r r· W(x, y, s-t) p(y, t)dtdS+ r r· CV(x-y, s-t) •f(y, t)dtdV JIIDJo JD Jo 

+ lD i: Q(x-y, s-t) g(y, t)dtdV+ 1D Q(x-x, s) 8(y)dV, 

xE8D 

(~ -) - {u,p u,p -
0,0 

JCED 

JCED', (D' = RN\(D U 8D)) 

(8) 

(9) 
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(10*) 

( 11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

and 

[
R,(x, y, s) ] a [P;(x-y, s)] = -- K1k n,.(y) . 
W(x, y, s) ay, Q(x-y, s)_ 

(20) 

In these formulae, !:f;I indicates the Fourier inverse transform (f-x), J*-I(f) the 

inverse of the matrix obtained by replacing f7 in .d* by f, and 

* For N=2, one would have to interpret non-integrable integrals in the expression for U 0 as the 
finite part. 
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Also, we have used s for time for convenience. 

The physics of the problem tells that the data and the solution, except for 

8p/8n, are piecewise smooth in (DU 8DR) X (t>O), where 

However, 8p/8n (or r) may have a singularity proportional to t 11 on 8DR, where 

P>-1. 
From a numerical analytical point of view, it is important to investigate the 

mathematical structure of this singularity. Indeed, we would not be able to 

establish an accurate boundary integral equation method (BIEM) based on (7) and 

(8) unless we could incorporate the effect of this singularity into the analysis. 

However, it would be reasonable to expect that (7) and (8) th~mselves would provide 

a clue to the understanding of this singularity because (7) and (8) are no less than 

the explicit forms of the solutions of (1). Motivated by this consideration, we 

investigate the behaviour of the integrals in (7) and (8) near 8D for a small t. We 

use the method of the Fourier transform to this end, which enables us to consider 

the full anisotropic case. As a matter of fact, part of this investigation has been 

carried out by Nishimura & Kobayashi5>, where the potentials independent of time 

have been considered. Their potentials include those integrals in (7) and (8) whose 

kernel functions have suffix 0. Indeed, their results yield 

lim l U0 (x-y) s (y, s) dS = l U0 (Xo-Y) s (y, s)dS , (22) 
X➔XoJaD JeD 

lim r So(X, y) u(y, s)dS 
X➔Xo JeD 

= ±_!_ u(x0, s) +v.p. l S 0(Xo-Y) u(y, s)dS, (23) 
2 JeD 

lim r U0(x-y) f'(y,s)dV= f U0(x0-y) f'(y,s)dV, (24) 
X➔XoJD JD 

lim f P 0(x-y) O(y)dV = f P 0(x0-y) O(y)dV, (25) 
X➔xoJD JD 

lim l Vo(x-y) • 8 (y, s)dS = ±_!_ J*-l(n)n •8 (Xo, s) 
x➔xo J&D 2 m+n•J*-1(n)n 

+v.p. l Vo(x0-y) •s(y, s)dS, (26) JaD 

lim f T0(x, y) •u(y, s)dS 
x➔x0 JeD 
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= =f _!__8_ (C[.d*-1(f)f©f] n-n) I 8u; (xo, s) 
2 ae,,, m+f•.d*-1(f)f j f-n OX,, 

+p.f. f T0(x, y) •u(y, s)dS J&D 
= =f _!_ (div u(x0, s)-.d*-1(n)n•C[P'u(x0, s)] n) 

2 m+n•.d*-1(n)n 

+p.f. f T0(x, y) •u(y, s)dS, Jeo 
(27*) 

Jim f V0(x-y)•f(y,s)dV= f V0(x0-y)•f(y,s)dV, 
x➔x0 Jo Jo 

(28) 

Jim f Q0(x-y) 0 (y)d V = _!__ (c0=r= l _ ) O(Xo) 
x-xoJo 2 m+n•.d* 1(n)n 

+v.p.- L Qo(Xo-Y) O(y)dV, x0 E8D (29) 

where the upper (lower) sign indicates the approach from the exterior (interior) 

of D, v. p. - the principal value integral defined by 

v.p.- f •dV = Jim J •dV, 
JD l*O O\Br(SfY 

(30) 

B,(x0) a ball having a radius of e and centred at x 0, and C0 a number defined by 

l J (SN: N dimensional unit sphere) 
Co = -- 9'(Q0)df, 

IS NI S9 q : Fourier transform 
(31) 

respectively. In (27) we have used a cartesian frame whose origin is at Xo and whose 

Nth axis points in the direction ofn(x0) (See Fig. 1.). Hence, in this paper we will 

ao 

Fig. 1. Notation 

• Greek index runs from 1 to N-1. 
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continue this subject by focusing on the integrals dependent on time. Specifically, 

we start by discussing an abstract problem, in which a class of potential functions 

including the time dependent integrals in (7) and (8) is considered. Use of the 

theory of the Fourier transform then determines the behaviour of these potential 

functions completely. We then proceed to the application of the obtained results 

to the specific potentials of interest. In particular, we establish a relation between 

the initial behaviour of pin (1) and the singularity of op/on mentioned above. A 

few remarks concerning the implication of the present results in BIEM conclude 

this paper. 

2. Statement of Problem. 

The motivation mentioned in the introduction suggests the computation of the 

following limits: 

lim lim r• f F(x-y, s-t) ,fr(y, t)dS, dt, 
•iO X➔Xo Jo j 8D 

(32) 

lim lim f' f F(x-y, s-t) ,fr(y, t)dV
1 

dt, •• o X➔Xo Jo JD (33) 

lim lim f F(x-y, s) ,fr(y, 0)dV,, 
,io x➔x0 Jo (34) 

where ,fr(y, t) is a density function having an asymptotic expansion 

,fr(x, t)-- ~ <p;(x) tf1; as t ! 0, 
i 

(35) 

with exponents -l</J1</J2<· .. , Fis a kernel which has a (partial) Fourier trans­

form 

(36) 

and ft and G are certain functions to be specified shortly. The reader should pay 

attention to the order of taking two limits in (32)-(34). 

We next specify the forms of ft and G by using the notion of (l, m) homogeneity: 

A functionf is (l, m) homogeneous if 

holds for .1.ER. With (10)-(20) in mind, we assume that G is (2, 0) homogeneous, 

and 'differentiable and positive' except at the origin. For ft, we require (n, 0) 
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homogeneity and smoothness, except at the origin. Finally, we set the parameters 

n and /J1 as in the following table: 

I n I P1 I kernels (n) 

-1, 0 P1>-l P(-1), CU, Q, R(O) 

surface-time integral (32) 

1, 2 P1=0 ciJ, .S, W(l), 9"(2) 

volume-time integral (33) -1, 0, l P1=0 P(-1), V, Q(O), q/(1) 

volume integral (34) -1, 0 P1=D P(-1), Q(O) 

It is readily shown that the above combinations cover all the possibilities one 

may encounter in the investigation of the integrals in (7) and (8). For example, 

one has to consider a negative fJ only in the surface-time integrals involving r in (7) 

and (8). Since these integrals have either P or Q, as kernel functions, one may 

keep attention only to those cases with n=-1, 0. 

3. Behaviour of Potentials 

This section computes the limits in (32)-(34). 

3.1 Surface-time integrals 

We consider the limit shown in (32). As in Nishimura and Kobayashi5>, we 

assume that an is locally plane and concentrate on the effect of the singularity of 

the kernel function Fon (32). Since this singularity is localized at a boundary point 

x0 , we may pay attention only to the contribution to (32) from the immediate 

vicinity of x0• This justifies our assumption that the domain of integration is RN-1
, 

Actually, we may approximate ,fr by a function defined on a small planer disc S 

centred at x0 and tangent to an, followed by putting yr=O in RN- 1\S. It is then 

convenient to use the cartesian frame shown in Fig. 1. With these tools thus 

introduced, we are now ready to investigate the limit in (32) by considering the 

following partial Fourier transform with respect to x,. *: 

* Greek index runs from l to N -1. 
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(37) 

where P is one of the P/s in (35) (/31 in most cases). The limit in (32) is then 

obtained by multiplying (37) by the N-1 dimensional Fourier transform of ,fr, 

followed by a Fourier inversion. 

To begin with, we prepare a 

Proposition. Let F be (n, 0) homogeneous, with either n=-1, or 'n=O and 

F (0, I) =0.' Also, let G be a positive (2, 0) homogeneous function. Furthermore, F 
and Gare assumed to be continuously differentiable except at the origin. We then 

have 

(38) 

where H is a certain function independent of G. Hence, this limit is independent 

of the form of G. In particular, 

Proof. We have 

(39) 

where v.p. stands for Cauchy's principal value, and 

The first integral on the RHS of (39) tends to the RHS of (38) as e ! 0, because the 

expression in the parentheses in (39) is 0(1/e';.) as le'Nl-oo. The integral in the 

second term on the RHS of (39) is rewritten as 
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1.. e-G(t,.,tN)E 1 .. e-G(Vat,.,1J>_e-G(-Vet .. ,1J> 
v.p. __ ----d77= ---------d'l, 

- '1 0 '1 

which tends to zero as e ! 0 due to the assumption on G. This concludes the proof. 

We now compute (32) for various combinations ofn and fi: 
i) n= -1, 0, p >-1. We first rewrite the time integral in (37) into 

(40) 

The asymptotic expansion for the incomplete gamma function then shows that the 

last integral in ( 40) is of the order of s/J /G (f) for a large If j. We are thus justified 

(by Lebesgue's theorem) to write (37) as 

lim lim E/J(e .. lxN, s) = - 1- Iim r .. de'N f' F(e,., eN) e-G(t,.,eN><•-t) t/Jdt, 
1 ,1,0 "N~o 211: ,,1,0 J_.. Jo 

(41) 

because the integrand (as a function of e N) is of order n-2 (;;:;;-2) at infinity. In 

passing, we present two other forms for the integral in (41), i.e. 

(42) 

and 

(43) 

for later use. 

When n= -1 the proposition and ( 42) give 

I E/J(e,. I 0, s) I ;;:;;sl+/J C(e",.) , 

where C(e',.) is a constant dependent on e,. but not on s. This means 

lim E/J(e",.jO, s)=0 for n=-1 since P>-1. Hence, we conclude 
,,1,0 

lim lim r• r F(x-y, s-t) rp(y) t/JdS, dt = 0 (44) 
s,1,0 X➔Xo Jo Js 

for n=-1 and P>-1 (see (36) and (37)), where rp indicates rp1 in (35). 

For n=0, (43) yields 
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_ 1 .F(O, 1) B(P+l 1) 
- 2(:i.)1/2 (G(O, 1))112 , 2 ' 

where B( •, •) is the Beta function. This equation then shows that 

lim E11(e,.10, s) 
•~O 

is finite only if /J :2:: -1 /2 for a non-zero .F (0, l). Moreover, this limit is non-zero 

only if /J=-1/2, in which case we have 

lim E (e 10 s) = V:,. .F(O, l) 
•~O 

11 ,. ' 2 (G(O, l))l/2 

Hence, we have the following result: 

lim lim r· r F(x-y, s-t) <p(y) tlldS, dt 
,to .r-.r0 Jo J s 

= { (:i.)1/2 F(n) <p(x0)/2(G(n))l/2 , (/J = -1/2) 

0. (/J>-1/2) 
(45) 

The limit in ( 45) cannot be finite for /J< -1 /2 in general. 

ii) n= 1, 2, /1=0. We first perform the time integration in (37) to obtain 

1 limr- e'!.u".u-•e~(F(f)_F(f)e-G<U•)de . 
2(:i.)1/2 •t 0 J_.. G(f) G(f) N 

(46) 

An additional assumption, F(O, l)=0 for n=2, which our particular potentials of 

interest will be seen to satisfy, then transforms the first term on the RHS of ( 46) into 

lim lim r- ei~.N".u-•e;, F(f) deN 
z.N+o •~o J_.. G(f) 

= ±H(e,.)+limr
00 

e-•e"rr.F(f) deN, 
qo J_.. G(f) 

(47) 

where 

and the ± is for the approach from xN>0 (upper) and xN>0 (lower)*. Fora proof 

of ( 4 7) and ( 48) the reader is referred to Nishimura & Kobayashi5>. 

• This convention is used throughout this paper. 
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We next apply Lebesgue's theorem to the second term on the RHS of (46) 

to show 

This result and the proposition then prove 

lim lim lim roo ei~N" N-•e'1v F'(f) e-G(f)• de N 
,Jo z

8
+o tJo J_.. G(f) 

= lim roo F'(f) e-G<U•deN = lim roo F'(f) e-'f}v-deN. 
•~0 j_ .. G(f) IJO j_ .. G(f) 

Hence, by combining (46), (47) and (49) we obtain 

lim lim E11(e .. 1xN, s) = ±H(e .. ). 
•JO z8 +o 

Consequently, we have 

lim lim f' f F(x-y, s-t) rp(y) dS,dt 
,~o z

8
+o Jo Js 

{ 
±(i/2)(F(n)/G(n)) rp(Xo), n = l 

= ±(1/2)(8/ae,.)(F/G) lt=n (8/ae,.) rp(x0), n = 2 

if the condition 

(49) 

(50) 

(51) 

F(n) = o (52) 

is satisfied for n=2, where we have used (48) and (50). We remark that the con­

dition in (52) is essential in the present application because of thee-Gt term in (36). 

This is in contrast to the elastostatics case (see Nishimura & Kobayashi5>) where we 

did not have to assume (52). 

One may wonder if terms with fl >0 might give rise to any additional non-zero 

term to (32). That this is impossible is seen by using 

E11(e .. 1xN, s) 

= lim roo e1fN"N- 1f}v-(s11F'(f) -flF'(f) r· e-G(U(s-l) dt), (53) 
•Jo J_.. G(f) G(f) Jo t1- 11 

which one obtains from (37) and 

e-am<•-t> t11 dt = _s __ ~- e dt. 
}

• /I fl i' -G(U(s-t) 

0 G(f) G(f) 0 t1- 11 
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The first term in the integral in (53) is evaluated by using (47). Since /J>O, 
however, this term vanishes as s i 0. For the second term, we use the proposition 

and ( 42) (with fJ replaced by /J-1) to see that this also vanishes ass i O (F (0, 1) =0 

for n=2 by assumption). This completes the proof. 

3.2 Volum.e-time integrals 

The method used in 3.1 yields 

lim lim r· f F(x-y, s-t)<p(y)t'1dydt = 0. 
,,io .r➔.r0 Jo JD 

We shall, however, omit the proof in order to avoid repetition. 

3.3 Volume integrals 

(54) 

In this section, we shall use P and Q. ( see ( 12), ( 13), ( 16) and ( 1 7)) for arbitrary 

(1, 0) and (0, 0) homogeneous kernels, respectively, in order to save symbols. 

Again, the same reason as has been used in 3.1 gives 

lim lim f P(x-y, s)O(y)dV = f P 0(x0-y)O(y)dV, (55) 
,,io .r➔.roJD JD 

lim lim f Q(x-y, s)O(y)dV = Co 8(x0) +v.p.- f Q 0(x0-y)O(y)dV, 
'"o .r➔.r0 JD 2 JD 

X 0E8D (56) 

where v.p.- and C0 are defined in (40) and (41), respectively. Also, we can show 

lim f P(x-y, s)B(y)dV = f P 0(x-y)O(y)dV, (57) 
'"o JD JD 

lim f Q(x-y, s)O(y)d V = C0 8(x) +v.p. f Q0(x-y)O(y)d V, (58) 
•{O .)D JD 

for a point xED. 

4. Potentials in Consolidation and Coupled Thermoelasticity 

Using the results given in (44), (45), (51) and (54) we obtain the following 

formulae in addition to (55)-(58): 

lim lim f r· V(x-y, s-t) s(y, t)dtdS = 0, 
,.o .r➔.r0 JeD Jo 

(59) 
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lim lim r r· S(x, y, s-t)u(y, t)dtdS = 0, 
,.o .r➔.ro J 8D Jo 

lim lim r r• P(x-y, s-t)r(y, t)dtdS = 0, 
,.o .r➔.r0 Jao Jo 

lim lim r r' R(x, y, s-t)p(y, t)dtdS = 0 , 
••o .r➔.r0 Jao Jo 

lim lim r r• qj(x-y, s-t)f(y, t)dtdV = 0, 
,.o .r➔.ro JD Jo 

lim lim r r• P(x-y, s-t)g(y, t)dtd V = 0, 
,.o .r➔.ro Jo Jo 

lim lim r r· CV(x-y, s-t) •s(y, t)dtdS 
,.;o .r➔.r0 .lao Jo 

1 ( J*-1(n)n ) 
= =i= 2 m+n•J*-1(n)n •s(xo, 0) ' 

lim lim r r• 5'(x, y, s-t) •u(y, t)dtdS 
,.o .r➔.r0 Jao Jo 

= ± _!__ ~(C(J*-
1
(e)e@e)n-n) I 8uJ (xo) , 

2 aeM m+e•J*-1(e)e jl=nQXM 

(Note that (52) is satisfied.) 

lim lim ( f' Q(x-y, s-t)r(y, t)dtdS 
,.;o .r➔.r0 Jao Jo 

j 
divergent, -1 < /3< -1 /2 

= -(1rn• Kn) 112r(x0) /2(m+n•J*-1(n)n)lf2
, 

0 -1/2</3, 
/3 = 1/2 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

where /3 and r(x0) are the exponent of the lowest power and the corresponding 

coefficient of the asymptotic expansion of (8p/8n) (x0, t) near t=0, i.e., 

as t io, 

lim lim f r• W (x, y, s-t)p(y, t)dtdS = =j=_!__p(x0, 0) , 
,.o .r➔.r0 .lao Jo 2 

lim lim f r· CV(x-y, s-t) •f(y, t)dtdV = 0, 
,.;o .r➔.ro.) D Jo 

lim lim r 1• Q(x-y, s-t)g(y, t)dtdV = 0. 
,.;o .r➔.r0 .lo Jo 

For the definition of symbols, see (7), (8) and ( 10)-(20). 

(68) 

(69) 

(70) 
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5. Behaviour of Solution on the Boundary 

In this section, we discuss the initial behaviour of the solution of ( 1) on the 

boundary. We shall begin by comparing the limits 

(u(x0, 0), P(Xo, 0)) := lim lim (u(x, s), p(x, s)) 
stO .r(ED)+.ro 

(71) 

and 

lim (u(x, 0), p(x, 0) := lim lim(u(x, s), p(x, s)) 
x➔.ro .rCED)+.ro •to 

(72) 

for a point x0 E 8D. 

The limit in (71) for u on 8DR (see (21)) is evaluated as 

u(x0, 0) := lim u(x0, s) = 2 (f U 0 (Xo-y)s(y, 0)dS 
,to JaD 

-v.p. f S0(x0, y)u(y, O)dS+f U0(x0-y)f(y, 0)dV JaD JD 

+LPo(Xo-y)O(y)dv), XoE8DR (73) 

where we have used (7), (22)-(24), (59)-(64) and (55). Also, (71) for pis 

p(x0, 0) := limP(Xo, s) ,,o 

= 2(v.p. f V0(x0-y) •s(y, 0)dS-p.f. f To(x0, y) •u(y, 0)dS JaD JaD 
+f V0(x0-y)•f(y, 0)dV+ CQ O(x0)+v.p.- f Q0(x0-y)O(y)dV 

JD 2 JD 

-lim lim f f" Q(x-y, s - t)r(y, t)dtdS), 
,,o x➔.ro JaD Jo (74) 

where p.f. indicates the finite part of a divergent integral. In deriving (74) we 

have used (8), (26)-(28), (65)-(70) and (56). For the computation of the limit in 

(72) we start with the formula 

u(x, 0) = lim u(x, s) = f U0(x-y)s(y, 0)dS 
,+O J8D 

_f S 0(x, y)u(y, O)dS+f U0(x-y)f(y, 0)dV JaD Jo 

+ L P 0(x-y)O(y, 0)dV, (75) 

for xe8D, which one obtains from (7) and (57). We then let x tend to x0 in (75), 
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using (22)-(25), to have 

lim u(x, 0) = =F_!_u(x0, 0) + f U 0(x0-y)s(y, 0)dS 
.r➔.ro 2 Jiw 

-v.p. f S0(x0, y)u(y, 0)dS + f U 0(x0-y)f(y, 0)dV 
JaD JD 

+ L Po(Xo-u)O(y)dV. XoED8R (76) 

Similarly, (8), together with (26)-(29) and (58), gives 

I J*-1(n)n 
lim]i (x, 0) = ±-

1 
•s(x0, 0) 

.r➔.ro 2 m+n•J*- (n)n 

±_!_ ~(C (J*-1(f)f©f)n-n) I 8u; (xo O) 
2 ae,_ m+f•J*-1(f)f j f=n 8x,_ ' 

+(~Q=i=½ m+n•}*-1(n)n )o(xo) 

+v.p. f V0(Xo-u) •s(y, 0)dS-p.f. f T0(x0, Y) •u(y, O)dS 
· JaD JaD 

+ }D V0(x0-a)f(y, 0)dV+v.p.- }D Q0(x0-y)8(y)dV. 

x 0 E8DR (77) 

In (76) and (77), the approach X-+Xo may be either from within D or from within 

D' (See (9).) Since u(x, 0) =0 for xED' from (7) and (9), we obtain the limit in 

(72) for u as 

lim u(x, 0) = lim u(x, 0) + lim u(x, 0) 
.r(ED)+.ro .rCED)+.ro .r(eD•)+.ro 

= 2 (f U0(x-y) s(y, 0) dS-v.p. f S0(x0, y)u(y, 0)dS JaD JaD 

+L Uo(Xo-Y)f(y, O)dV+}D P 0(x0-y)8(y)dV), 

x0 E8DR 

where we have used (76). Analogously, we use (77) to obtain 

lim p(x, 0) = 2 (CQ 8(x0) +v.p. f V0(x0-y) •s(y, 0)dS 
.r(ED)+.ro 2 J 8D 

-p.f. f T0(x0, y)•u(y, O)dS+f V0(x0-y)•f(y, 0)dV JaD JD 

(78) 

(79) 
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Hence, we have obtained expressions for the limits in (71) and (72). 

We now proceed to the comparison between the two limits in (71) and (72). 

From (73) and (78), or directly from (76), we have 

lim u(x, 0) = u(Xo, 0) . 
:r(eD)➔xo 

(80) 

Also, an analogous comparison between (74) and (79) yields 

lim p(x, 0) = P(Xo, 0) +2 lim lim f r• Q (x-y, s-t)r(y, t)dtdS . 
x(ED)➔Xo '"o X➔XoJaD Jo 

XoE8DR (81) 

Equation (80) is a natural consequence, meaning that the limit to the boundary 

of the initial displacement coincides with the limit to t=0 of the boundary displace­

ment. On the other hand, (81), together with (67), rules out the possibility of 

-l</i<-1/2, becausep has to be finite. Also, we see that (81) reduces to 

( 
1CR•Kn )1/Z 

lim p(x, 0) = P(Xo, 0)- + ..:1•-i( ) r(Xo) , 
xCED)+xo m R • R R 

with the help of (67), where 

T(Xo) = lim Bp (Xo, s)../s. 
•-'o 8n 

Hence, we conclude 

1 P=--
2 

as far as the limits 

lim p(x, 0) and limP(Xo, s) 
xCED)+x0 •-'O 

(82) 

(83) 

(84) 

are both finite and different. In this case, the coefficient r of the s-1/a singularity 

in 8p/8n (see (83)) is obtained from (82). If P>-1/2 holds, or, in particular, if 

Xi,E8Dr and r0(x0, t) is bounded as a function oft (see (6)), we necessarily have 

lim p(x, 0) = p(x0, 0) , 
x(ED)+x0 

because r(Xo) =0 in (82) and (83). 

We finally remark that the relation 

lim p(x, 0) =I= P(Xo, 0) 
x(ED)+x0 

(85) 
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is not as queer as it might seem. Actually, we can show that 

lim p(x, 0) 
x(ED)+x0 

is independent ofp0 or r0• (See (5) and (6).) Indeed, (77) and (9) yield 

lim p(x, 0) = lim p(x, 0)- lim p(x, 0) 
x(eD)+x0 x(eD)+x0 x(eD1)+x0 

(86) 

which tells that this limit is determined by u(x, 0), s(x, 0) and O on 8D. On 

the other hand, u(x, 0) (s(x, 0)) on 8D, (8Du) is determined by an integral equation 

obtained from (3), (4), (9) and the exterior limit in (76). Hence the limit in (76) 

is determined only by Uo, s0, f and 0. (See (1)-(4).) On the other hand, we are 

supposed to specify p(x0, 0) =Po on 8Dp arbitrarily. Therefore, p(x0, 0) on 8Dp 

is independent of the data in (2)-(4) and, hence, independent of (86). Therefore, 

we generally have (85). 

Example 

In the case of isotropy we have 

where J., µ, and k are positive constants. Furthermore, we assume m=O. The 

one dimensional motion 

with the initial and boundary conditions (see (2)-(6)) 

dui I - 0 (0<x1 <h) 
dx1 t=o - ' 

s1 = Po (constant), p = 0 on x1 = 0 

U1 = 0, op = 0 
on 

produces p given by6> 

on x1 = h (h >0: constant) 
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(87) 

where M=(2m+l)n:/2, T,=c,t/h2 and c,=k(l+2µ). At x1=0, we have 

8'P 00 2p - = -2] - 0 exp (-M2 T,), 
8n m=O h 

which approaches asymptotically to 

- 2Po T;l/2 f00 

e-t2dt = _-----2h__ V 11: = -Po(n:c,t)-1/1 
h Jo n:(c,t) 112 2 

as t ! 0. Therefore, (83) gives r(0) = -p0/yn:c,. Also, (87) yields p(x1, 0) =Po 

(0<x1<h). On the other hand, the boundary condition at x1=0 says p(0, 0) =0. 

Hence, by noting 

we conclude that (82) is satisfied. 

6. Concluding Remarks 

1. The main results of this paper are the formulae in 4 and the discussion on (82) 

and (83) in 5, in which the formulae in 4 are shown to be useful in considering the 

behaviour of the solution of ( 1). 

2. A very accurate numerical calculation based on (7) and (8) (usually called the 

boundary integral equation method, or BIEM) is possible only when one takes the 

t- 112 singularity (see 5) of 8p/8n into consideration. The multiple r (see (83)) of 

this singular term on 8D11 is obtained numerically in two steps. Namely, we first 

utilize the conventional BIEM ( or the BIEM for incompressible elasticity7> if m=0) 

to determine the limit in (72). We then use (82) and (5) to determine r. 
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