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Abstract 

With practical applications in mind, a study is made of the representations 
of the random fields on a sphere based on the theory of representations of the 
rotation group. The representation of the rotation group is defined in this 
paper by a class of rotational shift transformations of the random fields gen
erated by a homogeneous random field on the sphere, 'homogeneous' with 
respect to the rotational motions. First, the spectral decomposition of a homo
geneous scalar random field on a sphere is given a simple interpratation: it is 
a sum of the invariant vectors in the irreducible representation spaces of the 
rotational shift transformations. Some representations of the random fields are 
given in terms of the stochastic integrals with respect to a homogeneous 
random measure on the sphere. A homogeneous I-vector random field with 
2 I+ I components in an irreducible space of weight l representation is defined 
as an invariant tensor under rotational shift transformations. A 'stochastic' 
spherical harmonics is defined as one of such random fields, which is a stoch
astic version of the I-vector spherical harmonic. Similarly, a 'stochastic' solid 
harmonic is defined in terms of stochasic spherical harmonics and generalized 
spherical Bessel functions. It is expressible as a l-vector Fourier integral over 
a sphere as well as a tensorial Fourier integral, and satisfies the [-vector 
Helmholtz equation. Such 'stochastic' harmonic functions can be used effective
ly in dealing with the scattering problem associated with a random sphere. 

1 . Introduction 

81 

A homogeneous random field in the n-dimensional (n-D) Euclidean space, 
X(r), rE R,. is characterized by the invariance of its probability distributions (in 
the strict sense) or of its correlation function (in the wide sense) under spatial 
translations r-r+a, a denoting an arbitrary vector in Rn: the 1-D homogeneous 
random field on the time axis therefore corresponds to a stationary process. In 
what follows we consider a 3 -D homogeneous random field with zero mean. It 
is well known that as a result of the translation invariance the homogeneous 
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random field has the spectral representation in the following formll: 

X(r) = f ei• · 'dZ().) 
R3 

<dZ().)dZ().') > =o.,,dF().) 

(1) 

(2) 

where l • r denotes the inner product, dZ(l) the random spectral measure with 

zero mean, < ) the expectation, the overbar the complex conjugate, dF().) the 

spectral measure, and o.,,= 1 (l=l'), =0 (liX). The spectral representation of 

the correlation function then becomes 

(3) 

where r= r 1 - r 2• The orthogonality ( 2 ) of the random measure is due to the 

homogeneity. If the random field has further symmetry, such as the rotational 

invariance, 

R(gr) =R(r), dF(gl) =dF(l) (4) 

where g denotes the arbitrary rotation in 3 -D space or the corresponding Euler 

matrix, then the random field is said to be homogeneous and isotropic. In this 

case, R (r) and dF(l) depend only on r= I r I and )._ = I )._ I , respectively, and the 

spectral reresentation ( 3) can be expressed as 

R(r) =4n r j 0 ().r)dF().) (5) 

where j 0 (z) = (sinz) /z denotes the spherical Bessel function of 0-th order. 

Corresponding to ( 5 ), the spectral representation ( 1) can be cast into the polar 

from2
-

51
: using the polar cordinates r= (r, 0, cp), 

(6) 

(dZ'('().)dZ'p' ().' ))= (4n)261rOmm'o.,,dF1(A) 

l, l' = o, 1, 2, .. , , I m I ~ l, I m' I ~ l' (7) 

where dz::'().) denotes a set of random spectral measures with the spectral 

measure dF1().), and the solid harmonics 

]i().r, 0, cp) =ji().r) Y1('(0, cp) (8) 

are given by the product of the spherical Bessel function and the normalized 

spherical harmonics (A. 9 ). The correlation function calculated from ( 6 ), ( 7) 

is readily reduced to ( 5 ) using the addition theorems for the spherical harmon

ics (A 18) and the sphereical Bessel function. 
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Now we consider the random field on the sphere S3 in 3 -D space. A 

random field on the sphere whose probability distribution (correlation function) 

is invariant under arbitrary rotations is said to be homogeneous in the strict 

(wide) sense. The spectral representation of the homogeneous random field 

X(t), t= (1, 0, q,) can be given in terms of spherical harmonics and the orthog

onal random variables Zj 6) ; 

oo I 

X(t) = :E :E F1Y'{'(0, q,)Z'{' 
l=Om=I 

(10) 

where Z'{' satisfies the orthogonal property (10). The spectral representation for 

the correlation function can be written using (A. 18); 

oo I 

R(0)=(X(t1)X(t2))= :E IF, 12 :E Y'{'(0i, ({)1)Y'!'(02, ({)2) (11) 
l=O m=-l 

(12) 

where cos0=t1 • t2, 0 denoting the angle between the two vectors t 1 and t2, (A. 

19). We call I F 1 I 2 the power spectrum and FiZ'[' the random spectrum. Partic

ularly, in view of (A. 18) and (A. 22), the 'white' spectrum I F1 I 2= 1 (const.) gives 

the delta correlation for the white noise on the sphere: R(0) =o(0), 6(0) 

denoting the delta function on the sphere with the measure dS=sin0d0dq,. It 

should be noticed that the spectral representation ( 9) is partially involved in 

the spherical part of ( 6 ). The spectral representation ( 9) can be obtained either 

by the direct orthogonal expansion in spherical harmonics or by the Karhunen

Loeve expansionn on the sphere for a rotationally invariant correlation function 

such that R(t, t') =R(gt, gt'). In fact, for the eigenvalue integral equation on the 

sphere, 

)..q,(t) = fs
3
R(t, t')q,(t')dS; dS=sin0'd0'dq,' (13) 

with the kernel R(t, t') commuting with the operator Sg defined by (A. 4 ), we 

see that Y'{'(0, q,), a vector in the invariant space of Sg. is also an eigenfunction 

of (13) with the degenerate eigenvalue (multiplicity 2 l + 1 ) 

(14) 

Therefore, (11) is none other than the Hilbert-Schmidt expansion of the integral 

kernel and the spectral representation ( 9 ) corresponds to the Karhunen-Loeve 
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expansion. 

Noting that in the Euclidean space the translations or the rotations form a 

group of motions, we consider more generally a 'homogeneous' space on which a 

group of motions is defined. The theory of special functions on a homogeneous 

space has been reformulated from a group-theoretic point of views-10>. When the 

motion group is represented by means of a certain transformation group in a 

function space, the matrix elements of an irreducible representation are regarded 

as the special functions on the homogeneous space. Then, the irreducible 

decomposition gives an orthogonal expansion in terms of special functions, and 

the geometrical property of the special functions known as the addition theorem 

is simply displayed by the matrix multiplication. We could apply the same line 

of thought to a random field defined on a homogeneous space. The homogeneity 

of the random field is defined in regard to its invariance of the probability 

distributions (strict sense) or the correlation function ( wide sense) under the 

group of motions in the homogeneous space!. 11-1
3>_ Using this group-theoretic 

concept, for instance, the spectral representation of a homogeneous random field 

could be obtained as a decomposition of a vector into irreducible spaces, and a 

more extended calcus of the random fields could be formulated. 

In the present paper we restrict ourselves to the homogeneous random field 

on a spere where the rotational motions form the rotation group SO( 3 ) 9
l. For 

later reference some necessary definitions and formulas concerning the represen

tation of the rotation group are summarized in the appendix. The representation 

of the rotation group G is made in this paper by introducing a transformation 

group ~. gEG, operating on the random variables and by the transformation 

group Dg operating on the random fields. The group 'representation' is meant to 

be the group homomorphism g - ~. or g ...... Dg, and should not be confused 

with the 'representation' of the random field in what follows. We first show in 

Sec. 2 that the spectral representation of a scalar homogeneous random field 

( 9) is obtained simply as a result of the irreducible decomposition and that it 

can be interpreted in a simple manner in terms of the invariant [-vectors, that is, 

the l-vector is the vectorial quantity which is transformed upon spatial rotation 

by the matrix of irreducible representation of weight l. In Sec. 3, elementary 

random variables forming the l-vector basis for the transformation ~ are con

structed by means of the stochastic integrals on the sphere. In Sec. 4, the 

operator Dg is defined, which keeps invariant a homogeneous random field. 

Some representations of homogeneous random fields are derived from the sto

chastic integrals, a homogeneous l-vector random field is defined in connection 

with its transformation property under Dg. Sec. 5 gives a brief discussion on 
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the multiple Wiener integral, Wiener-Hermite expansion and its tensorial proper

ty under l?. As homogeneous [-vector random fields on S3 we define in Sec. 6 

a set of 'stochastic spherical harmonics', in terms of which we can expand any 

random field on the sphere. 

Similarly, in these terms we define a set of 'stochastic solid harmonics' on R'!I 

which satisfy the [-vector Helmholtz equation. All these are the stochastic 

analogue to the [-vector spherical functions in the nonrandom case14
l. Therefore, 

for example, the random wave field scattered from a homogeneous random 

sphere can be expanded in terms of the stochastic solid harmonics so defined. 

Such a scattering problem is treated elsewhere25
l. 

2. Spectral Representation of a Homogeneous Random Field on Sphere 

Let (Q, ~. P) denote the probability space (Q denotes the sample space, ~ 

the Borel field on Q and P the probability measure), and let Y(w) denote a 

random variabe (~ measurable function); w indicates the probability parameter 

denoting a sample point in Q which will be often supressed for brevity. Let 

L2(Q) denote the Hilbert space of random variables such that ( I YI 2> < 00 with 

inner product (Y1, Y2).o =(Y\Y2), ( )denoting the average over Q. Let a point on 

the sphere S3 be denoted by the vector =Cl. 0, cp) and X(t)=X(t,w) be a q.m. 

(quadratic mean) continuous random field on S'!I In this section, let L;(Q) 

denote the sub-Hilbert space of random variables which is linearly generated 

from X(t) (q. m. limit of linear transformation). The random field on the sphere, 

X(t), can be as well regarded as random field on G by (A. 2); 

(15) 

where e0 denotes a unit vector along the polar axis. The scalar field (15) is 

independent of the third Euler angle cp2 or of the rotation around t. The random 

field X(t) is said to be homogeneous in the wide sense, if the correlation 

function R(ti, t2) =(X(t1)X(t2)) is invariant under arbitrary rotations; 

(16) 

from which follows that R(ti, t2) is a function only of (t1 • t2)=(e0 •g11g~0)= 

[g11g 2] 00 =cos0, 0 being given by (A.19). Hence, we write the correlation function 

as R(0) =R(ti, t2). 

Let the rotational transformation of the homogeneous random field X(t) be 

as defined by (A. 4 ) ; 
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(17) 

Then the transformation SK on X(t) induces a transformation lJK on random 

variables Y E L'; (Q); 

lJK: Y - lJKY, g E G (18) 

which we call the shift transformation. From the invariance (16), it easily 

follows that the covariance of Y, Z E L;(Q) is invariant under lJK; 

(lJKY lJKZ)=(YZ), Y, Z E L;(Q) (19) 

implying that lJK is a unitary operator in L;(Q), and from (A. 5) and (18) follows 

the group property, 

(20) 

meaning that lJK, g E G, gives the unitary representation of the rotation group 

in L';(Q). It also follows from the q. m. continuity of X(t) that lJK is continuous 

with respect to the parameter g. 

As a special case of (18), namely lJKX(t) =X(g- 1t), the homogeneous scalar 

random field X(t) is expressible as 

(21) 

-I 
that is, the value of X(t) at t=ge0 is obtained by the transformation lJK from 

X(e0), i.e., the value at the 'north pole' e0 =e .. Denote by H the subgroup of 

rotations around the 'polar axis' e0 ; he0 =er, HEH, and by H, the subgroup of 

rotations around the vector t=ge0 : h,t=t; h,=ghg- 1 E H,, h E H. Then, for the 

scalar field X(t) we have 

U"X(t) =X(t), h EH,; U"X(e0) =X(e0), h EH (22) 

To generalize (21) we can construct a random field on G generated from X(t) 

in the following manner. Using a random variable Y in L';(Q), we put 

-I 
Y(g) =lJK Y, g E G (23) 

which is a homogeneous random field on G with the correlation function 

(24) 

depending on gii:2 1 by virtue of (19) and (20). 

By the representation theory of the rotation group, the representation space 

L;(Q) for lJK can be decomposed into the sum of irreducible spaces. Cor-
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respondingly, a vector X(e0) in L!(Q) can be decomposed into the vectors of 
orthogonal irreducible spaces. For convenience we denote by D1([)) an irreduc

ible space of the weight-I representation for [)ll_ Denote the canonical basis in D1 

(Q) fixed at the north pole e0 =e. by 

Zi=Zi(eo), m= -t ... , I (25) 

which satisfies the orthogonality relation, 

(26) 

Since by (22) X(e0) has only the 0-th canonical components relative to eo, its 

irreducible decomposition can be written in terms only of ZJ, 

where the expansion coefficient can be given 

l=O, 1, 2, ... 

-I 
By (21) we obtain X(t) from (27) by applying [Jll , 

where 

-1 
Zi(t) = [jll Zi, m= -I, ... , I, t=ge0 

denotes the moving canonical basis in D1(Q) attached to t. 

(27) 

(28) 

(29) 

(30) 

The expansion (29) gives the spectral representation of X(t) in terms of the 

moving canonical basis in Di(Q). That each term of (29) has only 0-th canon

ical component implies according to (A.27) that the homogeneous random field 
X(t) is decomposed into the sum of the isotropic I-vector field in D1({)), which 

is a simple geometrical interpretation for the spectral representation. 
Now let us represent (29) in terms of the fixed canonical basis at the 'north 

pole' e0• By (30) and (A.15) we represent Z/(t) in terms of the fixed canonical 
basis, using (A. 9) and the unitarity of Tmn(g), 
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(31) 

Substituting this into the righthand side of (29) we recover the spectral represen

tation ( 9) in the original form. Thus we have seen that the random spectrum 

F iZ'f' in ( 9) can be interpreted simply as the fixed canonical basis (25) in D1(Q). 

Therefore, the simple spectral representation (29) is a kind of 'coordinate-free' 

representation while the original one ( 9 ) is a 'coordinate-fixed' representation. 

Likewise, the polar spectral representation ( 6) for the homogeneous and isotrop

ic random field in R3 can be concisely expressed in terms of the moving 

canonical basis in Di(Q). Such group-theoretic or geometric simplification is 

greatly helpful when we deal with the random fields generated by the original 

homogeneous random field. 

3 . Homogeneous Random Measure and Stochastic Integral on the Sphere 

Analogous to the 1 -D case1
H

7
l we define the random measure and the 

stochastic integral over the sphere. Let L1 denote an interval or the joint or the 

meeting of intervals on the sphere S3 (more generally, L1 E f16 5 ; dis denoting the 

Borel field on S3 generated by the intervals), and I L1 I denoting its area 

(measure): then I S3 I = 4 n. Denote by gL1 (g E G) the rotated interval. Then 

I gL1 I = I L1 I , g E G, L1 E f165 

Consider the real random measure B(L1) =B(L1, w) on S3 such that 

<B(L1)>=0 

<BCL11)BCL12))= I L11L12 I , <B(L1)2>= I L1 I 

B("E. L1;) = "E. B(L1;); L1;L1j=</J, i=/:-j 
I I 

</J being the null set. Obviously by (32), we have 

(32) 

(33) 

(34) 

(35) 

(36) 

implying the wide-sense homogeneity of the random measure. We now assume 

the random measure to be homogeneous in the strict sense such that for any set 

of disjoint intervals L1;, the multidimensional probability distribution for B(gL1;) 

is invariant under rotations g E G. Specifically, B(L1) is termed the homogene

ous Gaussian random measure if B(L1;) obeys the Gaussian distribution. 

In what follows, let fJI denote the Borel field generated by the random 



Representations of the Random Fields on a Sphere 89 

measure B(L1, w), so that a 91 measurable function Y(w) implies a random 

variable or a nonlinear functional generated by B(L1, w). Analogous to (17) and 

(18), the rotation of the random measure, 

induces the transformation of a random variable, denoted by (Jll; 

(Jll: Y(w) - Y' (w) =(JllY(w) 

(37) 

(38) 

which satisfies the same group property (20). We call (Jll the shift transforma

tion. The strict-sense homogeneity of the random measure implies that the 

measure-preserving set transformation 'P: A - A' ='PA, is induced on Q, such 

that P('PA) =P(A), A, A' E 91. For convenience we write this formally as a 

point transformation on Q without any essential loss of rigor18
\ 

'P: w - w' = 'P , w, w' E Q g E G 

and rewrite (38) in the following manner, 

(JllY(w) = Y(w') = Y('Pw) 

(39) 

(40) 

which is intuitively understandable because the sample point w can be looked 

upon as if it were a coodinate parameter. Then the rotational homogeneity of 

the random measure can be written 

(41) 

From this follows the relation, e.g., B((gg2)-1 L1, w) =B(g21g 1
1L1, w) =B(g1

1 L1. 'P'J<,J) 

=B(L1. 'P1'P'J<,J). Hence, we have the group property of 'P analogous to (20); 

(42) 

We call 'P, g E G, the rotational transformation on Q 

Let L2(S3) denote the Hilbert space consisting of the (complex-valued) 

functions f(t) on the sphere, and define the inner product and the norm II/ II s 

by 

(j,g)s=J f(t)g(t)dtdS, lltlli=CJ./)s 
S3 

(43) 

Denote by 

I(f) =I f(t)dB(t) 
S3 

(44) 

where dB(t) =B(dt), the stochastic integral off E L2(S3) defined with respect to 

the random measure in the q. m. sense, which satisfies the following properties, 
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l(af+bg) =al(f) +bl(g) 

(J(f))=O 
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<I(f)I(g))=(J.g)s, < I I(f) I 2>= 11/11 I 

(45) 

(46) 

(47) 

where f. g E L2(S3) and a, b are constants. For an orthonormal system 'Pn(t) in 

L2(SJ such that 

we can form a set of orthogonal random varaibles Bn=Bn(w) by 

(48) 

(49) 

(50) 

If {<p"} is a complete system in L2(S3), {Bn} forms a complete orthonormal system 

in Li(Q) (c L2(Q)), a subspace linearly generated from B(LJ). When f is 

expanded as 

f(t) = "E.fn 'Pn(t), fn = (<p,., /) S (51) 
n=l 

then the stochastic integral (44) is expanded in terms of Bn (in q. m. sense); 

fs/Ct)dB(t)= E/nBn (52) 

For a specific example, we define a set of orthogonal random variables by 

the stochastic integral of spherical harmonics; 

13'('= f Yi(0, <p) dB(t) 
S3 

(53) 

/zi+If = y-;r,;-
53 

Tmo(g,)dB(gieo) (54) 

l=O, 1, 2, ... , m= -l, ... , l 

(55) 

If f is developed in terms of spherical harmonics, 

oo I 

/(t)= "E. "E. ff'Yi(0, <p), ff'=(Yi,/)s (56) 
l=O m= -l 

then we have the expansion 
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Lf(t)dB(t) = ,tJ ,fiBi (57) 

which can be regarded as the transformation of the representation for a random 
variable I(J). 

-1 -1 
Now, for later reference we apply lJ1I or 'P to (54), using (41), (A.20) and 

(A.16), to obtain the transformation rule for Bi: 
-1 -1 

lJ1I Bi' = Bi ( 'P w) (58) 

= ✓ 2l+ 1 I T. (gt)dB(gg ) = ✓ 21+ 1 I r. (g-1 )dB(g ) 41Z' S3 mo ,eo 411' S3 mo g, ,eo 

I 

= l: -r;;Ji5 Bf, m= -l, ... , l (59) 
s=~I 

When compared to (A.15) or (31), (59) shows that Hj, m= -l, ... , l, gives a fixed 

canonic.:!1 basis in the representation space Di(Q), which is transformed by l.?-
1 

as a [-vector like e(I),,,. Therefore, 

-1 
Hj(t. w) =Bi('P w), m=l ....• l, t=ge0 (60) 

form a moving canonical basis in D1(Q) relative to t=geo, which is transformed 

as a [-vector upon rotation, and satisfies the orthogonality : 

(61) 

readily following from (55) and (A.13). To generalize this further, we calculate 

the correlation function, 

(62) 

which is analogous to (A.I 7), and as a special case we have 

(63) 

which is analogous to (A.18). 

4. Shift Transformation and Homogeneous Random Fields on the Sphere 

In what follows we deal with a random field on the sphere lJf(t, w) as a (f,/5 

x a measurable) function on S3 X Q, or more generally a random field lJf(g, w) on 

G. For the sake of practical applications we introduce the shift transformation 

IJK operating on random fields using the convenient notation 'P, instead of l?. 
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We define the operator IJI, g E G, by 

(64) 

(65) 

Writing t=gr,eo, (64) is a special case of (65). From (A. 5) and (42) it easily 

follows that lJI gives a representation of the rotation group G: 

(66) 

since, for instance, we have Dg1d 2 1Jf(g, w)=d11Jf(g21g, T 2
-

1
w)= 

,.11-1,.11-1 (gg)-1 
1/f(g2 1g11g, 1 2 1 1 w)=l/f((g-,g2)- 1g,T 12 w). TheoperatorlJI, being a measure 

transformation on S3 X.Q can be applied to the random measure as well. The 

shift operator lJI introduced here is analogous to the shift operator operating on 

stationary processes19>. 
The homogeneity of the random measure (41) can be rephrased as the lJI 

invariance; 

-1 
IJIB(L1, w) =B(g- 1L1, 'P w) =B(L1, w) (67) 

that is, the homogeneous random measure is lJI invariant. Analogously, if a 

random field X(t, w) generated by B(L1) is lJI invariant, that is, 

(68) 

then X(t,w) is a homogeneous (scalar) random field on S3• In fact, (68) implies 

the homogeneity of the random field as well as (41). Therefore, rewriting the 

relation (68), we have the expression similar to (21); 

-1 -1 
X(t, w) =X(e0 'P w) =l.JI X(eC> w), t=ge0 (69) 

that is, the value at t=ge0 can be obtained by applying CJK-
1 

from the value at 

the north pole, X(e0, w), which is a scalar quantity being invariant upon rotation 

around e0 ; 

(70) 

More generally, using a random variable Y(w) (fJI measurable) we make a 

random field on G, 

-I 
Y(g, w) = Y('P w), g E G (71) 

which is easily shown to be lJI invariant and hence a homogeneous random field 

on G. A random field on Sa, like (69), is a special case of (71) such that Y(T"w) 
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=Y(w), h EH. 

Now we derive a homogeneous random field from a stochastic integral, 

X(w) =f J(t' )dB(t', w) 
S3 

(72) 

where f(t) is assumed to be zonal, that is, 

/(ht) =f(t), h EH (73) 

-1 
Putting X(w)~X(e0,w), we apply U1 to (72) to obtain 

X(P-
1
w) =f f(t' )dB(t', P-

1
w) 

S3 

=f f(t' )dB(gt', w) =f f(g- 1t' )dB(t' ,w) 
S3 S3 

(74) 

in the same manner as (59). The V" invariance for X(w) is readily checked 

putting g-h in (74) and using (73). Thus, the stochastic integral 

(75) 

gives a homogeneous scalar random field, which we call the 'moving average' on 

the sphere, an analogy of the moving average for a stationary process. 

Since f(t) is zonal by (73), it can be expanded in terms of the zonal 

spherical functions (m = 0 ) in the form 

00 /2l+1 
f(t) = ,"f!, ..j ~ F1~(0, <f)) 

which is substituted into (72) to yield 

X(w)= f; j 2z+l F/3?(w) 
l~O 41Z" 

Therefore, applying U1-
1 

to (74) and using (59), we obtain 

-I 00 {2f+f -1 
X(t, w)=X(P w)= ,"f!,..j~F/3?(1"1 w) 

00 ' = "'E.F1 "'E. Y'['(0, <P) B'{'(w) 
l=O m= -I 

(76) 

(77) 

(78) 

(79) 

which again gives the spectral representation for a homogeneous random field. 

(78) is in the coordinate-free form (29), while (79) is in the original coordinate 
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-fixed form ( 9 ) . 
Now we calcuate the correlation function of the moving average (75), using 

(47), (76), (A.18) and (A.20), 

R(ti, t2) = f f(g1 1t)f(gi_ 1t)dS= f f(t)f(gi_ 1g1t)dS 
S3 S3 

(80) 

which is the spectral representation (12) for the correlation function, easily 

following from (78) and (63). As mentioned at (12) the 'white' spectrum I F1 I 2 

= 1 gives the delta correlation for a white noise on the sphere. 
Next, we consider a I-vector random field with components, 

Xj(t, w), m= -t ... , l, t=g,eo 

which are transformed by IJI in the following manner: 

I 

IJIXj(t, w) = l: T'.,,.(g)XI(t, w), m= -C .. , (82) 
s=-1 

Such a random field is said to be a homogeneous I-vector random field. One of 

such I-vector random fields can be represented in the following form, 

Xi(t. w) =T',,.,.(g,)Xn(t, w), m= -l, ... ,, (83) 

where Xn(t, ), n= -l, ... , l, represents a D"-invariant scalar random field of the 
form (69). In fact, the factor T',,.,. (g,) in (83) is transformed under IJI or SK like 

(82) according to (A.16). Since by (A.15) Tmn(g,) is them-th component of e(IJn(t) 

in the fixed canoical basis, (83) can be expressed in the I-vector notation as 

(84) 

As the I-vector fields, (84) with a different n is linearly independent of (orthog
onal to) each other. A homogeneous I-vector random field can be written 

generally as a linear combination of (84) in n, examples of which will appear in 
Sec. 6. It is to be noted that the random field of the form (83) or (84) is a 

rotational counterpart of the 'stochastic' Floquet theorem based on the transla
tional motion 19i. 

5 . Wiener-Hermite Expansion on the Sphere 

If B(Ll, w) is a Gaussian random measure we can further define the multiple 
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stochastic integral called the multiple Wiener integral in much the same way as 

the 1-D Euclidean case15
•

16
•
20>. To demonstrate the transformation properties, a 

convenient definition can be made in terms of Wiener-Hermite differentials19
•
21 >, 

(85) 

where hn is defined using n-variate Hermite polynomials22> (see (95) below). 

First, a few differentials can be written 

ho=l. h1[dB(t)] =dB(t), 

h2[dB(t1), dB(t2)] =dB(t1)dB(t2) -o,1,it1 

h3[dB(t1), dB(t2), dB(t3)] =dB(t1)dB(t2)dB(t3) 

- [o,1,it1dB(ts) +01-tit,p,B(t1) +0111dB(t2)] 

(86) 

where Ou•= 1. t=t' ; = 0, t-=F-t'. Omitting details (c. f., references), we give here 

the formal expression for the n-tuple Wiener integral, 

(87) 

where/(ti,,••• tn)EL2(S3) denotes an-variate function on s~ L2(S3) denoting the 

Hilbert space of n-variate functions with the inner product 

(J.g)n= J , , , J fn(ti, .• , tn)g(ti, .. , tn)dt1.,dtn (88) 
S3 S3 

and the norm II/ II n= [(J. .f)nJ 112• The multiple Wiener integrals satisfy the fol

lowing properties ; 

ln(af +bg) =aln(f) +bln(g) 

In(/) =In(]) 

(@Im(g))=onmn! (].g),., ( I In(f) I 2)= 11/11; 

(89) 

(90) 

(91) 

(92) 

where the summation is to be taken over all n ! permutations of n variables to 

symmetrize f The case of n= 1 reduces to (44)-(47). 

When the n-variate function fn is expanded in terms of the complete or

thonormal system (f);(t). 

(93) 

it is easily shown by virtue of the tensorial property of n-variate Hermite 

polynomials that the n-tuple Wiener integral (87) can be transformed into the n 
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-tuple summation, 

(94) 

where 

where B; defined by (49) gives a sequence of independent Gaussian variables and 

Hn(B1, ••• , Bn) denotes the n-variate Hermite polynomial. First few polynomials 

are 

H0= 1, H 1 (B) =B, H 2(B, Bi) =B;lJi-oii 

HaCB. Bj, Bk) =B!J/3k-oi/3k-ojl,Bi-ok!Jj 
(95) 

It is noted that the n-variate Hermite polynomial is transformed as a tensor of 

degree n under linear transformations of the variables. 

A random variable X(w) generated by the Gaussian random measure B(LJ) 

on the sphere (L2(Q) functional) can be developed in terms of the orthogonal 

functionals, 

(96) 

(97) 

which are the Wiener-Hermite (W-H) expansions on the sphere and the discrete 

representation (97) corresponds to the Cameron-Martin expansion23
l. 

When spherical harmonics Yi"(t), t= (1, 0, <p), are used in the expansion 
(93), 

(98) 

then (94) becomes 

(99) 

-I -I 
which by (59) means that, under the rotational transformation if or 'P . (99) 

is transformed as a l x · · · X [-tensor of degree n in the n-tuple product space 

Di(Q) X ••• X Di(Q), 
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We now slightly generalize the equations (72)-(79) in the case of a Gaussian 

random measure. Letting the Wiener kernel /.(ti, ... , t.) be zonal, that is, 

invariant under rotations, h E H. around the polar axis eo, 

(100) 

then we easily see that the n-tuple Wiener integral (94), and hence (96), is 

invariant under cl' (or T"), h EH. Therefore, applying CP-
1 

to (96), and putting 

t=geo, we have 

-I 
X(t, w) =X('P w) 

which is a W-H expansion of a homogeneous random field on the sphere. 

Similarly, applying CP-
1 

to (97) we obtain a discrete representation of the W-H 

expansion where Bi in (97) is replaced by Bi(t) in (60), and the summation is 

to be taken under the restriction m1+ ... +m.= 0 because of (100). 

6 . Stochastic Spherical Harmonics and Stochastic Solid Harmonics 

Let Z'f'=Z'f' (w) be a fixed canonical basis in Di(Q), and Z'f'(t)=Z'f'(t,w) be 

the moving canonical basis relative to t=geo, such that 

-I I 

Z'f'(t) =Z'f'('P w) = I: ~Zi. t=geo 
s=-l 

(102) 

(103) 

(c. f., (59), (60)). For comparison and reference we quote the similar relations 

from (A.14) and (A.15) for a [-vector canonical basis e<ll• in D1 and the moving 

canonical basis e(l).(t) : 

(104) 

(105) 

It is to be reminded that Z'f' is transformed as a [-vector under CP-
1 

or 'P-
1 

while 

ec0 • is transformed as a [-vector under Sg or T(g) 

We define the "stochastic [-vector spherical harmonics" associated with Z'f' 

by the fromula; 
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(106) 

(107) 

l, l' =0, 1, 2, ... , L=min(l, l' ), n= -L, ... , L 

where Pcti. (0, <P) denotes the l-vector spherical harmonic defined by (A.29), and 

(106) is rewritten into (107) using (A.29), (103) and (105). Since, by befinition 

(103), Z'!(t) is invariant under JYI'. (107) is a homogeneous [-vector random field 

of the form (84). The correlation function can be easily calculated using (62), 

(108) 

which is an isotropic ( 2 -point) tensor field by virtue of (A.28). 

Now we introduce the "stochastic solid harmonics" .fciJn (r; w) such that it is 

a homogeneous [-vector random field on R3 which satisfies the [-vector Hel

mholtz equation. We denote the position and the wave vector by r= (r, 0, w) 

and k=- (k, u, v) in the polar coordinate, respectively, and let them stand for the 

spherical coordinates (0, <P) and (u, v) as well. Let us define the stochastic solid 

harmonic by the integral 

,I' 1 J "k ·nl' J(l)n(r;w)=-4 ·l'-1 e' "'rw.(k;w)dSk 
1C1, S3 

(109) 

l'=0, 1. 2, ... , n= -L, ... , L, L=min(l, l') 

That this bears the desired transformation properties under fYI easily follows 

from that of the integrand, or from the following expressions. Substituting (106) 

into (109) and using (A.35), (A.31), (A.29) and (107), we obtain several expres

sions for (109); 

fir+I ~ •/'/( ) ( )'71 ( ) = V ~ ,:-'i J., kr e(l), r L..r t 

(110) 

(111) 

(112) 

Since Zl(r) is [YI invariant, (112) is the sum of the functions of the form (84). 
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The integral representation (109) is a stochastic analogue to (A.35), and (111) 

is another analogue to (A.31). Furthermore, substituting (112) into the lefthand 

side of (109), and (107) into the righthand side, we obtain the formula analogous 

to (A.36), 

(113) 

which is the tensor integral representation, where ew. is a canonical l-vector in 

D1 and Zi· a canonical (-vector in Dr (Q) so that e(l)n(k)Zr (k) gives an isotropic 

l X(-tensor field in D 1XDr (Q) according to (A.28). It is obvious from (109) or 

from (110) and (A.33) that J'(0 .(r, w) satisfies the l-vector Helmholtz equation; 

(114) 

analogous to (A.33). The above mentioned analogies would justify the name of 

"stochastic l-vector solid harmonics". Similarly, we can define the stochastic 

solid harmonics HUi~' (r; w) by replacing J(I). by mJ?~' and j~:(kr) by h~)lr1(kr) in 

the righthand side of (110)-(112), which represent the stochastic outgoing l

vector wave satisfying the Helmholtz wave eqxation. When Zi is a linear 

functional of B(LJ, w) ), then Zi can be replaced by Bi. Otherwise, it is to be 

represented by the W-H expansion. 

The "stochastic spherical harmonics" and the "stochastic solid harmonics" as 

introduced in this section can be effectively used as a powerful tool to formulate 

the wave scattering theory associated with a random spherical surface25
l. 

Appendix 

Some necessary definitions and notations concerning the representation of 

the rotation group are briefly summarized for reference and for indicating our 

choice among various definitions. Several formulas are given in convenient 

forms for later applications. For details of the theory of the rotation group see 

Ref. 9, and also the appendix of Ref. 14. 

Rotation group A rotation g=g(({Ji, 0, ({)2) described by the three Euler angles 

is defined by the successive rotations in this order: a rotation g'/1
1 

about e,, g8 

about e,' =g,p
1
e, and g'/1

2
about e,' =g#,, (e,, ey, e,) denoting the 3 -D unit vectors 

along x, y, z axes, respectively. The rotations g (identity e, inverse g- 1
) form the 
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rotation group G, and the rotation of a 3 -D vector is represented by the Euler 

matrix [g] = [g"') [g0] [g"'
2
]. 

Canonical basis We call the set of vectors e,,. m = - 1 , 0, 1 , i. e., 

(A.I) 

the fixed canonical basis relative to e,. The Euler matrix is to be represented in 

the fixed canonical basis. Let (e,. ei; e"') be the unit orthogonal vector basis for 

the polar coordinates r= (r, 0, <p). The vector t=e, giving a point a point t= (1, 

0, <p) on the sphere can be written 

(A.2) 

We define the moving canonical basis by the set of vectors, em(r) =g,e,,. m= -1, 

0, 1, namely, 

(A.3) 

which is the canonical basis relative to r or t 
Representation of the rotation group For the functions on the sphere 1/f(t), 

t E Sa, or more generally the functions on G, 1/f(g), g E G, we define the transfor
mation Sg by 

(A.4) 

which gives the representation of G: 

(A.5) 

We denote by D1 the ( 2 l + 1 ) - D invariant space of the irreducible representa

tion of weight l, of which the matrix of unitary representation is written 

T(g) = [Tm.('Pi, 0, <p2)], -l~m. n~l 

Tm.('Pi, 0. <p2) =e-im"'1Pm.Ccos0)e-i""'2 

(A.6) 

(A.7) 

where Tm.Ce) =om• and T~.(g) =gm,. gm• being the Euler matrix relative to (A. 1 ). 

The matrix representation is referred to the fixed canonical basis in Db which is 

a set of ( 2 l + 1 ) orthogonal vectors of ( 2 l + 1 )-dimension, eaJ,. n = - l, ... , l : 

each being the eigenvector with the eigenvalue e-inq,2 for the rotation g around e,. 

In the present paper we deal with the representation of the integral weight l: l 

= 0, 1, 2, ···. The matrix element (A. 7) is called the generalized spherical 

function of order l 9
i, and in parcicular for n= 0, we have 

(A.8) 
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where Yi(0, <P) denotes the normalized spherical harmonics 

(A.9) 

Vector and tensor A (2l + 1) - D vector with components a(I),. n = -l, ... , l, 
which is transformed by the matrix T(g) upon rotation g as 

(A.10) 

is called a [-vector in D 1 ; hence the ordinary 3 - D vector transformed by gmn is 

a 1 -vector. Similarly, a ( 2 l + 1 ) - D vector transformed by the matrix T(g) 
is called a [-vector in D1 (the overbar implying the complex conjugate). Further, 

we consider a tensorial quantity in a product space, For instance, a tensor with 

( 2 l' + 1 ) x ( 2 l + 1 ) components aa;~•' which is transformed under rotation g as 

(A.11) 

is called for simplicty a Y- x [-tensor in Dr xD,, where the superscript refers to 

the component of a f-vector in Dr. The inner product of two [-vectors, a(I) and 

b(I), as well as the contraction of a tensor, can be defined as 

I --

(a(/) • b(I)) = I: a/J)mb(l)m 
m=-l 

(A.12) 

Properties of the matrix The unitarity of the representation matrix, 

can be interpreted as the orthonormal relation of a set of ( 2 l + 1 ) [-vectors 

e(l).(r) with respect to the inner product, namely 

(A.14) 

where we have put 

n=-l, .. . , l (A.15) 

which is obtained from e<on by rotation g,: T..(g,) in the righthand side giving 

the 2 l + 1 components in the fixed canonical basis of D1• The set of ( 2 l + l ) 

vectors (A.15) is called the moving canonical basis in D1 relative to r or t, which 
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is reduced to (A. 3) for l= 1. As (A.14) shows, the coordinate-free I-vector 

notation on the lefthand side of (A.15) makes the vector and tensor formulas 

considerably simpler than the coordinate-fixed notation on the righhand side. 

The multiplicative law of the group representation can be written as 

(A.16) 

The first equality simply shows that e(l).(r) is a I-vector, having the property (A. 

10). The second following from the first implies the addition theorem for 

generalized spherical functions, which can be interpreted as the inner product of 

two I-vectors : 

(A.17) 

where r1 =g1e() r2=g.ze0 ; (A.17) reduces to (A.14) when g 1 =g2- In particular, for m 

=n= 0, (A.17) gives the well known addition formula for the zonal spherical 

function; 

(A.18) 

(A.19) 

The integration over G has the invariance properties under rotational trans

formation of the variable : 

(A.20) 

For the function f(t) on S:; (A.20) imples the integrgl over S3 multiplied by 2 7C. 

The orthogonality and the completeness of the set of generalized spherical 

functions are written as 

(A.21) 

(A.22) 

Vector and tensor fields Upon rotation g a [-vector field on R 3 is transformed 
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into a new vector field by the formula, 

(A.23) 

In a similar manner, a tensor field, e. g., a I' x I-tensor field is transformed 

according to 

Isotropic vector field and isotropic tensor field 
field is invariant under rotations, for instance, when 

a'(l)m(r) =a(l)m(r) 

a1l;~m' (r) 

(A.24) 

When a vector or a tensor 

(A.25) 

(A.26) 

hold for (A.23) and (A.24), then I-vector field or the (XL-tensor field is said to 

be isotropic. It is easily shown14l that, when referred to the moving canonical 

basis, an isotropic I-vector field has only the 0-th canonical component depend

ing on r= I r I , that is 

aolm(r)=o,,.,p,(r), m=-l, ... , l (A.27) 

and that similarly an isotropic (XL-tensor field has the components only form' 

=m; 

(A.28) 

For the isotropic field on the sphere r= 1 , the components are constants. 

Vector harmonic functions For reference in the text we summarize the defi

nitions and formulas concerning the I-vector spherical and solid harmonics 

which are derived from the representation of the rotation group14
l. 

Let a l-vector function on Sa having only n-th canonical component be 

P~{{',.(0, <{)) =J (2l' + 1)/47! T'~11 (g)e(l) 11 (r) (A.29) 

n = - l, ... , l, l' = 0 , 1 , 2. ... , m = - l' , ... , l' 

in the coordinate-free notation. The l-vector function (A.29) is called the l
vector spherical harmonic and satisfies the orthogonality relation, 

(A.30) 

Let a l-vector functions on Ra be defined by 
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I 

J'(/i,.(kr, 0, cp) = :E j~,'(kr)P(,i,(0, cp), 
t ~ l 

(A.31) 

which we call the l-vector solid harmonic, where j~,'(kr) is defined by 

l+I' 

j~.(kr) = :E iL-l+l' ( - l)m+•cz-ml' m I ll' LO) (l-nl' n I ll' LO)jL (kr) 
L~ 11-1' I 

(A.32) 

jL (kr) being the spherical Bessel funtion and (l-ml' m I ll' LO) denoting the 

Clebsch-Gordan coefficient24l. j~. (kr) defined by (A.32) is called the generalized 

spherical Bessel function, having orthogonality with respect to integration, and is 

derived from the matrix element of the translation group in R3
14

l. The l-vector 

solid harmonics are shown to satisfy the l-vector Helmholtz equation, 

(A.33) 

and the orthogonality relation ; 

1_ J = J (.1'(1r:.• (k' r, 0, cp) • .l'Zti;., (k" r, 0, cp) )dSr2dr 
1C O S3 

(A.34) 

The following vector and tensor integral representations hold for l-vector har

monic functions : 

(A.35) 

(L =min (l, l')) 

where k= (k, u, v) in the polar coordinates and dS=sinududv. These two are 

equivalent representations with different interpretations. The first is written as 

the Fourier transform of the l-vector field over a sphere, while the second gives 

the Fourier transform of an isotropic l x (-tensor field over the sphere. 

Analogous to j~. and .J'(/i;, given in terms of jL(kr) we can define h;;.{m and 

the solid harmonics mN~' m in terms of the spherical Hankel function hi!) (kr). The 

l-vector solid harmonic HU]~'m satisfies the Helmholtz equation (A.33) also and 
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has similar integral representations. The definitions and formulas for I-vector 

harmonics are reduced to the vector case for l= 1 and to the familiar scalar case 

for l= 0. 
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