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Abstract 

A numerical analysis of subsonic as well as supersonic nozzle flows of gas-particle 
mixtures is described. The theoretical model modified here is applied to the 
case where a gas-particle mixture is composed of air and water-particles in 
relation to the mist nozzle flow utilized for the secondary cooling zone of a 
continuously cast slab. For the subsonic nozzle flow, all of the flow prop­
erties are calculated on the basis of a given nozzle geometry with a parallel 
region. Next, for the supersonic nozzle, the so-called specified pressure 
method is applied to evaluate the behaviour of the gas-particle mixture in the 
flow field, as wel as to design the converging-diverging nozzle configuration 
according to the desired pressure profile. The results so obtained are ex­
amined and discussed from a numerical point of view. 

Nomenclature 

= dimensionless local sonic speed 

= dimensionless sectional area of nozzle 

= dimensionless friction factor defined in Eq. (55) 

= drag coefficient 

= gas specific heat at constant pressure 

= specific heat of particle material 

= momentum transfer parameter defined in Eq. (16) 

= heat transfer parameter defined in Eq. (21) 

h, hp = enthalpy for gas and particle, respectively 
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= stagnation enthalpy for gas and particle, respectively 

= constant velocity lag factor defined in Eq. (78) 

= dimensionless nozzle radius 

= average particle radius (lp=}p (x)) 

= constant thermal lag factor defined in Eq. (79) 

= nozzle radius at throat 

= dimensionless mass flow rate function of particle defined m Eq. (50) 

(mp= mp(r p)) 

= local gas-phase Mach number 

= dimensionless total mass flow rate of gas and particle, respectively, de-

fined in Eqs. (46) and (47) 

= dimensionless number density function of particle (np=Ilp(rp)) 

= J np(rp)drp=Np / Npo (see Eq. (10)) 

= particle Nusselt number defined in Eq. (19) 

= dimensionless pressure 

= ambient gas pressure at nozzle exit 

= gas-phase Prandtl number 

= particle Reynolds number defined in Eq. (56) 

= dimensionless particle radius ( = r P / }p0) 

= density of condensed particle per unit volume of flowing medium 

= maximum radius of particle 

= minimum radius of particle 

= dimensionless gas- and particle-phase temperatures (T p= T p(rp)), respec-

tively 

= dimensionless gas- and particle-phase velocities (V P=V p(rp)), respectively 

= dimensionless coordinate along nozzle axis 

= dimensionless coordinate at nozzle exit 

= film coefficient of heat transfer between gas and particle 

= gas specific heat ratio 

= modified gas specific ratio defined in Eq. (92) 

I'3= specified parameters to determine y defined in Eqs. (84), (85) and (86), res-

pectively 

= exponent in the viscosity-temperature Eq. (53) 

= Cpp / Cpg 

= thermal conductivity of gas 

= (2/3){Pr • OJ- 1 defined in Eq. (59) 

= gas viscosity 

= gas viscosity at reservoir state 
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11 = (Mg/ MP)llo defined in Eq. (48) 

llo = RPo / Po defined in Eq. (49) 

p = dimensionless gas density 

PmP = particle material density 

pP = dimensionless particle density function (pP= pP(rp)) 

¢> = dimensionless continuous distribution function of particle sizes ( rp = rp(r p)) 

Superscript 

(-) = dimensioned quantity 

0 

* 
E(ore) 

g 

p 

Subscript 

= quantity in reservoir or stagnation state 

= quantity at nozzle throat 

= quantity at nozzle exit 

= gas-phase 

= particle-phase 

1 . Introduction 

A number of processes in iron- and steelmaking industries positively introduce the 

utilization of two-phase or multiphase flows. For example, the mist cooling method, 

which is commonly applied to the secondary cooling zone of continuously cast slabs, is 

different from other kinds of cooling methods in a few points. First, the mist consists of 

a two-phase, that is, gas-particle mixtures. Second, the flow pattern in a nozzle varies 

with the loading ratio, that is, the particle-to-gas mass flow rate ratio. Third, the change 

in the loading ratio has an appreciable effect on the cooling intensity for the solidified 

shell. Fourth, the difference in particle size brings on a change in the slip ratio, that is, 

the ratio of particle velocity to gas velocity, when a continuous distribution of particle 

size is present. 

From such a point of view, the analysis of a two-phase flow in a nozzle is of import­

ance for designing the nozzle to control the mist cooling intensity. However, we sup­

pose that this investigation is not fresh from a historical point of view. This would 

originate from the development of the propulsive nozzle of the rocket motor')-3
). 

Zucrow and Hoffman 
4

) have described the system of equations governing the steady 
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quasi-one-dimensional flow of a gas-particle mixture. It consists of a particle continuity 

euation, a particle momentum equation, a particle energy equation, a particle equation of 

state, a gas continuity equation, a gas momentum equation, a gas energy equation and a 

gas equation of state. Then, we have rearranged the above system of equations so that 

the system gives a fit to the case where particles have a continuous distribution of parti­

cle size
5

). This is because it is far more common to consider that particles in a two­

phase do not have a single size, but take a continuous distribution of size. Again, the 

nozzle flow of mist consisting of gas and liquid-particles has been analyzed from a 

numerical point of view. By so doing, the situation has been premised where a gas 

containing suspended liquid-particles is initially stored in a relatively large reservoir, and 

the gas-particle mixture directly flows through a nozzle. However, the reservoir pressure 

is not allowed to be so high that the gas velocity is beyond the sonic region, because the 

system of equations described in Ref. (5) is singular in the transonic region. 

Thereafter, we have extended the governing equations so that they cover the whole 

gas velocity regions from the subsonic to the supersonic velocities through the throat of 

a converging-diverging nozzle
6

J. In reality, only the equation to determine the gas veloc­

ity has been modified in the form. That is, the equation has been rewritten into the 

form including the term of pressure profile, instead of the term of the variational nozzle 

cross-sectional area along the whole nozzle length. 

In the present paper, we wish to review the system of equations governing the 

nozzle flow of gas-particle mixture to evaluate all the flow properties in the flow field. 

Next, we will examine the numerical treatment of the system of governing equations for 

the situation where the equation for the determiation of gas-phase velocity is singular in 

the transonic region. Again, we wish to consider the problem concerning the perturba­

tion procedure between the equilibrium and non-equilibrium flows from a point of view 

of computational physics. Then, the theoretical model is applied to the case where a 

gas-particle mixture is composed of air and water-particles in relation to the mist nozzle 

flow adopted to the secondary cooling zone of continuously cast slabs. The results so 

obtained are examined and discussed from a numerical point of view. 

2 . Governing equations 

According to Zucrow and Hoffman\ the theoretical flow model for a gas carrying 

suspended condensed particles will be constructed on the following assumptions: First, 

the flow is steady and quasi-one-dimensional, and the mass flow rate for both gas- and 

particle-phases is conserved in a system. But, the particles occupy negligible volume, 

that is, the ratio of the gas density to the material density of particles is negligibly 
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slight. Second, the system of a gas-particle mixture flow in a nozzle does not interact 

with the external system. That is, it is assumed that there is no external work, no 

external heat transfer through the nozzle wall, no gravitational effect and no wall fric­

tion. Third, the motion of the flowing gas obeys the Euler equation. Namely, the gas is 

regarded as inviscid apart from the drag force exerted by all of the particles on the gas. 

Fourth, all of the particles are spherical in shape, incompressible and do not interact 

with each other. Fifth, the heat transfer between the gas- and partcle-phases is taken 

into consideration in the form proportional to the temperature difference between gas 

and particle. But, there is no internal temperature distribution in the radial direction of 

particles. Also, the gas, as well as the particles, has a constant specific heat. 

On the aforementioned premises, the system of governing equations for the nozzle 

flow of the gas-particle mixture will be derived. 

It should previously be remembered that the dimensional quantities are denoted by 

the overbar, and no overbar denotes the dimensionless quantities throughout the present 

paper. 

First, let us define a continuous distribution function of paricle size as follows ; 

(1) 

so that the following relation, 

rrp,111ax-
J, ~(rp)drp=l 

rp,mtn 
(2) 

holds true, in which r ,,,.un and r "'"'a.r are the minimum and the maximum radii of the 

particles contained in the mixture. It is noted that for the indication of the definite 

integration taken over all sizes in [r ,,,,.in, r ,,,,.ax], the lower and upper limits will be 

omitted for the sake of brevity. 

Next, we have 

J: n-r/npo(rp)pmPdrp= : ,r}po3NPoPmP 

so that 

Using the relation of np0(rp) / Npo=~0(rp) (ref. Eq. (1)), there becomes 

}p.3= f~o(rp)rp3drp 

Therefore, 

Jllpo~o(rp)l(rp / Ipo)3d(rp / }po)= 1 

or 

(3) 
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in which I"p / lpo=rp and lpo¢o(rp)= <Po(rp) 

Furthermore, it holds true from Eq. (2) that 

J¢(rp)drp= /lpo¢(rp)d(~p)=1rp,max tp(rp)drp=l 
lpo rP,min 

in which 

(4) 

(5) 

(6) 

Here it should be remarked that ¢(rp) as well as tp(rp) is variable along the nozzle axis, 

that is, ¢(x, rp)= ¢(rp) and tp(x, rp)= tp(rp), But, note that the independent variable x is 

omitted for the simple description. 

Second, let us define the dimensionless density function of the particle of rP in the 

form of 

Ilp(r p)lpo 3 ( ) 3 rp =np rp rp 
Npo 

(7) 

in which NPo (=Npo(x.0)) is the total number of particles per unit volume at the reservoir 

(x=x.0), and 

Next, combining Eq. (8) to Eqs. (1) and (2), we have 

- ( - (-)) 
1
_ _ _ 

1
np(rp)Npo _ 

Np =Npx = np(rp)drp= ----drp 
lpo 

Thereby 

Np np(rp) 
Np= Jnp(rp)drp==- and tp(rp)=~ (see Eq. (5)) 

Npo 

(8) 

(9) 

Now, we consider the system of equations governing the nozzle flow of a two-phase 

mixture on the dimensional space. First, the particle continuity equation is given by 

mp(x, rp)=;oprx, rp)A(x)V p(x, rp) 

Unless otherwise provided, the variable x will be omitted from now on as follows; 

mp(r p) = ;op(r p)AV ir p) 

=np(rp)(4JC / 3)rp3/JmPAVp(rp)= const. (11) 

Again, 
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Mp= Jmp(°fp)drp (12) 

Next, the particle momentum equation for a particle of rP yields 

! ,rr/pm/J irp) d~ v p(rp)=Co½ ,rr/.o [V-V p(rp)J I v-v p(rp) I 

so that 

v p(r p) d~ v p(r p) (
3
;~;:

0 
[V - v p(r p)] Iv - v ir p) I 

In the Stockes flow regime, the drag coefficient is expressed as 

Co.stokes 
24µ 

By definition, we put 

f Co 
P Co.Stokes 

Co(2rp)p IV-Vp(rp) I 
24µ 

Then, combining Eqs. (14) and (16), we have 

- _ d - _ (9/2)µfp - - _ 
Vp(rp) d-Vp(rp) __ 2 [V-Vp(rp)] 

X PmPrP 

The particle energy equaion for a particle of rp is given by 

: TCI'/PmPVp(rp) :x:hirp)=a(4,rr/)[T-Tp(rp)] 

The film coefficient a is defined in term of the Nusselt number Nu. That is, 

Nu= a(~p) 
X 

Again, the Prandtl number is defined by 

Pr= c".!.µ 
X 

In the Stokes flow regime, NUstokes=2. By definition, let 

gp N 
Nu 

Ustokes 

Nu 

2 

Combining Egs. (19) - (21), we have 

Substituting Eq. (22) into Eq. (18) yields 

Here, introducing the particle equation of state, 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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hirp)=cppT p(rp) 

to Eq. (23), we have 

- d - 3gpCpgµ - - _ 
Vp(rp) d-xTp(rp) - - ,- p [T-Tp(rp)] 

PmPrP Cpp r 

(24) 

(25) 

Now, let us derive the total drag force 80 exerted by all of the particles on the gas 

inside of the control volume (A dx). For a particle of rp, Newton's second law yields 

(26) 

where ap(rp) is the mass of a particle of rp and 80p(rp) is the drag force on the particle. 

Therefore, 80 is given by 

It follows from Eq. (26) that 

Here, it should be noted that 80 / (Adx) is the total drag force per unit volume. 

Next, let us seek the total heat transfer rate 8Q for all of the particles per unit mass 

of the gas inside of (Adx). The heat transfer 8Qp(rp) between the gas and the particle 

of rp per unit time is given by 

Hence, 

Substituting Eq. (28) into the above equation yields 

p8Q = fpp(r p)V p(r p) ct~ hp(r p)dr p 

(28) 

(29) 

Here, it should be noted that p8Q is the energy per unit volume and per unit time. 

Again, all of the work expended on the particles by the gas presents itself in the 

form of an increase in the kinetic energy. So that, for a particle of rP 

8Wp(rp)=ap(rp)Virp) ct~{½v/(rpl} (30) 

Accordingly, 
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-;- - - - lfWp(°f'p) - - - - -
oW[p(Adx)]-f a;;(rp) [pp(rp)(Adx)]drp=O 

Substituting Eq. (30) into the above equation, we obtain 

poW=/plrp)Vp(rp) d~{ ~ V/(rpl}drp=/pp(rp)V/(rp) lx:vp(rp)drp (31) 

We will now turn to a review of the equations governing the gas-phase. The gas 

continuity equation is clearly given by 

(32) 

or 

(33) 

The gas momentum equation is obtained by taking into consideration the total drag 

force per unit volume as follows : 

-vdV =- dp _ oD 
p dx dx Adx 

(34) 

This is the Euler equation with the drag force term as the body force. Using Eq. (21), Eq. 

(34) becomes 

Next, it holds true that 

oW+oQ+dh+VdV=O 

(35) 

(36) 

in which oW is the work per unit mass done by the gas on all of the particles, due to 

the drag force, and oQ is the heat per unit mass transferred from the gas to all of the 

particles. The expression of Eq. (36) may be converted into a rate basis. Thus, 

oW+oQ+ d~+vd~ =oW+oQ+Vd~+v2d~ =O 
dt dt dx dx 

Substituting Eq. (29) and Eq. (31) into the above relation yields 

-vdh+--y2dV +!- (- )-V (-) d -h (- )d-P dx P dx PP rp p rp dx p rp rp 

+ /pp(rp)V/(rp) d~ vp(rp)drp=o (38) 

or 
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+J
pp(°fp)Vp(°fp)-v (- )_Q_ -v (- )d- =O - p rp d- p rp rp 

pV X 

Substituting Eq. (11) and Eq. (32) into Eq. (39), we obtain 

db -dV mp(rp) d - _ _ mirp)- _ d - _ _ 
dx+v dx+J Mg dxhp(rp)drp+f Mg Vp(rp)dxVP(rp)drp=O 

Integrating the aforementioned with respect to x, we have 
- -

- 1 -
2 

mp(rp) - _ _ mp(rp) 1 -
2 

_ _ _ 

h+2 v + J~ hp(rp)drp+ J~ 2 vp (rp)drp- const. 
Mg Mg 

or 

ii+½ v•+ Jm~rp) [hp(rp)+½ V 2(rp)Jdrp=H + Jm~rp) Hp(rp)drp 
Mg Mg 

Finally, the gas equation of state is given by 

dh=CpgdT 

p=pRT 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

Up to this point we have completed the system of equations governing the nozzle 

flow of gas-particle mixtures on the dimensional space. Here, we wish to stress that in 

our calculation, the dimensionless parameters are adopted, and the governing equations 

to be solved will be expressed by dimensionless quantities. It is physically important to 

rewrite the dimensional equations into the dimensionless ones and solve them as to the 

similarity of the flow pattern as well as the general validity. 

The main dimensionless variables introduced into the system of governing equations 

are defined as 

xlL.=x, Al A.=A, plpo=p, p/po=P, 

V/ao=V, Vp/ao=VP, T/To=T, Tp/To=Tp (45) 

where p=p(x), p=p(x), p=p{x), P=P(x), V=V(x), V=V(x), Vp=Vp(x, rp), VP 

=Vp(X, rp), T=T(x), T=T(x), Tp=Tp(x, rp) and Tp=Tp(X, rp). However, as 

mentioned previously, the independent variable x as well as x is omitted, for example, 

the variables such as V(x), V p(X, r p) will be abbreviated to V, V p(r p). 

Next, let us define the dimensionless mass flow rate for the gas-phase and the parti-

cle-phase as 

M
. _ _&_ 
g- -

Po"a.oA* 
(46) 

(47) 
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Thus, the loading radio is given by 

Mp Mp Rpo Mp 
11=-=---=-.--=-=-.-11o 

Mir Mir Po Mir 

Rpo 
11o=-=­

Po 

83 

(48) 

(49) 

Now, let us rewrite the system of equations by introducing dimensionless quantities. 

i ) Particle continuity equation 

Combining Eqs. (7), (11) and (45), we obtain 

Illp(r p)= (pP(r p)Rpo/lpo)A.Aao V p(r p) 

Hence, 

and 

Mp= /mp(rp)drp= RPOaoA./ pP(rp)A V p(rp)drp 

so that 

Note that Eq. (51) agrees with Mp defined by Eq. (4'1). 

ii ) Particle momentum equation 

Substituting Eq. (4) and Eq. (45) into Eq. (17) and arranging the form, we have 

Here, the gas viscosity µ is commonly given by 

µ=µo('f ll'of =µoT.,. 

where lJ is a constant. Thus, Eq. (52) becomes 

where 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

Again, fp, defined by Eq. (16), is concerned with Co, and Co.stokes• Co is determined by 
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the Henderson correlating equation
7

\ and Co,stokes=24/ReP is the Stokes law of drag 

coefficient for sphere, as formulated in Eq. (15). In this case, the particle Reynolds num­

ber is based upon the relative velocity IV - V p(r p) I, the particle diameter 2r P and the gas 

viscosity given by Eq. (53), and defined by 

with 

iii) Particle energy equation 

See Eq. (25). Substituting Eqs. (4), (45) and (53) into Eq. (25) yields 

in which put 

where 

Hence, 

( 9 µoL• ) ( 2 1 ) 
2. -P 1 =a 3. Pro =AA.po 

fflP PO 0 

2 1 
and J..=3 Pro 

(56) 

(51) 

(58) 

(59) 

(60) 

in which gP= Nu/2, as defined in Eq. (21). For the particle Nusselt number Nu, the 

empirical expression by Carlson and Hoglund8J is adopted in our numerical experiments. 

In passing, it should be noted that the particle equation of state has been coupled 

with the particle energy equation (see Eqs. (24) and (25)). 

iv) Gas continuity equation (see Eq. (32)) 

Mg=pAV=popA.AaoV 

Thus, 

. Mg 
Mg= pA V =--_-

PoaoA• 

Note that Eq. (61) agrees with Mg defined by Eq. (46). 

v ) Gas momentum equation 

(61) 
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Combining Eqs. (7), (35), (45) and (49), we obtain 

dV d Po dp_ 
p V dx + 11of Pi,(r p)V ir p) dx V p(r p)dr p + Poa.2 dx -0 

Here, Po=PoRT. and a.2= rRTo, so that Pol(p.a.2)=1/y. 

Eq. (62) results in 

vi ) Gas energy equation 

(62) 

(63) 

Substituting Eqs. (4), (7), (43), (45), (49) and (59) into Eq. (38) and arranging the form, we 

have 

Because Cpg=)'R/(r-1), ao'/(Cp1rTo)=r-L Eq. (64) becomes 

dT +( -l)V dV + O f Pi,(rp)V p(rp) d T ( )d 
dx i' dx 11o pV dx p rp rp 

Pi,(rp)V p(rp) d 
+(r-l)11of pV Vp(rp) dx Vp(rp)drp=O 

Noting that Pi,(rp)V kp)/(pV)=ritp(rp)/Mg, thus, 

dT dV ritp(rp) d 
dx +(r-l)V dx +011of~ dx Tp(rp)drp 

ritp(rp) d 
+(r-l)11of~Vp(rp) dx Vp(rp)drp=O 

Integrating the above equation with respect to x and noting that 

J 
ritp(r p) Mp 11 
-.-drp=-.-=- (see Eq. (48)) 

Mg Mg llo 

we have 

1 ritp(rp) [ 1 ] T+2(r-I)V2+ 11.J-.- 8Tp(rp)+2(r-l)V/(rp) drp=l + 118 
Mg 

vii) Gas equation of state 

It is self-evident from Eqs. (44) and (45) that 

p=pT 

vii) Sonic speed and Mach number 

(64) 

(65) 

(66) 

(61) 

(68) 
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- ff 
a=:0 =y To =v'T 

M- V _ ao V _ V _ V 
- a - aoa -a-v'T 

ix) Equation for determining the gas velocity V 

(69) 

(70) 

Substituting Vp(rp)dVp(rp)/dx and dTp(rp)/dx appearing in Eqs. (54-) and (60), respec-

tively, into Eq. (65), and expressing dV /dx explicity, we have 

dV 
dx = 

1 [dT + fmp(rp){oAA T'1 [T-Tp(rp)] 
(r-l)V dx 11o Mg pogpr/ Vp(rp) 

+(r-l)APofP;; [V-Vp(rp)] }ctrp] 

On the other hand, from the gas equation of state (see Eq. (68)), we have 

dT =_Q__ l!_=T(__!_ dp _ __!_ dp) 
dx dx p p dx p dx 

Substituting VP(rp)dVP(r0)/dx appearing in Eq. (54-) into Eq. (63), we obtain 

dp [ dV T• ] dx =-r pV dx + 110/Po(rp)Apofor/ [V-Virp)]drp 

Again, Eq. (61) corresponds to 

1 dp _ 1 dA 1 dV 
p dx--A dx -V dx 

Substituting Eqs. (73) and (74-) into Eq. (7,'J gives 

dT =T[(__!_- rV)dV +__!_ dA 
dx V T dx A dx 

~ T• ] -Pf p,(ro)APofor/ [V-V o(ro)]dro 

(71) 

(73) 

(74-) 

(75) 

Substituting Eq. (75) into Eq. (71) and arranging the form of equation to express dV / dx 

explicitly yields 

dV M2 1 [ T dA T• fp 
dx = - 1 _ M2 V A dx - J'lloAPo p f p,(rp) r/ [V-V o(ro)]dro 

+ 11oAoo T• f m~(r p) { 0A gp2 T-T o(r p) 
Mg rp Vo(ro) 

+(r-l~[V-Vo(ro)J }ctro] (76) 

At a glance, the above equation is singular in the transonic region. Therefore, this is not 

applicable to the case where the gas velocity is beyond the sonic region from a numeri-
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cal standpoint. 

87 

Then, let us combine the particle momentum equation (54) and the gas momentum 

equation (63). Thus, we obtain 

dV =--1- dp _ APo T 11f ( ·)f V-VP(rp)d 
dx pVr dx pV 11o pP rp p r/ rp (71/ 

This equation involves the term concerning the pressure profile along the nozzle axis. 

Therefore, if the pressure profile, in advance, is given over the whole length of the 

nozzle axis, the cross-sectional area along the nozzle axis is uniquely determinable in 

accord with the given pressure profile. 

According to Zucrow and Hoffman, the determination method of V by Eq. (76) will 

be called the specified area method, and that by Eq. (71/ will be termed the specified 

pressure method. 

3. Numerical procedure 

Among the equations presented in the previous section, Eqs. (50), (54), (60), (61), (63), (61/ 

and (68) comprise a set of seven equations for determining the seven flow properties p, p, 

T, V, pP(rp), V p(rp) and T p(rp)- Those equations should be combined in a form appropri­

ate for seeking a numerical solution. 

However, the creation of the initial condition is very tedious at the start of the 

numerical calculation. For example, suppose that a gas containing suspended liquid­

particles is initially stored in an appreciably large reservoir, and that the gas-particle 

mixture directly flows through a nozzle. It is common to consider that at the reservoir 

the gas velocity, as wel as particle velocity, is zero. Thus, the initial situation corres­

ponds to the assumption that the sectional area of the nozzle is infinite at its entrance. It 

remains to know how the numerical treatment should be made at the initial computa­

tional step. Then, let it be assumed that all the particles are in velocity and thermal 

equilibrium with the gas only near the reservoir. Then the gas, as well as all the parti­

cles, may take a non-zero velocity at the entrance of the non-equilibrium region. By so 

doing, the non-equilibrium flow can be treated as a perturbation from an equilibrium 

reference flow. 

Therefore, we wish to describe the problem of the constant lag flow. Let us now 

define the following two lag factors, 
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Here, [1-KP(rp)] and [1-LP(rp)] are called the velocity lag and the thermal lag, respec­

tively. Again, the relation between KP(rP) and Lirp), 

(80) 

holds true on the assumption that the particle remains in the liquid phase, that Cpg and 

Cpp are constant, and that the velocity lag as well as the thermal lag is constant. 

Dividing Eq. (63) by pV, noting that pP(rp)Vp(rp)/(pV)=mp(rp)/Mg and that 

dVP(rp)/dx=KP(rp)dV/dx by introducing Eq. (78) and rearranging the result, we obtain 

{ 
mirp) } dV 1 dp _ r 1 + 110!-.-Kp(rp)drp V dx +- dx -0 Mg P 

(81) 

Next, substituting Eq. (78) and Eq. (79) into Eq. (61) and noting the relation of Eq. (66), 

we have 

or 

Here, we put 

mp(rp) 
I'1 = 11of-.-Kp(rp)drp 

Mg 
_ mp(rp) 

2 I'2-11of ~Kp (rp)drp 

J
mp(rp) 

I'3= 11oO ~Lp(rp)drp 

Thus, Eqs. (81) and (83) can be rewritten into 

(1 + I' )VdV +J_ dp =O 7 1 dx p dx 

(1 + r3) ~! +(r-1)(1 + r2lV~~ =o 

Using the relation p=pT, one has 

dT =l!_(J_ dp _J_ dp) 
dx p p dx p dx 

(82) 

(83) 

(84) 

(85) 

(86) 

(81) 

(88) 

(89) 
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Substituting V dV / dx appearing in Eq. (8~ and dT / dx in Eq. (89) into Eq. (88), we obtain 

1 dp 
pdx 

Hence, 

y(l + I'1Hl + I'3) 1 dp _ 
y(l + I'1Hl + r3}-( y- 1)(1 + r,) p dx - 0 

PP--f =PoPo-f =1 

in which 

y(l + I'1Hl + I'3) 

llo =-! Pi,(rp)K/(rp)drp (see Eq. (78)) 
p 

Here, introducing Eqs. (7) and (10) into the above equation, we have 

(90) 

(91) 

(92) 

(93) 

(94) 

This is determined by a perturbation from a reservoir condition. That is, NP-+ NPo (=1), 

p-+ 1 and ,p(rp)-+ ,po(rp), as x-+ x 0• Thus, Eq. (94) yields 

I'1 = llo/ r/>o(rp)rp3Kp'(rp)drp 

Similarly, 

I',=;= 11o/ ¢>o(rp)r/K/(rp)drp 

and 

I'3= 11o8f r/>o(rp)r/Kp(rp)Lp(rp)drp 

Also, it holds true that 

mp(rp) _ 3 -.--r/>o(rp)rp Kp(rp) 
Mg 

(95) 

(96) 

(98) 

Therefore, mP(rp)/Mg appearing in Eqs. (6~, (76) etc. may be replaced by Eq. (98). As men­

tioned previously, in our calculation, the non-equilibrium flow is treated on the assump­

tion that all the particles are in velocity and thermal equilibrium with the gas only near 

the reservoir. Hence, we note that KP(rp)=l and Lp(rp)=l are adopted for all rP in the 

equilibrium region. 



90 Natsuo HATTA, Jun-ichi KoKAoo, Ryuji lsHn and Hitoshi FUJIMOTO 

4. Numerical experiments 

4. 1 Computational conditions 
A few numerical experiments will be performed in order to demonstrate the numer­

ical results concerning the flow properties in a nozzle. For the numerical calculation, a 

gas-particle mixture composed of air and water-particles is treated. The physical con­

stants as well as the reference conditions adopted in this numerical experiment are listed 

in Table 1. These parameters are fixed throughout the present paper. 

Table 1 Physical constants and reference conditions adopted in numerical experiments. These 

parameters are fixed throughout the present paper. 

Physical constants 

Pm•= lOOO[kg/m'] 

c •• =4187[J/kg · K] 

c.g=l004[J/kg · K] 

r=l.4 
Pr=0.7 
8=0.6 

Reference conditions 

T,=323[K] 

µ,=2.07 X 10-•[Pa · s] at T, 
L.=1.ox10-•[m] 

It is very difficult to specify the distribution function of the radius of the spherical 

water-particles mixing in the mist. Then, let it be assumed that ¢>0(r.) is somewhat 

arbitrarily given by 

(99) 

where J is the normalizing factor. If it is assumed that the minimum and the maximum 

radii of the particles contained in the mixture are specified as 

r P,fftln = 1.0[µm] and r p,ma:r = 50[µm], 

we have J=l/124.580[µm- 2
]. Again, the average radius I.0 has been found to be 

17 .396[µm], and the continuous distribution of the particle size from l[µm] up to 50[µm] 

is represented by eleven discrete sizes so that the size interval may be constant. Each 

size is made dimensionless according to the definition by r.(i)=r.(i)/}p0 (i=l - 11). 

Table 2 indicates the size number i, r.(i) and ~.Jr.(i)I. 

The two cases are considered in our numerical experiments, one of which corres­

ponds to the case where the gas velocity does not reach the sonic state throughout the 

whole nozzle length. In this case, the specified area method is applicable to the deter­

mination of the gas velocity (see Eq. (76)). The other corresponds to the case where the 
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Table 2 Size number i, dimensionless particle radius and continuous distribution function. 

rp(i) ~.lrp(i)I 

1 0.0575 0.1391 

2 0.3392 0.7168 

3 0.6208 0.9458 

4 0.9025 0.8179 

5 1.1842 0.5269 

6 1.4658 0.2642 

7 1.7475 0.1053 

8 2.0292 0.0337 

9 2.3108 0.0087 

10 2.5925 0.0018 

11 2.8742 0.0003 

gas velocity is beyond the sonic state, and the specified pressure method is applied for 

determining the gas velocity (see Eq. (71)). In this case, the pressure profile should be 

provided over the whole length of the nozzle axis. If so, the nozzle geometry can be 

designed in accord with the pressure profile. 

4. 2 Numerical results of subsonic nozzle flow 

First, the nozzle geometry should be given. Here, the sectional area of the nozzle is 

assumed to consist of the two regions from the reservoir to the nozzle exit as 

in the region of x<O; 

in the region of O~x~XE; A=l 
} (100) 

in which XE=25 is adopted. Also, we set L.=1.0[mm] throughout the present paper. 

Here, the case is treated where p0=1.8X 105[Pa] at the reservoir. Figure 1 (a), (b) 

and ( c) gives the variation of the pressure, velocity and temperature of the gas-phase 

along the nozzle axis x with II as a parameter. It should be kept in mind that 11=0 

corresponds to the gas-only flow. It can be seen from these figures that p and Tremain 

almost unvaried from the reservoir up to a certain position, but they rapidly change as x 

attains zero. Also, V is seen to grow very gradually from the reservoir up to a certain 

position, and then to increase rapidly as x-+ 0- In the region where the sectional area of 

the nozzle is constant (A=l), (Hereafter, this will be called the parallel region.) the 

variational behaviours of p, V and T are observed to be relatively smooth. In particular, 
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Figure 1 Variation of pressure (a), velocity (b) and temperature (c) of gas-phase along the nozzle 

axis. Note that p,=l.8Xl0'[Pa] and p.=1.0XlO'[Pa], and that the gas-phase press-

ure in the mixture flow is conditioned to be equal to the ambient gas pressure (=p.) at 

the nozzle exit. 
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for the case where 11=0, p, V and Tremain unvariable in the parallel region. p is at a 

higher state with 11, while V is at a lower state. One should bear in mind that the 

gas-phase pressure in the mixture flow is taken to be equal to the ambient gas pressure 

(pe=l.0Xl0'[Pa]) at the nozzle exit (at x=XE), and that Mg is determined in such a way 

as to satisfy the condition. 

Figure 2 (a), (b) and (c) gives the variation of the particle velocity VPlrP(i)I (i: size 

number, see Table 2) along the nozzle axis x. It can be observed that V PlrP(i)I is in­

creased with x, and the particles of a smaller size tend to travel at a higher velocity. 

Also, when II is decreased, V plrp(i)I increases. 
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Figure 2 Variation of particle velocities along nozzle axis for 11=1.0 (a), 11=3.0 (b) and 11=5.0 (c). 

Note that i is the size number to present the particle radius (see Table 2). 

Figure 3 (a), (b) and (c) indicates the relation between KPjrp(i)f (see Eq. (78)) and x. 

The slip ratio is changeable along x, depending upon the particle size. 

Figure 4 (a), (b) and (c) exhibits the variation of LPlrP(i)I with x. The variational 

behaviour of LP(rp) is observed to be similar to that of KP(rp) in the form. Lp(rp) as well 

as KP(rp) takes the minimum value near x=O. 

Figure 5 shows the variation of NP with x. It can be seen that NP increases in the 

region of x<O, takes the peak value near the entrance of the parallel region (at x;;;;;;Q), 

and then decreases as x -+ XE. 
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Figure 3 Variation of slip ratio, defined in Eq. (78), with nozzle axis for 11=1.0 (a), 11=3.0 (b) and 

11=5.0 (c) (i: size number). 
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Figure 4 Variation of thermal lag factor L., defined in Eq. (79), along nozzle axis for 11 = 1.0 (a), 

11=3.0 (b) and 11=5.0 (c). 
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Figure 5 Distribution of total number of particles per unit volume along nozzle axis. 

4. 3 Numerical results of supersonic nozzle flow 

First, a pressure profile is given, such that p reaches unity as x .... Xo and p=0.1 at 

XE=25. Here, the following pressure profile, 

g(x) 
p=-k1[!g(x)l'+l]1;, +(l-k1); g(x)=k,x+k3 (101) 

is adopted. Here, k1=0.451000, k,=0.421457 and k3=0.046614. We note that p=0.528 
at x=0 and the position of x=0 corresponds to that of the throat for the gas-only flow. 

Figure 6 indicates the variation of p with x. 
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Figure 6 Pressure profile along nozzle axis adopted. Note that this profile was previously 

given as a function of x, and corresponds to Eq. (IOI). 



98 Natsuo HATTA, Jun-ichi KoKADO, Ryuji lsHn and Hitoshi FUJIMOTO 

2.0 

1.8 

1.6 ~ 

\ 
1.4 

..:i 1.2 

1.0 

0.8 

0.6 

0.4 

-25 -15 -5 0 5 15 25 

X 

Figure 7 Nozzle geometry calculated according to pressure profile shown in Fig. 6. Note that 

p,=10.0XlO'[Pa] for the supersonic nozzle flow and p.=1.0XlO'[Pa], and that the 

gas-phase pressure in the mixture flow is taken to be equal to the ambient gas press­

ure (p.=0.1). 

For the supersonic nozzle flow, the case is considered where p0 = 10.0 X IO'[Pa] at 

the reservoir. Figure 7 indicates the variation of L with x, that is, the nozzle configura­

tion along the nozzle axis, with II as a parameter. In this figure, it should be noted that 

11=0 corresponds to the gas-only flow, and that the throat is not located at x=O, except 

for the case of 11=0. The throat exhibits the tendency to be located at the slightly 

negative side of x with the increase in 11 (at x=-0.102 for 11=1, at x=-0.185 for 11=3 

and x=-0.244 for 11=5). It can be seen from this figure that L is extended in the 

convergent as well as divergent parts with an increase of the loading ratio. 

Figure 8 (a), (b) and (c) gives the variation of V, T and p along x, with II as a 

parameter. We note that the indication of these flow properties exactly obeys the axis 

of the nozzle configuration shown in Figure 7, particularly in the case where 11=0, T * 

=0.833 and P•=0.634 at the throat (A.=1). The values coincide with those calculated 

from T.=2/(r+l) and P•=p.1/'Y (=T.111
-Y-

11 ;p.=0.528). When 11=0, Tis seen to 

decrease rapidly near the throat, and then only gradually decreases as x reaches XE­
This is considered to be due to the isentropic change of gas. Therefore, in this case, V 

increases also rapidly near the throat, and then very gradually as x attains the nozzle 

exit (see Fig. 8 (a)), although this is closely related to the pressure profile given in the 

form of Figure 6. However, it is apparent from these figures that the case where 11=\=0 is 

different from the case of 11=0- That is, T decreases once rapidly near the throat, and 
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Figure 8 Variation of velocity (a), temperature (b) and density (c) of gas-phase along nozzle axis. 
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thereafter increases towards the nozzle exit to a considerable degree. Again, T is 

observed to be higher in the divergent part of the nozzle with the increase in 11. On the 

other hand, V becomes large sharply near the throat, but somewhat gradually decreases 

as x reaches XE- Furthermore, p decreases with x in a form similar to the pressure 

profile. p in the case where 11=\=0 is small in comparison with the case of gas-only flow 

(see Fig. 8 ( c )). 

Figure 9 indicates the variation of M (=V lv'T) against x, with II as a parameter. 

For the case where 11=\=0, the x-axis of M=l is seen to be located downstream from the 

throat, and such a tendency presents itself in a more conspicuous manner as II is in­

creased. Also, M increases rapidly near the throat, and then decreases gradually towards 
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Figure 9 Relation between local gas-phase Mach number and nozzle axis. Note that for 11=0, 

the x-coordinate of M = 1 is seen to be located not at the throat, but downstream from 
the throat. 
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Figure 10 Variation of particle velocities along nozzle axis (i: size number) for v=l.O (a), 

11=3.0 (b) and 11=5.0 (c). 

the nozzle exit for the case where 11=\=0. The variational behaviour of M against x is 

similar to that of V in the form. 

Figure 10 (a), (b) and (c) gives the variation of Vkp(i)f (i: size number, see Table 2) 

against x, with i as a parameter. It can be seen from these figures that VPlrp(i)f is, as a 

whole, increased with x, except for the case where i=l. Particles wih a smaller radius 

tend to flow at a higher velocity. Again, the increase in II brings about the decrease in 

particle velocities. In addition, it is interesting to note that only the particle velocity 

profile of i = 1 is near to the gas velocity profile corresponding to the same loadig ratio. 
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Figure 11 Variation of K., defined in Eq. (7ff/, along nozzle axis for 11=1.0 (a), 11=3.0 (b) and 11 

=5.0 (c) (i: size number). 
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Figure 11 (a), (b) and (c) shows the variation of KPlrP(i)I (see Eq. (78)) along x, with i 

as a parameter. It is clear from these figures that KP(rp) becomes higher as rP becomes 

smaller. Again, KP(rp) decreases in the region from the reservoir to the throat and the 

inverse occurs downstream from the throat. Furthermore, it should be stressed that the 

difference in II does not give a significant change to the slip ratio. 

Figure 12 (a), (b) and (c) exhibits the variation of LP(rp), defined by Eq. (79), along x, 

with i as a parameter. This is similar to the case of the slip ratio. LP(rp) also decreases 

upstream from the throat and the opposite occurs downstream from the throat. 

Figure 13 shows the relation between NP and x. It can be seen that NP increases 

towards the throat, takes the peak value at the slightly negative side of x, and thereafter 

decreases towards the nozzle exit. 
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Figure 12 Variation of L., defined in Eq. (79), along nozzle axis for 11=1.0 (a), 11=3.0 (b) and 11 

=5.0 (c) (i: size number). 
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Figure 13 Relation between total number density of particles and nozzle axis. 

5 . Discussion 

According to the theoretical procedure described in the third section, a few calcula­

tion examples have been demonstrated. 

First, we discuss the numerical results for the subsonic nozzle flow. In this case, all 

of the flow properties have been calculated on the basis of the nozzle geometry given in 

Eq. (100). What is remarkable is that the flow properties vary even in the parallel region 

for the case where 11=\=0, while for 11=0, p, T and V remain unvaried in the parallel 
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parallel region. 

Now, we wish to discuss the effect of the reservoir pressure p0• In order to do so, 

we treat the case where 11=3- The other computational conditions are the same as the 

previous case. Figure 14 gives the variation of the local Mach number of the gas-phase 

1.0 

2.8 x 10 5 [Pa] 

0.8 

0.6 

:,: 
0.4 

0.2 

a.a 
-25 -15 -5 0 5 15 25 

X 

Figure 14 Variation of local gas-phase Mach number along nozzle axis with p0 as a parameter 

(pe=l.OXlO'[Pa] and 11=3). Note that the nozzle geometry given by Eq. (JOO) is 

adopted in this calculation. 

along the nozzle axis with p0 as a parameter. It can be seen from this figure that M 

reaches unity at x = XE with the increase in p0• As mentioned above, Eq. (76) is singular 

in the transonic region. Therefore, when the supersonic nozzle flows are treated for a 

given nozzle geometry, the specified area method should be employed upstream and 

downstream from that region. The specified pressure method should be employed in the 

transonic region. That is, first, at a given upstream point, the specified pressure method 

is adopted as a perturbation from the numerical results obtained by the specified area 

method. Second, at a certain downstream point, the specified area method is adopted as 

a perturbation from the numerical results obtained by the specified pressure method. 

However, if the pressure profile to be predicted in the transonic region is not appropriate 

for the latter perturbation from the results calculated by the specified pressure method, 

one should keep in mind that the inconvenient gap occurs between the calculated nozzle 

sectional area and the previously determined area. This problem will be reported else­

where. 

In the present case, we confine our interest to the subsonic flow regime. Again, the 

increase in Po leads not only to promoting the gas-phase velocity as well as the particle­

phase velocity, but also to increasing the mass flow rates of the two phases regardless of 

the magnitude of /l_ 
Again, it should be emphasized that the aforementioned system of equations gov-
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eming the non-equilibrium flow has been solved as a perturbation from an equilibrium 

reference flow. The position where V is given by 0.001121(1 + r)l112 is regarded as the 

end point of the equilibrium region. 

Next, we discuss the numerical results for the supersonic nozzle flow. Using the 

pressure profile given by Eq. (101), it has been shown that the nozzle geometry can be 

designed in obedience to the desired pressure profile. At the same time, it has been 

demonstrated that all of the flow properties in the whole region from the subsonic flow 

to the supersonic flow can be obtained according to the pressure profile given previously 

along the nozzle axis. 

Here, let us prove that Mp= Mg in the dimensionless space. It holds true from Eqs. 

(12) and (3~ that 

Mg=pVA and MP=RPVA 

on the condition that VP(rp)=V in the equilibrium region. Hence, 

Mp RP RPO 
11=--=-=-=-=-=--= llo (102) Mg P Po 

It is clear, comparing the above relation with Eq. (49), that MP= Mg- That is, the mass 

flow rate of the particle-phase is equal to that of the gas-phase in the dimensionless 

space. It can be said that this is true also for the subsonic nozzle flow. However, it does 

not hold true that Mg= MP in the dimensional space. 

Again, it should be noted that MP decreases with the increase in 11. In the present 

numerical experiments MP=0.49908 at 11=1, MP=0.40702 at 11=3 and MP=0.35271 at 11 
=5 for the supersonic nozzle flow. From Eq. (46),we have. 

(103) 

Thus, Mp=6.09Xl0- 3 [kg/s] at 11=1, Mp=0.0149 [kg/s] at 11=3 and Mp=0.0215 

[kg/s] at 11=5. In passing, for the above subsonic nozzle flow, MP=0.42593 at 11=1, MP 

=0.31366 at 11=3 and MP=0.25894 at 11=5. Again, MP=9.36XIO-• [kg/s] at 11=1, MP 

=2.06Xl0- 3 [kg/s] at 11=3 and Mp=2.86Xl0- 3 [kg/s] at 11=5. 

Finally, the position where p=0.994 has been regarded as the end point of the 

equilibrium region. Therefore, we should like to emphasize that the perturbation be­

tween the equilibrium and the non-equilibrium flows has been made at the above posi­

tion for the supersonic nozzle flow. 

6. Conclusion 

We have constructed a system of equations governing the nozzle flow of gas-
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particle mixture to evaluate all of the flow properties in the flow field. It has been 

stressed that the equation to determine the gas-phase velocity plays an important role 

from the point of view of the numerical treatment. Eq. (76) is clearly singular in the 

transonic region. Therefore, for the subsonic nozzle flow, all of the flow properties have 

been calculated on the basis of the nozzle geometry with the parallel region by the 

specified area method. What is remarkable is that the flow properties vary even in the 

parallel region for the case 11=\=0, while for 11=0, the pressure, temperature and velocity 

of the gas-phase remain unvaried in the parallel region. 

Next, for the supersonic nozzle flow, the specified pressure method has been em­

ployed by a pressure profile given along the nozzle axis. All of the flow properties in 

the whole region from the subsonic flow to the supersonic flow have been obtained in 

accord with the given pressure profile. Again, it has been demonstrated that the nozzle 

configuration can be designed according to the desired pressure profile. 

In conclusion, we note that the theoretical procedure mentioned here has the attrac­

tive aspect whereby the nozzle flow of the gas-particle mixture can be exactly under­

stood from a numerical point of view. 
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